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O kuriéznim chovani ¢astecnych souctt
jedné Tady

Petr Vodstrcil

Abstrakt. V tomto ¢lanku budeme porovnavat Castecné soucty jisté fady s jejim souctem,
kterym je ¢islo 7. VSimneme si pritom jedné kuriozity, kterou néasledné objasnime. Dame si
ptitom za cil pouzivat jen velmi jednoduché poznatky z vyssi matematiky.
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kterou budeme v nasem clanku zkoumat, ma soucet m. Vyplyva to z nasledujici véty,

ve které vystupuje velmi dobfe zndmd Leibnizova (popt. Gregoryho) fada se souc-

tem 7. Pro zajimavost ukazme jeden elementarni dikaz, ve kterém budeme vyuzivat

jen minimum znalosti z matematické analyzy. Velmi podobny dukaz je mozné najit
napriklad i na Wikipedii (viz [5]).

Véta 1. Plati
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Drikaz. Je potieba ukazat, ze limitou posloupnosti ¢astecnych souc¢tu uvedené rady je

c¢islo 7. Pro kazdé n € N zfejmé plati
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Vyuzili jsme pFitom pouze linearitu integralu (pracujeme s konecnymi soucty) a vzorec
s

v , v o 1z .orl 1 o 1
pro soucet prvnich n ¢lentt geometrické rady. Z rovnosti fo 7z do = [arctg x] 0= 1
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a vztahu (2) pak dostaneme
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Vztah (1) bychom mohli odvodit i pomoci teorie mocninnych fad, konkrétné vét
tykajicich se derivovani a integrovani mocninnych fad ¢len po ¢lenu (viz napiiklad [4])
a pomoci Leibnizova kritéria a Abelovy véty (viz [2]). Zamérné jsme postupovali jinak,
protoze se v celém ¢lanku budeme snazit pouzivat co mozné nejjednodussi matema-
ticky aparéat.

2. Posloupnost ¢asteénych souctt fady (&)

Nyni se zaméime na posloupnost {s,,}°2 ; ¢asteénych souctti fady (d) danou predpisem

( 1)i—1 .4
n — T a4 N
S ;1 %~ 1 n e

7 definice souctu rady a z véty 1 je jasné, ze lim,,_, o, s, = m. Lze oCekavat, ze pokud
n € N bude ,dostatecné velké“, bude hodnota s, ,blizka“ ¢islu 7. Zkusme proto
vypocitat hodnotu s,, napriklad pro n = 500 000 000 a porovnat ji s hodnotou ¢isla .
Po provedeni vypoctu (ktery s pouzitim systému Maple trval na bézném poéitaci méné
nez 10 minut) obdrzime:

™ 3,141592653 589793 238 462 643 383 279 502 884 197169 399 375105820974 944 592 30.. .,

Sp = 3,141592651 589 793 238 462 643 385 279502 884 197 169 389 375105820974 944 71430. ..

Skutecnost, ze prvnich 8 desetinnych mist obou ¢isel se shoduje, nas jisté tolik
nepiekvapi, nebot jsme secetli velké mnozstvi (prvnich 500000 000) clentt nasi fady.
Cifry na devatém desetinném misté se uz lisi (zvyraznéno tucné).

Extrémné zajimavy a necekany je ale fakt, ze nékolik dalsich cifer se opét sho-
duje (konkrétné 10.—26. desetinné misto). Na 27. desetinném misté se obé ¢isla opét
lisi a 28.—43. desetinné misto se zase shoduje. Na 44. misté se ¢isla opét 1isi a na
45.-60. desetinném misté panuje opét shoda!

MuZeme si vSimnout, Ze desetinné rozvoje obou ¢isel (7 a $500 000 000) S€ na prvnich
65 desetinnych mistech 1isi pouze na Sesti pozicich, které jsme tucné zvyraznili.
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Tento jev objevil na pocitac¢i Roy D. North. Teprve pozdéji (v roce 1989) se jej

v ¢lanku [1] podafilo objasnit bratram J. a P. Borweinovym spoleéné s K. Dilche-
i—1

rem (Cerpano z knihy [6]). Kromé fady > -, (72137'4

¢lanku, je v [1] rozebréna i fada Y-, %2 Autori vsak k dukazum svych tvrzeni potie-

vvvvv

, které se vénujeme v nasem

Bernoulliho ¢&isla, Eulerova ¢isla, atd.

