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Míchání karet a kombinatorické posloupnosti
Antonín Slavík

Abstrakt. V článku se věnujeme několika metodám míchání karet. Připomeneme klasický
Fisherův–Yatesův algoritmus a popíšeme některé jeho modifikace. Tyto nestandardní metody
míchání jsou z pohledu matematiky mnohem zajímavější a souvisejí s některými známými
kombinatorickými posloupnostmi.

Matematikové milují hrací karty. Svědčí o tom rozsáhlá literatura věnovaná nejrůz-
nějším matematickým problémům souvisejícím s kartami. Někdy čtenář vystačí s ele-
mentární matematikou, jako např. v knize [11] popisující karetní triky s matematickým
jádrem. Jindy jsou zapotřebí hlubší znalosti teorie pravěpodobnosti, kombinatoriky,
algebry a dalších disciplín, jako např. v knize [2], která pojednává o míchání karet.

Karetní hráči používají různé metody míchání (viz např. [13]). Pokud očíslujeme
karty přirozenými čísly z množiny {1, . . . , n}, kde n je počet karet, pak výsledkem
míchání je permutace této množiny. V samotném procesu míchání bývá přítomen prvek
náhody, jedná se tedy o náhodnou permutaci.

Jakmile zvolíme metodu míchání, nabízejí se dvě otázky: Může být výsledkem mí-
chání libovolná permutace množiny {1, . . . , n}? A pokud ano, je míchání spravedlivé
v tom smyslu, že všechny permutace jsou stejně pravděpodobné? Algoritmus míchání
s touto vlastností budeme označovat jako nestranný. Běžně používané metody nejsou
nestranné, ale při dostatečně dlouhém míchání jsou pravděpodobnosti všech permutací
téměř vyrovnané. Těmto aspektům se podrobně věnuje kniha [2].

V tomto příspěvku se zaměříme na některé metody míchání, které pro karetní
hráče nejspíše nebudou příliš atraktivní, avšak z pohledu matematiky jsou velmi zají-
mavé. Začneme s klasickým Fisherovým–Yatesovým algoritmem, což je nejjednodušší
nestranná metoda míchání, a poté prozkoumáme některé modifikace. Zjistíme, že vý-
počet pravděpodobností pro různé permutace vede na posloupnosti čísel, které jsou
známé ze zcela jiných kombinatorických úloh! Výklad je z velké části založen na vý-
sledcích z článku [12]; tam lze najít i důkazy tvrzení, které zde vesměs vynecháváme.

1. Fisherův–Yatesův algoritmus

Nejjednodušší postup nestranného míchání karet plyne přímo z definice permutace
jakožto uspořádané n-tice bez opakování. Na první pozici vybereme libovolné z n čí-
sel a vyškrtneme je z množiny {1, . . . , n}. Poté postupujeme dále a na i-tou pozici
vybíráme rovnoměrně náhodně z n − i+ 1 dosud nevyškrtnutých čísel. Tento přímo-
čarý algoritmus je pojmenován (viz např. [5]) po britských statisticích R. Fisherovi
a F. Yatesovi, kteří jej popsali ve třetím vydání statistických tabulek [4], str. 26–27;
o oblibě této knihy svědčí skutečnost, že se dočkala celkem 6 vydání a 4 dotisků.
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Obr. 1. František Tichý: Kouzelník s kartami (1934, Národní galerie Praha)

Chceme-li Fisherův–Yatesův algoritmus naprogramovat, je nutné postupovat ši-
kovně. Při nevhodné implementaci by každá aktualizace seznamu dosud nevyškrtnu-
tých čísel mohla zabrat lineární čas a celková časová složitost by byla kvadratická. Ve
skutečnosti lze algoritmus jednoduše implementovat v lineárním čase. Postup popsal
R. Durstenfeld [3] a následně jej zpopularizoval D. E. Knuth [9], s. 145: Použijeme pole
délky n, v jehož levé části bude postupně vznikat hledaná permutace, a v pravé části
budou dosud nepoužitá čísla. Začneme tím, že do pole umístíme čísla 1, . . . , n (v tomto
pořadí). Poté pole procházíme zleva doprava a v i-tém kroku, kde i ∈ {1, . . . , n},
vybereme číslo, které bude na i-té pozici permutace; uděláme to tak, že i-tý prvek pole
vyměníme s j-tým prvkem, kde j je náhodně vygenerované číslo z množiny {i, . . . , n}.
Po provedení tohoto kroku je na začátku pole prvních i čísel permutace a na dalších
místech jsou dosud nepoužitá čísla (nikoliv nutně ve vzestupném pořadí, což ovšem
nevadí). Na konci výpočtu pole obsahuje náhodnou permutaci množiny {1, . . . , n}.
Pokud máme k dispozici generátor náhodných čísel s rovnoměrným rozdělením, pak
každá permutace se na výstupu objeví s pravděpodobností 1/n!.

