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Michani karet a kombinatorické posloupnosti

Antonin Slavik

Abstrakt. V ¢lanku se vénujeme nékolika metoddm michén{ karet. Pripomeneme klasicky
Fisheruv—Yatesuv algoritmus a popiseme nékteré jeho modifikace. Tyto nestandardni metody
michéni jsou z pohledu matematiky mnohem zajimavéjsi a souviseji s nékterymi znamymi
kombinatorickymi posloupnostmi.

Matematikové miluji hraci karty. Svéd¢i o tom rozsahla literatura vénovand nejriz-
néjsim matematickym problémiam souvisejicim s kartami. Nékdy Ctenar vystaci s ele-
mentdrni matematikou, jako napt. v knize [11] popisujici karetn{ triky s matematickym
jadrem. Jindy jsou zapotiebi hlubsi znalosti teorie pravépodobnosti, kombinatoriky,
algebry a dalsich disciplin, jako napt. v knize [2], kterd pojedndvé o michan{ karet.

Karetni hréci pouzivaji rizné metody michéni (viz napt. [13]). Pokud ocislujeme
karty prirozenymi ¢isly z mnoziny {1, ..., n}, kde n je pocet karet, pak vysledkem
michani je permutace této mnoziny. V samotném procesu michani byva pritomen prvek
néhody, jedna se tedy o ndhodnou permutaci.

Jakmile zvolime metodu michani, nabizeji se dvé otazky: Muze byt vysledkem mi-
chani libovolnd permutace mnoziny {1, ..., n}? A pokud ano, je michdni spravedlivé
v tom smyslu, Ze vSechny permutace jsou stejné pravdépodobné? Algoritmus michani
s touto vlastnosti budeme oznacovat jako nestranny. Bézné pouzivané metody nejsou
nestranné, ale pri dostatecné dlouhém michéani jsou pravdépodobnosti vsech permutaci
témét vyrovnané. Témto aspektim se podrobné vénuje kniha [2].

V tomto prispévku se zamérime na nékteré metody michani, které pro karetni
hrace nejspise nebudou prilis atraktivni, avsak z pohledu matematiky jsou velmi zaji-
mavé. Zacneme s klasickym Fisherovym-—Yatesovym algoritmem, coz je nejjednodussi
nestrannd metoda michani, a poté prozkoumame nékteré modifikace. Zjistime, ze vy-
pocet pravdépodobnosti pro ruzné permutace vede na posloupnosti Cisel, které jsou
znamé ze zcela jinych kombinatorickych tloh! Vyklad je z velké ¢asti zalozen na vy-
sledcich z ¢lanku [12]; tam lze najit i dukazy tvrzeni, které zde vesmés vynechavame.

1. Fishertiv—Yatestv algoritmus

Nejjednodussi postup nestranného michani karet plyne primo z definice permutace
jakozto usporadané n-tice bez opakovani. Na prvni pozici vybereme libovolné z n ¢i-
sel a vySkrtneme je z mnoziny {1, ..., n}. Poté postupujeme déle a na i-tou pozici
vybirame rovnomeérné ndhodné z n — ¢ + 1 dosud nevyskrtnutych c¢isel. Tento primo-
Cary algoritmus je pojmenovan (viz napi. [5]) po britskych statisticich R. Fisherovi
a F. Yatesovi, ktef jej popsali ve tfetim vydédni statistickych tabulek [4], str. 26-27;
o oblibé této knihy svédci skutecnost, ze se dockala celkem 6 vydéani a 4 dotiskd.
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Obr. 1. Frantisek Tichy: Kouzelnik s kartami (1934, Narodni galerie Praha)

