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O kuriózním chování částečných součtů
jedné řady
Petr Vodstrčil

Abstrakt. V tomto článku budeme porovnávat částečné součty jisté řady s jejím součtem,
kterým je číslo π. Všimneme si přitom jedné kuriozity, kterou následně objasníme. Dáme si
přitom za cíl používat jen velmi jednoduché poznatky z vyšší matematiky.

1. Vyjádření čísla π řadou

Nekonečná řada
∞∑
i=1

(−1)i−1 · 4
2i− 1 =

4
1
− 4
3
+
4
5
− 4
7
+
4
9
− 4
11
+ . . . , (♣)

kterou budeme v našem článku zkoumat, má součet π. Vyplývá to z následující věty,
ve které vystupuje velmi dobře známá Leibnizova (popř. Gregoryho) řada se souč-
tem π

4 . Pro zajímavost ukažme jeden elementární důkaz, ve kterém budeme využívat
jen minimum znalostí z matematické analýzy. Velmi podobný důkaz je možné najít
například i na Wikipedii (viz [5]).
Věta 1. Platí

∞∑
i=1

(−1)i−1
2i− 1 =

1
1
− 1
3
+
1
5
− 1
7
+
1
9
− 1
11
+ . . . =

π

4
. (1)

Důkaz. Je potřeba ukázat, že limitou posloupnosti částečných součtů uvedené řady je
číslo π

4 . Pro každé n ∈ N zřejmě platí

n∑
i=1

(−1)i−1
2i− 1 =

n∑
i=1

(∫ 1
0
(−1)i−1x2i−2 dx

)
=

∫ 1
0

(
n∑

i=1

(−1)i−1x2i−2
)
dx =

=
∫ 1
0

(
1− x2 + x4 − x6 + . . .+ (−1)n−1x2n−2

)
dx =

=
∫ 1
0

1− (−x2)
n

1 + x2
dx. (2)

Využili jsme přitom pouze linearitu integrálu (pracujeme s konečnými součty) a vzorec
pro součet prvních n členů geometrické řady. Z rovnosti

∫ 1
0

1
1+x2 dx =

[
arctg x

]1
0
= π
4
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a vztahu (2) pak dostaneme∣∣∣∣∣ π4 −
n∑

i=1

(−1)i−1
2i− 1

∣∣∣∣∣ =
∣∣∣∣
∫ 1
0

1
1 + x2

dx−
∫ 1
0

1− (−x2)
n

1 + x2
dx

∣∣∣∣ =
=

∣∣∣∣
∫ 1
0

(−x2)
n

1 + x2
dx

∣∣∣∣ <=
∫ 1
0

∣∣∣∣ (−x2)
n

1 + x2

∣∣∣∣ dx =
=

∫ 1
0

x2n

1 + x2
dx <=

∫ 1
0

x2n dx =
1

2n+ 1
→ 0 pro n → ∞.

Proto
∞∑
i=1

(−1)i−1
2i− 1 = limn→∞

(
n∑

i=1

(−1)i−1
2i− 1

)
=

π

4
.

Vztah (1) bychom mohli odvodit i pomocí teorie mocninných řad, konkrétně vět
týkajících se derivování a integrování mocninných řad člen po členu (viz například [4])
a pomocí Leibnizova kritéria a Abelovy věty (viz [2]). Záměrně jsme postupovali jinak,
protože se v celém článku budeme snažit používat co možná nejjednodušší matema-
tický aparát.

2. Posloupnost částečných součtů řady (♣)

Nyní se zaměřme na posloupnost {sn}∞n=1 částečných součtů řady (♣) danou předpisem

sn =
n∑

i=1

(−1)i−1 · 4
2i− 1 , n ∈ N.