V nasem c¢lanku objasnime vySe uvedenou skute¢nost pouze pomoci prostredki
nepresahujicich zédkladni kurzy matematické analyzy. Jediné, co budeme potrebovat,
je znalost limit posloupnosti a Stolzova véta, ktera je jakousi diskrétni analogii I’Hospi-
talova pravidla.

3. Stolzova véta

V této ¢ésti pripomeneme Stolzovu vétu. Bud {a,}5; libovolnd posloupnost. Pro
kazdé n € N definujme diferenci

Aay, = apy1 — an.

Véta 2 (Stolzova). Necht {a,}52, a {b,}52, jsou redlné posloupnosti spliujici na-
sledujici tri predpoklady:

o lim, o an, =lim, o0 by, = 0, nebo lim,_, |b,| = 400,

o PR
o {b,}2°, je ryze monoténni,

o lim, 2—‘;: existuje (vlastni nebo nevlastni).
Pak
. anp . Aan
lim — = lim

Diikaz. Uplny diikaz je mozné najit napiiklad v knize [3]. Pro zajimavost zde dokézeme
pouze specialni pripad véty, kde budeme predpokladat, ze

e lim, , a, =lim, .o b, =0,
o {b,}2°, je klesajici,
o limy oo %= =L ER.

To je presné varianta Stolzovy véty, kterou dédle budeme potiebovat. Nasim tkolem
je dokazat, Ze lim, o, §*= = L. Nechf ¢ € R™ je zvoleno libovolné, ale pevné. Podle
definice limity existuje ng € N takové, Ze pro kazdé k € N spliujici k = ng plati

odkud pro kazdé k € N spliujici k& = ng (uvédomme si, Ze vzhledem k predpokladiim
plati Ab, < 0) mame
(L —e)Abr = Aay = (L + ) Aby. (3)
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Jsou-li ¢isla m, n € N zvolena tak, Ze ng < n < m, dostaneme sectenim nerovnosti (3)
pro k € {n, ..., m — 1} nerovnosti

m—1 m—1 m—1
(L*&)ZAbkEZAak L+e ZAbk
k=n k=n k=n

Po secteni diferenci a jednoduché tpravé ziskame nerovnosti
(L = &)(bm — bn) Z (am — an) Z (L +€)(bp — bn), (4)

které jsou platné pro kazdé m, n € N splijici ng < n < m. ProtoZe an, — 01 by — 0
pro m — oo, dostaneme z nerovnost{ (4) limitnim pfechodem vzhledem k m nerovnosti

(L= €)(=bn) 2 (—an) = (L +&)(=bn), (5)

které plati pro kazdé n € N spliujici n = ng. Posloupnost {b,}5°, je klesajici a kon-
verguje k nule, proto jsou vsechny jeji ¢leny kladné. Vydélime-li nyni nerovnosti (5)
zdpornym vyrazem (—b,,), dostaneme

L-e<®<p4e
n
pro kazdé n € N, n = ng. To ale znamen4, Ze

. an - .. Aay,
e b, P T A,

coz jsme chtéli dokazat. O

s ¥ v

4. Objasnéni chovani ¢asteénych soucti rady (&)

Nejprve bude vhodné nasi fadu, kterd je alternujici (stfidd znaménka), prepsat do
tvaru

4
11

4

9
G-
22(41'3 421) 2—4@4 (6)

coz uz je fada s kladnymi ¢leny a pro dalsi zkouméani bude vhodnéjsi.
Rovnosti ve vztahu (6) jsou v porddku, protoZe je jasné, Ze pro n-ty ¢dsteény soucet
fady Y .o, m, ktery oznacime t,,, plati t,, = so,, kde so, je 2n-ty c¢astecny

e 114
Z 2%—1

1=1

i—1
soucet ptvodni fady Y -, % Proto (z definice souctu fady a z (1))

lim ¢, = lim so, = 7.
n—0oo n—oo

Pokroky matematiky, fyziky a astronomie, roénik 69 (2024), ¢. 4 223



Pro dalsi vypocty bude uzitecné si uvédomit, ze pro kazdé n € N plati

Atn = tn+1 —ty =

- Til ° - ) ° = 5 (7)
- i=1 (4 -3)(4i - 1) — (4i-3)(4i-1)  (An+1)(4n+3)°

Ze Stolzovy véty (rozmyslete si, Ze ji lze skuteéné pouzit) a vztahu (7) vSak dostaneme
zajimavéjsi vysledek