Chceme-li Fisheruv—Yatesuv algoritmus naprogramovat, je nutné postupovat Si-
kovné. Pri nevhodné implementaci by kazda aktualizace seznamu dosud nevyskrtnu-
tych ¢isel mohla zabrat linedrni cas a celkova casova slozitost by byla kvadraticka. Ve
skutecnosti lze algoritmus jednoduse implementovat v linearnim case. Postup popsal
R. Durstenfeld [3] a ndsledné jej zpopularizoval D. E. Knuth [9], s. 145: Pouzijeme pole
délky n, v jehoz levé Casti bude postupné vznikat hledand permutace, a v pravé ¢asti
budou dosud nepouzité ¢isla. Zacneme tim, ze do pole umistime éisla 1, ..., n (v tomto
poradi). Poté pole prochdzime zleva doprava a v i-tém kroku, kde i € {1, ..., n},
vybereme ¢islo, které bude na i-té pozici permutace; udélame to tak, ze i-ty prvek pole
vyménime s j-tym prvkem, kde j je ndhodné vygenerované ¢islo z mnoziny {, . . ., n}.
Po provedeni tohoto kroku je na zacatku pole prvnich i ¢isel permutace a na dalsich
mistech jsou dosud nepouzitd ¢isla (nikoliv nutné ve vzestupném poradi, coz ovSem
nevadi). Na konci vypoctu pole obsahuje ndhodnou permutaci mnoziny {1, ..., n}.
Pokud mame k dispozici generator ndhodnych ¢isel s rovnomérnym rozdélenim, pak
kazd4 permutace se na vystupu objevi s pravdépodobnosti 1/n!.

Pro tucely nasledujicitho vykladu algoritmus preformulujeme v feci karet. Na za-
catku mame n karet, které rozlozime na stole vedle sebe. Karty prochazime zleva
doprava a v i-tém kroku, kde ¢ € {1, ..., n}, vyménime i-tou a j-tou kartu, kde
j vybirdme ndhodné z mnoziny {4, . . . , n}. Dochdzi tak pouze k vyméndm mezi i-tou
kartou a kartami, které jsou ddle vpravo (resp. pro j =i k zddné vyméné nedojde).

2. Modifikované vyménné michani

D. P. Robbins a E. D. Bolker si v ¢ldnku [12] polozili pfirozenou otazku: Co kdybychom
predchozi proces michani karet upravili tak, ze i-tou kartu bude mozné vyménit nejen
s kartami, které lezi vpravo, ale s jakoukoliv jinou kartou? Cislo j tedy budeme v kaz-
dém kroku volit rovnomérné ndhodné z mnoziny {1, ..., n}.

Je zTejmé, ze vystupem nového algoritmu mize byt libovolna permutace mnoziny
{1, ..., n}, nebot totéz platilo i pro puvodni algoritmus. Na prvn{ pohled vSak nemusi

244 Pokroky matematiky, fyziky a astronomie, ro¢nik 69 (2024), ¢. 4



byt jasné, zda se kazda permutace objevi na vystupu se stejnou pravdépodobnosti.
Zaporna odpoveéd plyne z jednoduchého pozorovani: V kazdém kroku je n moznosti,
jak zvolit ¢islo j. Celkem tedy existuje n" moznosti, jak se algoritmus mize zachovat.
Pocet vsech permutaci je n! a pokud by byl algoritmus nestranny, musela by se kazda
z nich objevit na vystupu v pravé n”/n! pripadech. Tento podil vSak pro n = 3 neni
celociselny, coz je spor. Zjistili jsme, ze algoritmus uprednostnuje nékteré permutace
pred jinymi. Které permutace jsou nejcastéjsi, které naopak nejméné casté a jaké jsou
jejich pravdépodobnosti? Uvedme hlavni vysledky z ¢lanku [12]:

e Pravdépodobnost, ze se karty posunou cyklicky doprava, tj. vystupem bude per-
mutace (n, 1, 2, ..., n — 1), je 2"~1/n". Pravdépodobnost cyklického posunu
doleva, tj. permutace (2, 3, ...,n, 1), je C,/n", kde

C. - 1 (2n)
n+1\n
e Pravdépodobnost identické permutace je T,,/n", kde To =Ty =1a T, =T,-1 +
+ (n — 1)T,,_2 pro n = 2; explicitni vzorec je