Pro účely následujícího výkladu algoritmus přeformulujeme v řeči karet. Na za-
čátku máme n karet, které rozložíme na stole vedle sebe. Karty procházíme zleva
doprava a v i-tém kroku, kde i ∈ {1, . . . , n}, vyměníme i-tou a j-tou kartu, kde
j vybíráme náhodně z množiny {i, . . . , n}. Dochází tak pouze k výměnám mezi i-tou
kartou a kartami, které jsou dále vpravo (resp. pro j = i k žádné výměně nedojde).

2. Modifikované výměnné míchání

D. P. Robbins a E.D. Bolker si v článku [12] položili přirozenou otázku: Co kdybychom
předchozí proces míchání karet upravili tak, že i-tou kartu bude možné vyměnit nejen
s kartami, které leží vpravo, ale s jakoukoliv jinou kartou? Číslo j tedy budeme v kaž-
dém kroku volit rovnoměrně náhodně z množiny {1, . . . , n}.

Je zřejmé, že výstupem nového algoritmu může být libovolná permutace množiny
{1, . . . , n}, neboť totéž platilo i pro původní algoritmus. Na první pohled však nemusí
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být jasné, zda se každá permutace objeví na výstupu se stejnou pravděpodobností.
Záporná odpověď plyne z jednoduchého pozorování: V každém kroku je n možností,
jak zvolit číslo j. Celkem tedy existuje nn možností, jak se algoritmus může zachovat.
Počet všech permutací je n! a pokud by byl algoritmus nestranný, musela by se každá
z nich objevit na výstupu v právě nn/n! případech. Tento podíl však pro n >= 3 není
celočíselný, což je spor. Zjistili jsme, že algoritmus upřednostňuje některé permutace
před jinými. Které permutace jsou nejčastější, které naopak nejméně časté a jaké jsou
jejich pravděpodobnosti? Uveďme hlavní výsledky z článku [12]:

• Pravděpodobnost, že se karty posunou cyklicky doprava, tj. výstupem bude per-
mutace (n, 1, 2, . . . , n − 1), je 2n−1/nn. Pravděpodobnost cyklického posunu
doleva, tj. permutace (2, 3, . . . , n, 1), je Cn/n

n, kde

Cn =
1

n+ 1

(
2n
n

)
.

• Pravděpodobnost identické permutace je Tn/n
n, kde T0 = T1 = 1 a Tn = Tn−1 +

+ (n− 1)Tn−2 pro n >= 2; explicitní vzorec je

Tn =
�n/2�∑
k=0

(
n

2k

)
(2k)!
2kk!

.

Autoři dále ukázali, že žádná permutace nemá nižší pravděpodobnost než 2n−1/nn,
tj. cyklické posuny vpravo se na výstupu objevují nejméně často. V porovnání s průmě-
rem je jejich pravděpodobnost dokonce výrazně nižší, neboť počet příznivých případů
(z celkových nn) připadajících na jednu permutaci je v průměru

nn

n!
∼ en√

2πn

(použili jsme Stirlingův vzorec) a pro n → ∞ tato čísla rostou asymptoticky rychleji
než 2n−1. Naopak cyklický posun vlevo má pravděpodobnost výrazně nadprůměrnou,
neboť

Cn ∼ 4n√
πn3

roste asymptoticky rychleji než nn/n!. Pravděpodobnost identické permutace je ještě
vyšší, neboť

Tn ∼ nn/2

√
2en/2−

√
n+1/4

roste asymptoticky rychleji než Cn.
Otázka, která permutace má nejvyšší pravděpodobnost, zůstala v článku [12] ne-

zodpovězena. Autoři však ukázali, že pro n → ∞ pravděpodobnost žádné permutace
není asymptoticky větší než pravděpodobnost identické permutace. Pro nízká čísla n
použili počítač; např. pro n = 6 zjistili, že permutace (3, 1, 2, 6, 4, 5) má nejvyšší
pravděpodobnost 159/66. Již víme, že nejnižší pravděpodobnost 32/66 má cyklický
posun vpravo. Je překvapivé, jak moc se pravděpodobnosti různých permutací liší!
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Po více než 20 letech problém nalezení permutace s nejvyšší pravděpodobností
úspěšně vyřešili D. Goldstein a D. Moews [7]: Ukázali, že identická permutace má
nejvyšší pravděpodobnost pro všechna n >= 18, zatímco pro n ∈ {4, . . . , 17} je
nejpravděpodobnější permutací složení jistých dvou cyklů.

