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Abstract. We comprehensively explore the generalized concept of sharing sets to estab-
lish conditions for the linear dependency of two meromorphic functions. By applying this
approach, we significantly extend and enhance the existing results related to URSM (unique
range set of meromorphic functions). It is well known that URSMs can be represented as
zeros of specific polynomials. However, our findings demonstrate that the concept of URSM
can be understood from a broader perspective, where it can be characterized as a special
case of the zero sets of two interconnected polynomials. Such investigations have not been
conducted before, thus the text breaks the barriers of the traditional definition of URSM.
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1. Background and some useful definitions

In this paper, the term “meromorphic functions” refers specifically to functions in

the finite complex plane. We denote the extended complex plane as C = C ∪ {∞},

the complex plane excluding zero as C∗ = C \ {0}, and the set of natural numbers

including zero as N = N ∪ {0}. The set of all complex numbers is denoted as C, the

set of all integers as Z, and throughout this paper, we adopt the standard notations

and definitions of Nevanlinna theory as outlined in [16].

For any non-constant meromorphic function h, we define S(r, h) = o(T (r, h)) as r

tends to infinity, with the condition that r does not belong to a set E consisting of

positive real numbers with finite linear measure.
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Definition 1.1 ([18]). Let k be a non-negative integer or infinity. For a ∈ C we

denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m is

counted m times if m 6 k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say

that f , g share the value a with weight k and present it as (a, k). The two extreme

cases k = ∞ and k = 0 are called CM and IM sharing, respectively.

Definition 1.2 ([17]). For S ⊂ C we define Ef (S, k) =
⋃
a∈S

Ek(a; f), where k is

a non-negative integer a ∈ S or infinity. Clearly Ef (S) = Ef (S,∞) and Ef (S) =

Ef (S, 0). If Ef (S, k) = Eg(S, k) holds, then we say f , g share the set S with weight k

and denote it as f , g share (S, k).

Uniqueness theory, initially established by Nevanlinna, took a new trajectory after

five decades when Gross (see [14]) introduced a fresh perspective by shifting the focus

from value sharing to a broader concept known as set sharing.

In the work [15], a set S was identified as a unique range set of entire functions

(URSE) if the condition Ef (S) = Eg(S) holds for any two non-constant entire func-

tions f and g, implying that f and g are identical. Similarly, the concept of a unique

range set of meromorphic functions (URSM) can be defined in a similar manner.

If a polynomial P in C satisfies P (f) ≡ cP (g) (or P (f) ≡ P (g)) for any nonzero

constant c, implying that f ≡ g, then P is referred to as a SUPM (SUPE) (or UPM

(UPE)). The zero sets of SUPM (UPM) always form unique range sets.

On the other hand, if Ef (S) = Eg(S) implies f ≡ g, then S is called URSM-IM

(URSE-IM). Using the definition of weighted sharing in URSM, in [7], the authors

modified the same definition.

In the context of meromorphic (entire) functions, a set S ⊂ C is considered a

unique range set with weight k if for any two non-constant meromorphic (entire)

functions f and g, the condition Ef (S, k) = Eg(S, k) implies that f ≡ g. In short,

such a set S is denoted as URSMk (URSEk). The study of unique range sets (URS)

primarily focuses on two aspects:

a) Finding URS with the smallest possible number of elements.

b) Characterizing the properties of URS.

Inspired by the famous question of Gross (see [14]), several investigations on URSM

or URSE were performed by many researchers as follows:

In 1994, Yi in [25] exhibited a URSE with 15 elements. In 1995, Li and Yang

(see [20]) exhibited a URSM with 15 elements and a URSE with 7 elements. Li and

Yang investigated the zero sets S of polynomials P of the form

P (z) = zn + azn−m + b,

where gcd (n,m) = 1, n > m > 1 and a and b are chosen so that P has n distinct

zeros, to be a URSMs (URSEs). When m > 2, then the sets S generate URSMs and
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when m = 1, the sets generate URSEs. In 1996, Yi (see [26]) obtained a URSM with

13 elements. In 1998, Frank and Reinders in [12] improved the result of Yi (see [26])

and exhibited the following URSM with 11 elements:

P (z) =
(n− 1)(n− 2)

2
zn − n(n− 2)zn−1 +

n(n− 1)

2
zn−2 − b,

where n > 11 and b 6= 0, 1. In [27], Yi established a unique range set of meromorphic

functions with at least 19 elements, referred to as URSM-IM. This result was further

improved by Bartels (see [9]), who obtained a URSM-IM consisting of 17 elements.