Ln/2]
B n\ (2k)!
In= Z <2k) kK

Autofi ddle ukézali, ze zZddna permutace nema nizs{ pravdépodobnost nez 2" ~1/n™,
tj. cyklické posuny vpravo se na vystupu objevuji nejméné c¢asto. V porovnani s prameé-
rem je jejich pravdépodobnost dokonce vyrazné nizsi, nebot pocet priznivych pripadu
(z celkovych n™) pfipadajicich na jednu permutaci je v pruméru

n n

n e

n! ~ V2t

(pouzili jsme Stirlingtiv vzorec) a pro n — oo tato ¢isla rostou asymptoticky rychleji
nez 2”1, Naopak cyklicky posun vlevo ma pravdépodobnost vyrazné nadpriimérnou,
nebot

4n

™3

Cp ~

roste asymptoticky rychleji nez n™/n!. Pravdépodobnost identické permutace je jesté
vyssi, nebot

nn/2

~ V2en/2—V/t1/4

roste asymptoticky rychleji nez C,,.

Otézka, kterd permutace mé nejvyssi pravdépodobnost, ztstala v ¢élanku [12] ne-
zodpovézena. Autori vsak ukazali, Ze pro n — oo pravdépodobnost zaddné permutace
neni asymptoticky vétsi nez pravdépodobnost identické permutace. Pro nizka ¢isla n
pouzili pocitac; napf. pro n = 6 zjistili, Ze permutace (3, 1, 2, 6, 4, 5) ma nejvyssi
pravdépodobnost 159/6°. Jiz vime, Ze nejnizsi pravdépodobnost 32/6% ma cyklicky
posun vpravo. Je prekvapivé, jak moc se pravdépodobnosti riznych permutaci lisi!

Ty
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Po vice nez 20 letech problém nalezeni permutace s nejvyssi pravdépodobnosti
uspésné vyresili D. Goldstein a D. Moews [7]: Ukdzali, Ze identickd permutace ma
nejvyssi pravdépodobnost pro vSechna n = 18, zatimco pro n € {4, ..., 17} je
nejpravdépodobnéjsi permutaci slozeni jistych dvou cykli.

Je pozoruhodné, Ze v pravé popsanych vysledcich se objevuji dvé klasické kombi-
natorické posloupnosti, Catalanova ¢isla C), a telefonni ¢isla T, kterd na prvni pohled
nemaji s michanim karet nic spole¢ného: C),, udava napt. pocet zptsobu, jak rozdélit
konvexn{ (n + 2)-thelnik pomoci neprotinajicich se thlopficek na trojihelniky, nebo
téz pocet mifzovych cest z bodu (0, 0) do bodu (n, n), kde kazdy krok vede vpravo
nebo nahoru a cesta nikdy nevystoupi nad diagonalu. Cislo T, odpovidé nap¥. poétu
involuci n-prvkové mnoziny (permutaci, kde kazdy nezévisly cyklus mé délku maxi-
mélné 2) nebo poctu parovani v uplném grafu na n vrcholech (podrobnéji viz [8]).

Déle prozkoumame jiny zptisob michani karet, ktery rovnéz vede na znamou kom-
binatorickou posloupnost.

3. Extrakéni michani

Dalsi algoritmus michdn{ karet popsany v ¢lanku [12] funguje nésledovné: Karty opét
rozlozime do rady, jejich pocet je n € N. Michani pak sestava z m € N kroki; v kazdém
z nich ndhodné vybereme libovolnou kartu (fikejme ji aktivni karta) a pfesuneme ji
na levy okraj rady.

Pokud m = n (pfipadné m > n), pak mdme jistotu, ze vysledkem michdni muze
byt libovolnd permutace. K ziskdni libovolné permutace m = (w(1), ..., m(n)) staci
napf. postupné volit aktivn{ karty s hodnotami w(n), 7(n — 1), ..., 7(1).