—tn Alm —t, . —tn tn
lim n(ﬂftn) = lim © 7— = lim LT i ) = lim % =
n—00 n—00 - n—oo A (H) n—oo o — o
8
. T @ntD@En+3) . 8n(n+1) 1
= lim —————— = lim ————— = — (8)
noee oy n—oo (dn+1)(dn+3) 2

ve kterém je navic ukryta informace o tom, jak rychle posloupnost {¢,}5° ; konverguje
k ¢islu . Vztah (8) totiz muzeme psit ve tvaru

1
lim n (w—tn— —) =0,
n—00 2n

coz nam ftika, ze posloupnost {ﬂ' —ty — %}:oﬂ konverguje k nule radové rychleji
nez % Proto je pfirozené zkoumat nésledujici limitu (opét pouzijeme Stolzovu vétu
a vztah (7)):

]- _tn_L A —tn—i
lim n? (ﬂ'tn ) = lim th — lim (7T 2n) _
=z

n— oo 2n

= lim —
1 1
nreo Dz~ n?
—3n(n+1)

=0.

noo 2(2n + 1)(dn + 1)(4n + 3)

v . . . v , , v oo .
Protoze i tato limita vysla nulova, znamena to, ze {ﬂ' —tn — % }nfl konverguje k nule

dokonce tadoveé rychleji nez # Proto zkusime spocitat jesté limitu

1 —ty — = A(r—t, — L

n3 n3
1 1
. g1+t — 2(n+1) + 2
= lim =

n—=00 1 1
(n+1)3 n3
37,12 n 1 2 1

n—oo 2(3n2 +3n+1)(4n+1)(4n+3) 32"

Tu je mozné prepsat do tvaru

1 1
lim n? <7rtn—+—) =0.

n—oo
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Posloupnost {ﬂ' —ty — % + # }2021 proto konverguje k nule radové rychleji nez #

Naprosto identickou technikou bychom zjistili, ze
1 1
. 4 B R S S
nlggo K (ﬂ- tn 2n + 32n3> 0,

e s R 5
im n —tp — — = —,
oo AT on ' 3203 512

tzn.
lim 1 (7 —ty— o+ e — = ) =
n—»00 " 2n 0 32n3 51205 )
Posloupnost {7r — ity — % + 321713 — 512% }Zozl tedy konverguje k nule radové rychleji
nez nl—s
Dale bychom zjistili, ze
1 1 5
li 6 —tp——+—=———-1]=0
nveo ! (” o0 3om3 512n5) ’
lim n’ t ! + ! i ol
T—th— ot o3 5535 = 3305
n—o0 2n  32n%  512n° 8192
odkud méame
1 1 5 61
lim n (7 —t, — — — =0. 9
oo <7T 20 " 3203 Bl2md | 8 192n7> ©)

Jesté dalsim opakovanim téhoz postupu (ktery zde nebudeme podrobné rozepiso-
vat) bychom obdrzeli

o nf R 5, 61 1385 0
T—tp — 5— - - =0,
n—o0 2n ' 3203 51205 | 8192n7 13107207

. . 1 1 5 61 1385
coz znamena, ze posloupnost {W —tn— 5, t 33,5 ~ 51205 T §19207 T T31 07200 }nzl

konverguje k nule rddové rychleji nez #

Pro dalsi zkoumani bude jesté uziteéné (pro kazdé n € N) spocitat nédsledujici
diferenci:

A<wtni+ 15, )_

2n  32n3  512n®  8192n7
12 46515 + 37 39515 + 46 549n* 4+ 30 773n3 + 11 411n2 + 2 257n + 183
8192n7(n 4+ 1)7(4n + 1)(4n + 3)