Z definice součtu řady a z věty 1 je jasné, že limn→∞ sn = π. Lze očekávat, že pokud
n ∈ N bude „dostatečně velké“, bude hodnota sn „blízká“ číslu π. Zkusme proto
vypočítat hodnotu sn například pro n = 500 000 000 a porovnat ji s hodnotou čísla π.
Po provedení výpočtu (který s použitím systému Maple trval na běžném počítači méně
než 10 minut) obdržíme:

π = 3,141 592 653 589 793 238 462 643 383279 502 884 197 169 399 375 105 820 974 944592 30. . . ,

sn = 3,141 592 651 589 793 238 462 643 385279 502 884 197 169 389 375 105 820 974 94471430. . .

Skutečnost, že prvních 8 desetinných míst obou čísel se shoduje, nás jistě tolik
nepřekvapí, neboť jsme sečetli velké množství (prvních 500 000 000) členů naší řady.
Cifry na devátém desetinném místě se už liší (zvýrazněno tučně).

Extrémně zajímavý a nečekaný je ale fakt, že několik dalších cifer se opět sho-
duje (konkrétně 10.–26. desetinné místo). Na 27. desetinném místě se obě čísla opět
liší a 28.–43. desetinné místo se zase shoduje. Na 44. místě se čísla opět liší a na
45.–60. desetinném místě panuje opět shoda!

Můžeme si všimnout, že desetinné rozvoje obou čísel (π a s500 000 000) se na prvních
65 desetinných místech liší pouze na šesti pozicích, které jsme tučně zvýraznili.
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Tento jev objevil na počítači Roy D. North. Teprve později (v roce 1989) se jej
v článku [1] podařilo objasnit bratrům J. a P. Borweinovým společně s K. Dilche-
rem (čerpáno z knihy [6]). Kromě řady

∑∞
i=1

(−1)i−1·4
2i−1 , které se věnujeme v našem

článku, je v [1] rozebrána i řada
∑∞

i=1
1
i2 . Autoři však k důkazům svých tvrzení potře-

bují složitější matematický aparát jako je například Eulerova–Maclaurinova formule,
Bernoulliho čísla, Eulerova čísla, atd.

V našem článku objasníme výše uvedenou skutečnost pouze pomocí prostředků
nepřesahujících základní kurzy matematické analýzy. Jediné, co budeme potřebovat,
je znalost limit posloupností a Stolzova věta, která je jakousi diskrétní analogií l’Hospi-
talova pravidla.

3. Stolzova věta

V této části připomeneme Stolzovu větu. Buď {an}∞n=1 libovolná posloupnost. Pro
každé n ∈ N definujme diferenci

Δan = an+1 − an.

Věta 2 (Stolzova). Nechť {an}∞n=1 a {bn}∞n=1 jsou reálné posloupnosti splňující ná-
sledující tři předpoklady:

• limn→∞ an = limn→∞ bn = 0, nebo limn→∞ |bn| = +∞,

• {bn}∞n=1 je ryze monotónní,

• limn→∞
Δan

Δbn
existuje (vlastní nebo nevlastní).

Pak
lim
n→∞

an
bn
= lim

n→∞

Δan
Δbn

.

Důkaz. Úplný důkaz je možné najít například v knize [3]. Pro zajímavost zde dokážeme
pouze speciální případ věty, kde budeme předpokládat, že

• limn→∞ an = limn→∞ bn = 0,

• {bn}∞n=1 je klesající,

• limn→∞
Δan

Δbn
= L ∈ R.

To je přesně varianta Stolzovy věty, kterou dále budeme potřebovat. Naším úkolem
je dokázat, že limn→∞

an

bn
= L. Nechť ε ∈ R

+ je zvoleno libovolně, ale pevně. Podle
definice limity existuje n0 ∈ N takové, že pro každé k ∈ N splňující k >= n0 platí

L− ε <=
Δak
Δbk

<= L+ ε,

odkud pro každé k ∈ N splňující k >= n0 (uvědomme si, že vzhledem k předpokladům
platí Δbk < 0) máme

(L − ε)Δbk >= Δak >= (L+ ε)Δbk. (3)
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Jsou-li čísla m, n ∈ N zvolena tak, že n0 <= n < m, dostaneme sečtením nerovností (3)
pro k ∈ {n, . . . , m− 1} nerovnosti

(L− ε)
m−1∑
k=n

Δbk >=

m−1∑
k=n

Δak >= (L+ ε)
m−1∑
k=n

Δbk.