Je pozoruhodné, že v právě popsaných výsledcích se objevují dvě klasické kombi-
natorické posloupnosti, Catalanova čísla Cn a telefonní čísla Tn, která na první pohled
nemají s mícháním karet nic společného: Cn udává např. počet způsobů, jak rozdělit
konvexní (n + 2)-úhelník pomocí neprotínajících se úhlopříček na trojúhelníky, nebo
též počet mřížových cest z bodu (0, 0) do bodu (n, n), kde každý krok vede vpravo
nebo nahoru a cesta nikdy nevystoupí nad diagonálu. Číslo Tn odpovídá např. počtu
involucí n-prvkové množiny (permutací, kde každý nezávislý cyklus má délku maxi-
málně 2) nebo počtu párování v úplném grafu na n vrcholech (podrobněji viz [8]).

Dále prozkoumáme jiný způsob míchání karet, který rovněž vede na známou kom-
binatorickou posloupnost.

3. Extrakční míchání

Další algoritmus míchání karet popsaný v článku [12] funguje následovně: Karty opět
rozložíme do řady, jejich počet je n ∈ N. Míchání pak sestává z m ∈ N kroků; v každém
z nich náhodně vybereme libovolnou kartu (říkejme jí aktivní karta) a přesuneme ji
na levý okraj řady.

Pokud m = n (případně m > n), pak máme jistotu, že výsledkem míchání může
být libovolná permutace. K získání libovolné permutace π = (π(1), . . . , π(n)) stačí
např. postupně volit aktivní karty s hodnotami π(n), π(n− 1), . . . , π(1).

Proces míchání je jednoznačně určen volbou aktivní karty v každém z m kroků
a celkový počet možností je nm. Podobně jako u modifikovaného výměnného míchání
vidíme, že nm obecně není dělitelné číslem n!, tudíž extrakční míchání není nestranné
a upřednostňuje některé permutace před jinými.

Určíme počet způsobů, jak získat libovolnou permutaci množiny {1, . . . , n}. Uvě-
domíme si, že po skončení míchání jsou karty, které nebyly nikdy aktivní, uspořádány
vzestupně na konci řady, zatímco na jejím začátku jsou aktivní karty uspořádané podle
toho, kdy byly naposledy aktivní (jedna karta může být aktivní vícekrát).

Pokud bychom např. měli n = 8 karet a výsledkem míchání by byla permutace

π = (6, 7, 2, 8, 4, 1, 3, 5), (1)

pak množina karet, které nebyly nikdy aktivní, může být buď N = {1, 3, 5}, nebo
N = {3, 5}, nebo N = {1}, nebo N = ∅. V každém z těchto případů známe i množinu
aktivních karet A = {1, . . . , n} \ N a její velikost a = |A|. Aby byl průběh míchání
jednoznačně určen, potřebujeme vědět, ve kterých krocích byly jednotlivé karty ak-
tivní. Pokud každé aktivní kartě přiřadíme čísla kroků, kdy byla aktivní, dostaneme
rozklad množiny {1, . . . , m} na a neprázdných podmnožin.

Předpokládejme například, že počet kroků je m = 10 a posloupnost aktivních
karet byla 1, 4, 7, 8, 6, 2, 2, 7, 6, 6. Čtenář může ověřit, že tento postup míchání vede
k permutaci (1). Přitom karta 6 byla aktivní v časech 5, 9, 10, karta 7 v časech 3, 8,
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atd. Dostáváme tedy následující rozklad množiny {1, . . . , 10}:

{5, 9, 10}, {3, 8}, {6, 7}, {4}, {2}, {1}.

Rozklad je tvořen šesti množinami, protože aktivních karet je šest. Pořadí množin
v rozkladu odpovídá pořadí aktivních karet v zápisu permutace (1). To má za ná-
sledek, že maxima jednotlivých množin tvoří klesající posloupnost. Pořadí množin je
důležité kvůli tomu, abychom mohli celý proces obrátit a uvědomit si, že každý rozklad
{1, . . . , m} na a neprázdných podmnožin popisuje průběh míchání, jehož výsledkem
je permutace (1). Skutečně, máme-li takový rozklad, seřadíme množiny tak, aby jejich
maxima tvořila klesající posloupnost. Z počtu podmnožin zjistíme, kolik bylo aktivních
karet. Ze zápisu (1) vyčteme, které karty to byly. A konečně ze samotného rozkladu
plyne, kdy byly tyto karty aktivní.

Jaký je tedy počet případů vedoucích k permutaci (1), pokud má míchání např.
m = 10 kroků? Nechť

{
r
j

}
značí počet rozkladů r-prvkové množiny na j neprázdných

podmnožin. Jde o tzv. Stirlingova čísla 2. druhu, která jsou dobře známá z kombina-
toriky a lze je počítat např. pomocí vztahu{

r

j

}
=
1
j!

j∑
l=0

(−1)l
(
j

l

)
(j − l)r.