Since then, the concept of unique range sets has gained significant attention and

become a prominent area of research in uniqueness theory. Numerous authors, in-

cluding Banerjee [1], [2], [3], Lahiri [7], Gross and Yang [15], Fujimoto [13] have made

notable contributions to this field over the years.

Subsequently, Banerjee and Mallick in [8] presented a series of results that not only

improved upon previous findings but also provided generalizations of those results.

The aforementioned results primarily focused on exploring the uniqueness rela-

tionship between two meromorphic (entire) functions. However, it is worth noting

that the identity relationship between two meromorphic functions is a specific in-

stance of a linear dependency between the same functions. Therefore, the concept of

uniqueness can be viewed from a broader perspective, aiming to determine the extent

to which sufficient conditions on the sharing of two meromorphic (entire) functions

lead to their linear dependence.

In 1998, Qiu (see [23]) conducted additional research on the scenario where the

kth derivatives of two meromorphic functions share values. Since then, numerous

mathematicians have obtained a multitude of elegant results concerning the kth

derivatives (see [4], [5], [6], [10], [11]).

In [24] the following question was posed: Does the equality f−1(S) = g−1(S),

where S = {−1, 1} and f , g are polynomials of same degree, imply that f = ±g?

Concerning this above question Pakovitch (see [22]) gives a solution to more general

question: Under what conditions of compact subsets S, T and the functions f and g,

one gets

(1.1) f−1(S) = g−1(T ).

Considering the result by Pakovitch (see [22]), it becomes interesting to explore the

concept of linear dependence between two meromorphic (entire) functions when their

inverse images of different sets are shared. Naturally, the question arises regarding

the generalization of weighted sharing of sets in light of Pakovitch’s notion. There-

fore, we introduce the following definition.
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Definition 1.3. Let f , g be two non-constant meromorphic functions and k be

a non-negative integer. If the condition Ef(k)(S, l) = Eg(k)(T, l) implies f (k) = hg(k),

where h is a constant, then we call the pair (S, T ) linear dependent range sets of

meromorphic functions in wider sense with weight l. If h = 1, then we call the

pair (S, T ) unique range sets of meromorphic functions in wider sense with weight l

and denote it by (URSMWSm). If in (URSMWSm), m = 0, then we call the pair

unique range sets of meromorphic functions in the wider sense ignoring multiplicity

(URSMWS-IM in short).

Next we define the following two polynomials:

P (z) = azn + bzn−m + d,(1.2)

Q(z) = uzn + vzn−m + t,(1.3)

where n and m are two positive integers and a, b, d, u, v, t are nonzero complex

numbers such that P and Q have no multiple zero. Also let us denote two sets

S = {z : P (z) = 0} and T = {z : Q(z) = 0}.

Recently, considering the function and its derivative under the sharing of the zero

set of Yi’s polynomial, Li and Lin (see [19]) obtained the following results.

Theorem A ([19]). Let f and g be two meromorphic functions and let k be a

non-negative integer such that f (k), g(k) are not constant. Polynomials P and Q are

defined as (1.2), (1.3). If Ef(k)(S, 0) = Eg(k)(T, 0), then for n > 2m+ 7 + 7/(k + 1),

where either (n,m) = 1, m > 2, or m > 4, then for a nonzero constant h, f (k) ≡

hg(k), where hn = du/at, hn−m = dv/bt.

Theorem B ([19]). Under the same conditions as in Theorem A, if f and g are

two entire functions and n > 2m+7 with (n,m) = 1, then for a nonzero constant h,

f (k) ≡ hg(k), where hn = du/at, hn−m = dv/bt.