Po sečtení diferencí a jednoduché úpravě získáme nerovnosti

(L − ε)(bm − bn) >= (am − an) >= (L+ ε)(bm − bn), (4)

které jsou platné pro každé m, n ∈ N splňující n0 <= n < m. Protože am → 0 i bm → 0
pro m → ∞, dostaneme z nerovností (4) limitním přechodem vzhledem k m nerovnosti

(L− ε)(−bn) >= (−an) >= (L+ ε)(−bn), (5)

které platí pro každé n ∈ N splňující n >= n0. Posloupnost {bn}∞n=1 je klesající a kon-
verguje k nule, proto jsou všechny její členy kladné. Vydělíme-li nyní nerovnosti (5)
záporným výrazem (−bn), dostaneme

L− ε <=
an
bn

<= L+ ε

pro každé n ∈ N, n >= n0. To ale znamená, že

lim
n→∞

an
bn
= L = lim

n→∞

Δan
Δbn

,

což jsme chtěli dokázat.

4. Objasnění chování částečných součtů řady (♣)

Nejprve bude vhodné naši řadu, která je alternující (střídá znaménka), přepsat do
tvaru

∞∑
i=1

(−1)i−1 · 4
2i− 1 =

4
1
− 4
3
+
4
5
− 4
7
+
4
9
− 4
11
+ . . . =

=

(
4
1
− 4
3

)
+

(
4
5
− 4
7

)
+

(
4
9
− 4
11

)
+ . . . =

=
∞∑
i=1

(
4

4i− 3 − 4
4i− 1

)
=

∞∑
i=1

8
(4i− 3)(4i− 1) , (6)

což už je řada s kladnými členy a pro další zkoumání bude vhodnější.
Rovnosti ve vztahu (6) jsou v pořádku, protože je jasné, že pro n-tý částečný součet

řady
∑∞

i=1
8

(4i−3)(4i−1) , který označíme tn, platí tn = s2n, kde s2n je 2n-tý částečný

součet původní řady
∑∞

i=1
(−1)i−1·4
2i−1 . Proto (z definice součtu řady a z (1))

lim
n→∞

tn = lim
n→∞

s2n = π.
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Pro další výpočty bude užitečné si uvědomit, že pro každé n ∈ N platí

Δtn = tn+1 − tn =

=
n+1∑
i=1

8
(4i− 3)(4i− 1) −

n∑
i=1

8
(4i− 3)(4i− 1) =

8
(4n+ 1)(4n+ 3)

. (7)

Ze Stolzovy věty (rozmyslete si, že ji lze skutečně použít) a vztahu (7) však dostaneme
zajímavější výsledek

lim
n→∞

n
(
π − tn

)
= lim

n→∞

π − tn
1
n

= lim
n→∞

Δ(π − tn)

Δ
(
1
n

) = lim
n→∞

−tn+1 + tn
1

n+1 − 1
n

=

= lim
n→∞

− 8
(4n+1)(4n+3)

− 1
n(n+1)

= lim
n→∞

8n(n+ 1)
(4n+ 1)(4n+ 3)

=
1
2
, (8)

ve kterém je navíc ukrytá informace o tom, jak rychle posloupnost {tn}∞n=1 konverguje
k číslu π. Vztah (8) totiž můžeme psát ve tvaru

lim
n→∞

n

(
π − tn − 1

2n

)
= 0,

což nám říká, že posloupnost
{
π − tn − 1

2n

}∞
n=1

konverguje k nule řádově rychleji
než 1

n . Proto je přirozené zkoumat následující limitu (opět použijeme Stolzovu větu
a vztah (7)):

lim
n→∞

n2
(
π − tn − 1

2n

)
= lim

n→∞

π − tn − 1
2n

1
n2

= lim
n→∞

Δ
(
π − tn − 1

2n

)
Δ

(
1
n2

) =

= lim
n→∞

−tn+1 + tn − 1
2(n+1) +

1
2n

1
(n+1)2 − 1

n2

=

= lim
n→∞

−3n(n+ 1)
2(2n+ 1)(4n+ 1)(4n+ 3)

= 0.