Proces michéni je jednoznac¢né urcen volbou aktivni karty v kazdém z m kroku
a celkovy pocet moznosti je n™. Podobné jako u modifikovaného vyménného michani
vidime, Zze n™ obecné neni délitelné ¢islem n!, tudiz extrakéni michani neni nestranné
a uprednostnuje nékteré permutace pred jinymi.

Uréime pocet zpusobi, jak ziskat libovolnou permutaci mnoziny {1, ..., n}. Uvé-
domime si, ze po skonc¢eni michani jsou karty, které nebyly nikdy aktivni, usporadény
vzestupné na konci rady, zatimco na jejim zacatku jsou aktivni karty usporadané podle
toho, kdy byly naposledy aktivni (jedna karta muze byt aktivni vicekrat).

Pokud bychom napt. méli n = 8 karet a vysledkem michani by byla permutace

m=(6,7,2,8,4,1, 3,5), (1)

pak mnozina karet, které nebyly nikdy aktivni, muze byt bud N = {1, 3, 5}, nebo
N ={3,5}, nebo N = {1}, nebo N = {). V kazdém z téchto pripadi zndme i mnozinu
aktivnich karet A = {1, ..., n} \ N a jeji velikost a = |A|. Aby byl priubéh michan{
jednoznacné urcen, potrebujeme védét, ve kterych krocich byly jednotlivé karty ak-
tivni. Pokud kazdé aktivni karté priradime ¢isla krokt, kdy byla aktivni, dostaneme
rozklad mnoziny {1, ..., m} na a neprazdnych podmnozin.

Predpokladejme napriklad, ze pocet krokti je m = 10 a posloupnost aktivnich
karet byla 1, 4, 7, 8, 6, 2, 2, 7, 6, 6. Ctenaf mtize ovéfit, ze tento postup michani vede
k permutaci (1). Pritom karta 6 byla aktivni v ¢asech 5, 9, 10, karta 7 v ¢asech 3, 8,

246 Pokroky matematiky, fyziky a astronomie, ro¢nik 69 (2024), ¢. 4



atd. Dostavame tedy nésledujici rozklad mnoziny {1, ..., 10}:

{5,9,10}, {3,8}, {6,7}, {4}, {2}, {1}.

Rozklad je tvoren Sesti mnozinami, protoze aktivnich karet je Sest. Poradi mnozin
v rozkladu odpovidd potradi aktivnich karet v zdpisu permutace (1). To mé za na-
sledek, ze maxima jednotlivych mnozin tvori klesajici posloupnost. Poradi mnozin je
dtilezité kvili tomu, abychom mohli cely proces obratit a uvédomit si, ze kazdy rozklad
{1, ..., m} na a neprazdnych podmnozin popisuje prubéh michani, jehoz vysledkem
je permutace (1). Skuteéné, mame-li takovy rozklad, sefadime mnoziny tak, aby jejich
maxima tvorila klesajici posloupnost. Z po¢tu podmnozin zjistime, kolik bylo aktivnich
karet. Ze zapisu (1) vycteme, které karty to byly. A konecné ze samotného rozkladu
plyne, kdy byly tyto karty aktivni.

Jaky je tedy pocet pripadu vedoucich k permutaci (1), pokud mé michdni napi.
m = 10 kroka? Necht {T} znaci pocet rozklada r-prvkové mnoziny na j neprazdnych
podmnozin. Jde o tzv. étirlingova ¢isla 2. druhu, kterd jsou dobre znaméa z kombina-
toriky a lze je pocitat napr. pomoci vztahu

(-3 oo

Z vyse uvedenych tvah plynou nésledujici poéty zpusobu, jak ziskat permutaci (1)
v m = 10 krocich:

e Pocet zpiisobit, kdy aktivni byly karty 6, 7, 2, 8, 4, je {1V}

e Pocet zpiisobit, kdy aktivni byly karty 6, 7, 2, 8, 4, 1, je {1}

e Pocet zpusobu, kdy aktivni byly karty 6, 7, 2, 8, 4, 1, 3, je {170}.

e Pocet zpiisobtt, kdy aktivni byly karty 6, 7, 2, 8, 4, 1, 3, 5, je {i{}.