< 0.(10)

Jednd se pouze o mechanicky vypocet, se kterym nam opét pomohl systém Maple.
To, Ze je vypoctena diference zaporna, je uz triviadlni, nebot n € N je kladné dcislo.
Vztah (10) tedy fikd, Ze posloupnost

, 1 N 1 5 N 61 o
T =ty — — —
2n  32n3  512n°  8192n7

n=1
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je klesajici. Spolecné se ziejmym faktem (uvédomme si, ze lim,, o t, = 7)

=ty — —

I 1 " 1 5 " 61

im _ _
n—o0 2n  32n%  512n®  8192n7
pak pro kazdé n € N dostavame

fho<m— Lyt __> 6 (11)
ST o T 39,3 T B12n5 | 819207

Podobné bychom spocitali, ze pro kazdé n € N plati

A —t—i—i— I 5 n 61 1385 0
T T o0 T 3203 T 51205 | 810207 13107200 ’

coz spole¢né s rovnosti

1
li —ty — —
im (7T o +

n—oo

15 N 61 1385 B
32n3 512nb 8 192n7 131072n° |
dava

b L n 1 - 5 n 61 - 1 385

no 2n 32n3 512n° 8192n7 131 072n°

pro kazdé n € N. Ze vztahti (11), (12) a s pouzitim rovnosti 131 072 = 217 dostdvame
nasledujici vétu.

(12)

Véta 3. Pro kazdy ¢len posloupnosti {t,}2° ;, kde

2n

tn:32n:; %, (13)
plati nerovnosti
7T*Tn7%<tn<ﬂ'77’n, (14)
kde
1 1 5 61 1 1 5 61
"9, T 3203 T Bl2ms | 810207 (: o a3 213n7) - (19)

Sila pravé uvedené véty spociva v tom, ze se nejedna pouze o limitni vysledek, tj.
o vysledek platny pro vSechna ,dost velka“ n € N, ale o nerovnosti platné pro kazdé
n € N.

Z véty 3 ihned vidime, ze priblizna rovnost

by =T — 1y (16)
je pro kazdé n € N zatizend chybou, kterd je (v absolutn{ hodnoté) mensi nez 211‘;’259 .

Tato chyba je tedy pro velkd n € N velmi mal4.
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A protoze nés zajimal ¢asteény soucet s500 000 000 = t250 000 000, dostaneme dosaze-
nfm n = 250 000 000 = 55 - 10° do vztaht (15) a (16) nésledujici piibliznou rovnost:

L 2 n 2 1 n 122 (17)
S =Sop =t =T —Typ =T — — — .
500 000 000 = $2 109 T 1027 10% ' 1063

Vznikla chyba je pritom mensi nez 21137815; = 1207870 .

Vztah (17) uz plné vysvétluje difve zminéné chovani ¢dsteéného souctu sso0 000 000

Y —1)" 1.4
fady Y 7%, ( 2371 :

T = 3,141592653 589793 238 462 643 383 279 502884 197 169 399 375 105820974 944 592 30... .,
5500 000 000 = 3,141592651 589793 238 462 643 385 279 502 884 197 169 389 375105 820974944 714 30. . .

Nyni je pékné vidét, ze dekadicky zapis ¢astecného souctu sso0 000 0oo nasi rady do-
staneme z dekadického zapisu ¢isla 7 tak, ze na 9. desetinném misté odecteme dvojku,
na 27. misté dvojku pricteme, na 44. misté ode¢teme jednicku, atd. (viz vztah (17)).

5. Numericky vypocet souctu rady

Pomoci techniky vylozené v predchozi kapitole bychom mohli numericky pocitat soucty

i—1
nékterych fad. Ukazme postup na fade Y50, -4

vypocet jejiho souctu (tim — jak vime — je ¢éislo ).

a pokusme se o numericky

Rada _
‘ 2i—1
=1
konverguje k ¢islu m velmi pomalu. Secteme-li napiiklad prvnich 20 ¢lenu této rady,
tzn.

4 4 4 4 4

1 375 7t 39

dostaneme vysledek sog = 3,091 623 806 667 . . ., ktery dava velmi Spatnou aproximaci
¢isla m (chyba je uz na prvnim desetinném misté).