Protože i tato limita vyšla nulová, znamená to, že
{
π − tn − 1

2n

}∞
n=1

konverguje k nule
dokonce řádově rychleji než 1

n2 . Proto zkusíme spočítat ještě limitu

lim
n→∞

n3
(
π − tn − 1

2n

)
= lim

n→∞

π − tn − 1
2n

1
n3

= lim
n→∞

Δ
(
π − tn − 1

2n

)
Δ

(
1
n3

) =

= lim
n→∞

−tn+1 + tn − 1
2(n+1) +

1
2n

1
(n+1)3 − 1

n3

=

= lim
n→∞

−3n2(n+ 1)2
2(3n2 + 3n+ 1)(4n+ 1)(4n+ 3)

= − 1
32

.

Tu je možné přepsat do tvaru

lim
n→∞

n3
(
π − tn − 1

2n
+
1
32n3

)
= 0.
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Posloupnost
{
π − tn − 1

2n +
1
32n3

}∞
n=1

proto konverguje k nule řádově rychleji než 1
n3 .

Naprosto identickou technikou bychom zjistili, že

lim
n→∞

n4
(
π − tn − 1

2n
+
1
32n3

)
= 0,

lim
n→∞

n5
(
π − tn − 1

2n
+
1
32n3

)
=
5
512

,

tzn.
lim

n→∞
n5

(
π − tn − 1

2n
+
1
32n3

− 5
512n5

)
= 0.

Posloupnost
{
π − tn − 1

2n +
1
32n3 − 5

512n5
}∞
n=1

tedy konverguje k nule řádově rychleji
než 1

n5 .

Dále bychom zjistili, že

lim
n→∞

n6
(
π − tn − 1

2n
+
1
32n3

− 5
512n5

)
= 0,

lim
n→∞

n7
(
π − tn − 1

2n
+
1
32n3

− 5
512n5

)
= − 61

8 192
,

odkud máme

lim
n→∞

n7
(
π − tn − 1

2n
+
1
32n3

− 5
512n5

+
61

8 192n7

)
= 0. (9)

Ještě dalším opakováním téhož postupu (který zde nebudeme podrobně rozepiso-
vat) bychom obdrželi

lim
n→∞

n9
(
π − tn − 1

2n
+
1
32n3

− 5
512n5

+
61

8 192n7
− 1 385
131 072n9

)
= 0,

což znamená, že posloupnost
{
π − tn − 1

2n +
1
32n3 − 5

512n5 +
61

8 192n7 − 1 385
131 072n9

}∞
n=1

konverguje k nule řádově rychleji než 1
n9 .

Pro další zkoumání bude ještě užitečné (pro každé n ∈ N) spočítat následující
diferenci:

Δ

(
π − tn − 1

2n
+
1
32n3

− 5
512n5

+
61

8 192n7

)
=

= − 12 465n
6 + 37 395n5 + 46 549n4 + 30 773n3 + 11 411n2 + 2 257n+ 183

8 192n7(n+ 1)7(4n+ 1)(4n+ 3)
< 0.(10)

Jedná se pouze o mechanický výpočet, se kterým nám opět pomohl systém Maple.
To, že je vypočtená diference záporná, je už triviální, neboť n ∈ N je kladné číslo.
Vztah (10) tedy říká, že posloupnost{

π − tn − 1
2n
+
1
32n3

− 5
512n5

+
61

8 192n7

}∞

n=1
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je klesající. Společně se zřejmým faktem (uvědomme si, že limn→∞ tn = π)

lim
n→∞

(
π − tn − 1

2n
+
1
32n3

− 5
512n5

+
61

8 192n7

)
= 0

pak pro každé n ∈ N dostáváme

tn < π − 1
2n
+
1
32n3

− 5
512n5

+
61

8 192n7
. (11)