Z výše uvedených úvah plynou následující počty způsobů, jak získat permutaci (1)
v m = 10 krocích:

• Počet způsobů, kdy aktivní byly karty 6, 7, 2, 8, 4, je
{10
5

}
.

• Počet způsobů, kdy aktivní byly karty 6, 7, 2, 8, 4, 1, je
{10
6

}
.

• Počet způsobů, kdy aktivní byly karty 6, 7, 2, 8, 4, 1, 3, je
{10
7

}
.

• Počet způsobů, kdy aktivní byly karty 6, 7, 2, 8, 4, 1, 3, 5, je
{10
8

}
.

Celkový počet způsobů je tedy
∑8

j=5

{10
j

}
= 71 982.

Zobecněním předchozích úvah dojdeme k následujícímu tvrzení, kde k značí mini-
mální možný počet aktivních karet:

Nechť π = (π(1), . . . , π(n)) je libovolná permutace množiny {1, . . . , n} a m ∈ N.
Pokud π je rostoucí, položme k = 1; v opačném případě nechť k je největší číslo
takové, že π(k) > π(k + 1). Pak počet způsobů, jak získat π při extrakčním míchání
karet s m kroky, je roven

∑n
j=k

{
m
j

}
.

Při extrakčním míchání s pevně zvoleným počtem kroků tedy pravděpodobnost li-
bovolné permutace závisí pouze na hodnotě k. Hodnota

∑n
j=k

{
m
j

}
je největší, když k je

co nejmenší, tj. k = 1. To nastává pro permutace π splňující π(2) <= π(3) <= . . . <= π(n),
mezi které patří například identická permutace. Naopak nejnižší pravděpodobnost mají
permutace splňující π(n− 1) > π(n), pro které platí k = n− 1.

Např. pro n = m = 6 vychází nejvyšší možná pravděpodobnost

1
66

6∑
j=1

{
6
j

}
=
203
66

,
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zatímco nejnižší pravděpodobnost je

1
66

6∑
j=5

{
6
j

}
=
16
66

.

Zjišťujeme, že extrakční míchání některé permutace značně zvýhodňuje.
Čísla Bn =

∑n
j=1

{
n
j

}
, n ∈ N, udávají počet rozkladů n-prvkové množiny na

libovolný počet podmnožin; nazývají se Bellova čísla. Míchání karet nás tedy dovedlo
k další známé kombinatorické posloupnosti: V případě extrakčního míchání s m =
= n kroky udává Bn počet případů vedoucích k identické permutaci, resp. jakékoliv
permutaci splňující π(2) <= π(3) <= . . . <= π(n).

4. Kuriozita na závěr

Překvapivý výskyt Bellových čísel v souvislosti s mícháním karet zaujal i známého
popularizátora matematiky M. Gardnera, který o něm píše v knize [6], kapitola 2.
Čtenář se dozví, že čísla Bn jsou pojmenována podle amerického matematika skotského
původu E.T. Bella, který objevil rozvoj

ee
x

= e ·
∞∑

n=0

Bn

n!
xn. (2)

Gardner píše, že Bell k tomuto výsledku dospěl poté, co v jisté příručce objevil chybný
rozvoj funkce eex . Nahlédnutím do Bellova článku [1] však zjistíme, že Gardnerovo
tvrzení je nepřesné: Nejednalo se o chybný rozvoj eex , ale esin x. Českého čtenáře potěší
zajímavá a málo známá kuriozita: Onou příručkou, kde se chyba vyskytla, byly tabulky
vzorců [10] pražského astronoma, fyzika a matematika Václava Lásky. Odtud se pak
chyba rozšířila do dalších zdrojů. Správný rozvoj má tvar

esin x = 1 + x+
x2

2!
− 3x

4

4!
− 8x

5

5!
− 3x

6

6!
+ . . . ,

zatímco v Láskových tabulkách na str. 33 má člen s x6 opačné znaménko. Bell si chyby
všiml a ve snaze ji opravit hledal rozvoje funkcí ve tvaru ef(x)−f(0) za předpokladu,
že známe rozvoj f . Jedním ze vztahů, které přitom objevil, byla identita (2).

Bellova čísla souvisejí s pravděpodobností identické permutace ještě při jiném způ-
sobu míchání karet, který spočívá v tom, že v i-tém kroku náhodně vybereme kartu
a přesuneme ji na pozici i. Výpočty pravděpodobností jsou u takového míchání složi-
tější a zvídavý čtenář je najde opět v článku [12].
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