Theorem C ([19]). Under the same conditions as in Theorem A, if Ef(k)(S,∞) =

Eg(k)(T,∞) and n > 2m+ 4+ 4/(k + 1), where either (n,m) = 1, m > 2, or m > 4,

then for a nonzero constant h, f (k) ≡ hg(k).

In the same paper [19], the authors proposed the following questions:

Q u e s t i o n 1.1. Is it possible to additionally weaken the relationship conditions

n and m in Theorems A and C?

Q u e s t i o n 1.2. What happens when Yi’s polynomials P and Q are replaced by

the other style of polynomials?
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The primary objective of this paper is to address the aforementioned questions by

offering the most exhaustive solutions based on Definition 1.3. In doing so, our

results will significantly enhance the existing Theorems A–C and introduce new

aspects concerning unique range sets, particularly with regards to the derivatives

of the functions.

Theorem 1.1. Let f and g be two non-constant meromorphic functions and

let k be a non-negative integer and P and Q be defined as in (1.2), (1.3). Let

Ef(k)(S, l) = Eg(k)(T, l). If

(i) l = 2, n > 2m+ 4 + 4/(k + 1) or

(ii) l = 0, n > 2m+ 7 + 7/(k + 1), where either

(a) k = 0, m > 2 or

(b) k > 1, m > 1,

then f (k) ≡ hg(k) for a nonzero constant h such that hn = du/at, hn−m = dv/bt.

Corollary 1.1. Under the same conditions as in Theorem 1.1, if we consider f , g

as entire functions, then for l = 0, we obtain Theorem B.

The next table provides a clear comparison between Theorem A and Theorem 1.1.

Theorem A Theorem 1.1

shared sets with
least

shared sets with
least

weight
cardinality

weight
cardinality

Ef(k)(S, 0) = Eg(k)(T, 0) Ef(k)(S, 0) = Eg(k) (T, 0)

when
19

when
19

k = 0, (n,m) = 1 k = 0, (n,m) = 1

when
23

when
19

k = 0, (n,m) 6= 1 k = 0, (n,m) 6= 1

when
> 11 +

7

k + 1

when
> 9 +

7

k + 1k > 1, (n,m) = 1 k > 1, (n,m) = 1

when
> 15 +

7

k + 1

when
> 9 +

7

k + 1k > 1, (n,m) 6= 1 k > 1, (n,m) 6= 1

Table 1.

R em a r k 1.1. Form Table 1 it is clear that Theorem 1.1 improves Theorem A

significantly by reducing the cardinality of shared sets under the case k = 0,

(n,m) 6= 1 and the case k > 1 completely.

We first note that in Theorem 1.1, the sets S, T correspond to the polynomials

which possess first two consecutive terms. So it will be interesting to re-investigate

Theorem 1.1 for the polynomials that contain three consecutive terms as that will
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provide the answer to Question 1.2 as well. To this end, we introduce the following

two polynomials, having no multiple zeros, of the forms

P1(w) = a1w
n + b1w

n−m + c1w
n−2m + d1,(1.4)

Q1(w) = a2w
n + b2w

n−m + c2w
n−2m + d2,(1.5)

where n, m are positive integers with (n,m) = 1 and ai, bi, ci, di ∈ C
∗, i = 1, 2.

We note that the case when c1 · c2 = 0 is already discussed in detail in Theo-

rem 1.1, Theorem C. In the subsequent theorems, we consider two distinct sets S1

and T1, which are the zero sets of the polynomials P1 and Q1, respectively. When

P1 = Q1 is a SUPM, it is straightforward to observe that f1 ≡ g1, where f
(k) = f1,

g(k) = g1. However, the situation becomes more complicated when P1 and Q1 are

different. Thus, it becomes interesting to determine the linear dependency relation-

ship between f1 and g1 under such circumstances. By imposing certain restrictions

on the coefficients of P1 and Q1, we have obtained the following result.