Podobně bychom spočítali, že pro každé n ∈ N platí

Δ

(
π − tn − 1

2n
+
1
32n3

− 5
512n5

+
61

8 192n7
− 1 385
131 072n9

)
> 0,

což společně s rovností

lim
n→∞

(
π − tn − 1

2n
+
1
32n3

− 5
512n5

+
61

8 192n7
− 1 385
131 072n9

)
= 0

dává
tn > π − 1

2n
+
1
32n3

− 5
512n5

+
61

8 192n7
− 1 385
131 072n9

(12)

pro každé n ∈ N. Ze vztahů (11), (12) a s použitím rovnosti 131 072 = 217 dostáváme
následující větu.
Věta 3. Pro každý člen posloupnosti {tn}∞n=1, kde

tn = s2n =
2n∑
i=1

(−1)i−1 · 4
2i− 1 , (13)

platí nerovnosti
π − rn − 1 385

217n9
< tn < π − rn, (14)

kde

rn =
1
2n

− 1
32n3

+
5

512n5
− 61
8 192n7

(
=
1
2n

− 1
25n3

+
5
29n5

− 61
213n7

)
. (15)

Síla právě uvedené věty spočívá v tom, že se nejedná pouze o limitní výsledek, tj.
o výsledek platný pro všechna „dost velká“ n ∈ N, ale o nerovnosti platné pro každé
n ∈ N.

Z věty 3 ihned vidíme, že přibližná rovnost

tn
.
= π − rn (16)

je pro každé n ∈ N zatížená chybou, která je (v absolutní hodnotě) menší než 1 385
217n9 .

Tato chyba je tedy pro velká n ∈ N velmi malá.
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A protože nás zajímal částečný součet s500 000 000 = t250 000 000, dostaneme dosaze-
ním n = 250 000 000 = 1

22 · 109 do vztahů (15) a (16) následující přibližnou rovnost:

s500 000 000 = s2n = tn
.
= π − rn = π − 2

109
+
2
1027

− 1
1044

+
122
1063

. (17)

Vzniklá chyba je přitom menší než 1 385
217n9 =

277
1080 .

Vztah (17) už plně vysvětluje dříve zmíněné chování částečného součtu s500 000 000

řady
∑∞

i=1
(−1)i−1·4
2i−1 :

π = 3,141 592 653 589 793 238 462 643 383279 502 884 197 169 399 375 105 820 974 944592 30. . . ,

s500 000 000 = 3,141 592 651 589 793 238 462 643 385279 502 884 197 169 389 375 105 820 974 944714 30. . .

Nyní je pěkně vidět, že dekadický zápis částečného součtu s500 000 000 naší řady do-
staneme z dekadického zápisu čísla π tak, že na 9. desetinném místě odečteme dvojku,
na 27. místě dvojku přičteme, na 44. místě odečteme jedničku, atd. (viz vztah (17)).

5. Numerický výpočet součtu řady

Pomocí techniky vyložené v předchozí kapitole bychom mohli numericky počítat součty
některých řad. Ukažme postup na řadě

∑∞
i=1

(−1)i−1·4
2i−1 a pokusme se o numerický

výpočet jejího součtu (tím – jak víme – je číslo π).

Řada
∞∑
i=1

(−1)i−1 · 4
2i− 1

konverguje k číslu π velmi pomalu. Sečteme-li například prvních 20 členů této řady,
tzn.

4
1
− 4
3
+
4
5
− 4
7
+ . . .− 4

39
,

dostaneme výsledek s20 = 3,091 623 806 667 . . ., který dává velmi špatnou aproximaci
čísla π (chyba je už na prvním desetinném místě).