Pouzijeme-li vSak ndmi odvozenou pribliznou rovnost (16) prepsanou do tvaru
T =1ty + 7y

a prihlédneme-li k (15), dostaneme dosazenim n = 10 (nezapomenme, Ze t1p = S20,
viz (13))

4 " 4 + 1 1 " 5 61

7 39 2-10 32-103 512-10° 8192107
=s20=t10 =710

= 3,141 592 653 579 . . .,

+

—
SIS

ol

Pokroky matematiky, fyziky a astronomie, roénik 69 (2024), ¢. 4 227



coz je vysledek presny dokonce na 10 desetinnych mist. Vidime tedy, ze pridanim
pouze 4 pomérné jednoduchych sc¢itanci jsme zasadnim zpisobem zlepsili presnost
aproximace cisla 7.

Vyse popsanou techniku bychom mohli dspésné pouzit pro numericky vypocet
souctu nékterych rad, u kterych tento soucet neumime analyticky vyjadrit, napriklad

Yt o L ((511)1)2 , atd.

Pro zajimavost ukazme, jak by vypocet dopadl, pokud bychom chtéli numericky
pocitat soucet Z;’il %3 Vsimnéme si, ze se jedna o hodnotu Riemannovy zeta funkce
v bodé 3, tj. ¢(3), kterou (jak uz bylo Fe¢eno) neumime vypocitat analyticky. Techni-
kou, ktera byla vylozena v kapitole 4, bychom nyni mohli ukazat nasledujici analogii
véty 3.

Véta 4. Pro kazdé n € N plati nerovnosti

"1 3 1 1
;i—3+wn7—20nlo<zli—3<zi—3+wn, (18)

kde
1 1 1 1 1

2 o T mA T T T Ton

Zvolime-li naptiklad n = 100, dostaneme

Wy =

00 100
1 1 1 1 1 1 1
3) = — — — — =
@) Z ;3 3 + 2-1002 2-1003 + 4-100% 12 - 1006 + 12 -1008

1
=w100

(=}

~.

=1 3

= 1,202 056 903 159 594 285 401 . . .

Z nerovnosti (18) navic plyne, ze pfesnd hodnota souctu fady Y .o, %3 je mensi, nez
je hodnota vypoctena, a ze rozdil mezi vypoctenou aproximaci a presnou hodnotou je
mensi nez 5 5
= =15-10"2L
20n10  20-10010

6. Zaver

Cilem tohoto ¢lanku bylo objasnit zajimavé chovani ¢asteénych soucti rady (é). Tyto
vysledky jiz byly difve publikovdny jinymi autory v ¢lanku [1], kde se predpokladd
(mimo jiné) znalost tzv. Eulerovych ¢isel F;, kterd se objevuji v rozvoji

i Ezl 717(—1)3:2 52 (—61)z® 138528

2! 4! 6! 8!

COos @
=0

jako koeficienty v citatelich jednotlivych zlomki. Jednd se o ¢isla 1, —1, 5, —61, 1 385,
atd. Presné tato c¢isla se objevila i v nasich vypoctech (viz napiiklad vztahy (15) a (14)).
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Rozdil je v tom, ze my jsme nepotiebovali zadny specidlni matematicky aparat. Stacilo
znat néco malo o limitach posloupnosti véetné Stolzovy véty.

V jiz zminéném c¢lanku [1] jsou analyzovany i jiné znamé fady, které vykazuji
00 (_1)i71

« 9 , /o fr X s - oo 1 v 2
podobné zajimavé chovani. Konkrétné jde o fadu ) ;~; = (soucet %) a ) =, ~—

(soucet In 2).

Poznamenejme, Ze obé vyse uvedené fady (ale i spoustu dalsich) bychom také mohli
zkoumat metodou zalozenou na Stolzové vété popsanou v nasem c¢lanku.

I kdyz jsme v ¢lanku popsali znamé vysledky, domnivame se, ze diky jednoduchému
matematickému aparatu, ktery jsme pouzivali, se tyto vysledky stanou pristupnéjsi
SirSfmu matematickému publiku (napiiklad i studenttim bakaldrského studia).
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