Celkovy pocet zpuisobu je tedy 2?25 {1;)} = T71982.

Zobecnénim predchozich tvah dojdeme k nasledujicimu tvrzeni, kde k znac¢i mini-
malni mozny pocet aktivnich karet:

Necht 7 = (7(1), . .., n(n)) je libovolnd permutace mnoziny {1, ..., n} am € N.
Pokud 7 je rostouci, polozme k = 1; v opacném pripadé necht k je nejvétsi c¢islo
takové, ze w(k) > w(k + 1). Pak pocet zptisobu, jak ziskat m pri extrakénim michdni
karet s m kroky, je roven 37, {Zn}

Pri extrakénim michani s pevné zvolenym poc¢tem kroku tedy pravdépodobnost li-
bovolné permutace zavisi pouze na hodnoté k. Hodnota Z?: & {Zn} je nejvetsi, kdyz k je
co nejmensi, tj. k = 1. To nastava pro permutace 7 spliujici 7(2) = 7(3) = ... < 7(n),
mezi které patii napriklad identickd permutace. Naopak nejnizsi pravdépodobnost maji
permutace splitujici w(n — 1) > w(n), pro které plati k =n — 1.

Napft. pro n = m = 6 vychazi nejvyssi mozna pravdépodobnost

6
1 6 203
NHEES
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zatimco nejnizsi pravdépodobnost je
6
1 6 16
& 2 {j } G
J=5

Zjistujeme, ze extrakéni michani nékteré permutace znacné zvyhodnuje.

Cisla B, = Z?:l {?}, n € N, udavaji pocet rozkladi n-prvkové mnoziny na
libovolny pocet podmnozin; nazyvaji se Bellova ¢isla. Michani karet nas tedy dovedlo
k dalsi zndmé kombinatorické posloupnosti: V pripadé extrakéniho michdni s m =
= n kroky udava B,, pocet pripadii vedoucich k identické permutaci, resp. jakékoliv
permutaci spliujici 7(2) < 7(3) < ... < w(n).

4. Kuriozita na zavér

Prekvapivy vyskyt Bellovych ¢isel v souvislosti s michanim karet zaujal i zndmého
popularizdtora matematiky M. Gardnera, ktery o ném piSe v knize [6], kapitola 2.
Ctenéf se dozvi, ze ¢isla B,, jsou pojmenovana podle amerického matematika skotského
puvodu E. T. Bella, ktery objevil rozvoj

o0

. B,
e® :e-zﬁx. (2)

n=0

Gardner pise, ze Bell k tomuto vysledku dospél poté, co v jisté prirucce objevil chybny
rozvoj funkce e®”. Nahlédnutim do Bellova ¢lanku [1] vak zjistime, Ze Gardnerovo
tvrzeni je nepfesné: Nejednalo se o chybny rozvoj e, ale €% #. Ceského ¢tenaie potési
zajimava a malo znama kuriozita: Onou priruckou, kde se chyba vyskytla, byly tabulky
vzorcu [10] prazského astronoma, fyzika a matematika Véclava Lasky. Odtud se pak
chyba rozsitila do dalsich zdroji. Spravny rozvoj ma tvar

22 3z*  8x® 328

e TR TR T

+...,
zatimco v Laskovych tabulkach na str. 33 mé ¢len s 2% opaéné znaménko. Bell si chyby
vsiml a ve snaze ji opravit hledal rozvoje funkei ve tvaru ef(®)=f(0) za predpokladu,
Ze znéme rozvoj f. Jednim ze vztaht, které pritom objevil, byla identita (2).

Bellova ¢isla souviseji s pravdépodobnosti identické permutace jesté pri jiném zpt-
sobu michani karet, ktery spoc¢iva v tom, ze v i-tém kroku ndhodné vybereme kartu
a presuneme ji na pozici i. Vypocty pravdépodobnosti jsou u takového michani slozi-
t&j81 a zvidavy Ctendr je najde opét v élanku [12].
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