Použijeme-li však námi odvozenou přibližnou rovnost (16) přepsanou do tvaru

π
.
= tn + rn

a přihlédneme-li k (15), dostaneme dosazením n = 10 (nezapomeňme, že t10 = s20,
viz (13))

π
.
=
4
1
− 4
3
+
4
5
− 4
7
+ · · · − 4

39︸ ︷︷ ︸
=s20=t10

+
1
2 · 10 − 1

32 · 103 +
5

512 · 105 − 61
8192 · 107︸ ︷︷ ︸

=r10

=

= 3,141 592 653 579 . . . ,
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což je výsledek přesný dokonce na 10 desetinných míst. Vidíme tedy, že přidáním
pouze 4 poměrně jednoduchých sčítanců jsme zásadním způsobem zlepšili přesnost
aproximace čísla π.

Výše popsanou techniku bychom mohli úspěšně použít pro numerický výpočet
součtu některých řad, u kterých tento součet neumíme analyticky vyjádřit, například∑∞

i=1
1
i3 ,

∑∞
i=1

(−1)i−1
(2i−1)2 , atd.

Pro zajímavost ukažme, jak by výpočet dopadl, pokud bychom chtěli numericky
počítat součet

∑∞
i=1

1
i3 . Všimněme si, že se jedná o hodnotu Riemannovy zeta funkce

v bodě 3, tj. ζ(3), kterou (jak už bylo řečeno) neumíme vypočítat analyticky. Techni-
kou, která byla vyložena v kapitole 4, bychom nyní mohli ukázat následující analogii
věty 3.
Věta 4. Pro každé n ∈ N platí nerovnosti

n∑
i=1

1
i3
+ ωn − 3

20n10
<

∞∑
i=1

1
i3

<

n∑
i=1

1
i3
+ ωn, (18)

kde
ωn =

1
2n2

− 1
2n3
+
1
4n4

− 1
12n6

+
1
12n8

.

Zvolíme-li například n = 100, dostaneme

ζ(3) =
∞∑
i=1

1
i3

.
=
100∑
i=1

1
i3
+

1
2 · 1002 − 1

2 · 1003 +
1

4 · 1004 − 1
12 · 1006 +

1
12 · 1008︸ ︷︷ ︸

=ω100

=

= 1,202 056 903 159 594 285 401 . . .

Z nerovností (18) navíc plyne, že přesná hodnota součtu řady
∑∞

i=1
1
i3 je menší, než

je hodnota vypočtená, a že rozdíl mezi vypočtenou aproximací a přesnou hodnotou je
menší než

3
20n10

=
3

20 · 10010 = 1,5 · 10
−21.

6. Závěr

Cílem tohoto článku bylo objasnit zajímavé chování částečných součtů řady (♣). Tyto
výsledky již byly dříve publikovány jinými autory v článku [1], kde se předpokládá
(mimo jiné) znalost tzv. Eulerových čísel Ei, která se objevují v rozvoji

1
cos x

=
∞∑
i=0

(−1)i E2ix
2i

(2i)!
= 1− (−1)x

2

2!
+
5x4

4!
− (−61)x

6

6!
+
1 385x8

8!
− . . .

jako koeficienty v čitatelích jednotlivých zlomků. Jedná se o čísla 1, −1, 5, −61, 1 385,
atd. Přesně tato čísla se objevila i v našich výpočtech (viz například vztahy (15) a (14)).
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Rozdíl je v tom, že my jsme nepotřebovali žádný speciální matematický aparát. Stačilo
znát něco málo o limitách posloupností včetně Stolzovy věty.

V již zmíněném článku [1] jsou analyzovány i jiné známé řady, které vykazují
podobně zajímavé chování. Konkrétně jde o řadu

∑∞
i=1

1
i2 (součet π2

6 ) a
∑∞

i=1
(−1)i−1

i
(součet ln 2).

Poznamenejme, že obě výše uvedené řady (ale i spoustu dalších) bychom také mohli
zkoumat metodou založenou na Stolzově větě popsanou v našem článku.

I když jsme v článku popsali známé výsledky, domníváme se, že díky jednoduchému
matematickému aparátu, který jsme používali, se tyto výsledky stanou přístupnější
širšímu matematickému publiku (například i studentům bakalářského studia).
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