Theorem 1.2. Let f and g be two meromorphic functions and let k be a non-

negative integer such that f (k), g(k) are not constants. Also let us consider the sets

S1 = {w : P1(w) = 0}, T1 = {w : Q1(w) = 0}, where P1 is the polynomial defined as

in (1.4), with (n,m) = 1 and Q1 = KP1 + ĉ for some constants K (6= 0), ĉ ∈ C, so

that Q1 has all simple zeros. Now suppose Ef(k)(S1, l) = Eg(k)(T1, l) and

(I) b21/(4a1c1) 6= n(n− 2m)/(n−m)2, 1 with

(i) l = 2 and n > 4m+ 4 + 4/(k + 1);

(ii) l = 0 and n > 4m+ 7 + 7/(k + 1); or

(II) b21/(4a1c1) = n(n− 2m)/(n−m)2 with

(i) l = 2 and n > 2m+ 4 + 4/(k + 1);

(ii) l = 0 and n > 2m+ 7 + 7/(k + 1).

Then we have a nonzero constant h such that f (k) ≡ hg(k), where hm = 1 and

hn = Kd1/(Kd1 + ĉ) (Kd1 + ĉ 6= 0).

From the above theorem the corollary follows immediately.

Corollary 1.2. Under the same conditions as in Theorem 1.2 let us assume that f

and g are two entire functions, k is a non-negative integer such that f (k), g(k) are

not constants. Also let Ef(k)(S1, l) = Eg(k)(T1, l) and

(I) b21/(4a1c1) 6= n(n− 2m)/(n−m)2, 1 with

(i) l = 2 and n > 4m+ 4,

(ii) l = 0 and n > 4m+ 7; or

(II) b21/(4a1c1) = n(n− 2m)/(n−m)2 with

(i) l = 2 and n > 2m+ 4,

(ii) l = 0 and n > 2m+ 7.
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Then for a nonzero constant h, we have f (k) ≡ hg(k); hm = 1 and hn =

Kd1/(Kd1 + ĉ), where Kd1 + ĉ 6= 0.

In the following table, we compare Theorem A with Theorem 1.2.

Theorem A Theorem 1.2

shared sets with

weight

Ef(k)(S, 0) = Eg(k)(T, 0)

least

cardinality

shared sets with

weight

Ef(k)(S1, 0) = Eg(k)(T1, 0)

least

cardinality

when

k = 0, (n,m) = 1
19

when

k = 0, (n,m) = 1

17

when
b21

4a1c1
=

n(n− 2m)

(n−m)2

19

when
b21

4a1c1
6=

n(n− 2m)

(n−m)2
, 1

when

k > 1, (n,m) = 1
> 11 +

7

k + 1

when

k > 1, (n,m) = 1

> 9 +
7

k + 1

when
b21

4a1c1
=

n(n− 2m)

(n−m)2

> 11 +
7

k + 1

when
b21

4a1c1
6=

n(n− 2m)

(n−m)2
, 1

Table 2.

R em a r k 1.2. Table 2 reveals that Theorem 1.2 significantly reduces the cardi-

nality of the shared set under the case b21/(4a1c1) = n(n− 2m)/(n−m)2, irrespective

of the choice of k > 0 in comparison to Theorem C.

O b s e r v a t i o n. In the case of Theorem 1.2 we have some vital observations.

In Theorem 1.2, we consider the relation between the generating polynomials of two

sets as Q1 = KP1 + ĉ. Note that when K = 1 and ĉ = 0, we have S1 = T1 and

the conclusion of the theorem simply reduces to f (k) = g(k). But the case ĉ 6= 0

deserves further attention as in this case P1 and Q1 are linearly independent. Here it

is to be noted that for an arbitrary choice of ĉ, one cannot simply get Ef(k)(S1, l) =

Eg(k)(T1, l) always, i.e., f
(k), g(k) cannot share arbitrary pair S1, T1; rather the

sharing is totally depending upon the suitable choice of ĉ for which h must be a

common solution of hm = 1, hn = Kd1/(Kd1 + ĉ). For example, choosing ĉ = Kd1,

we see that hm = 1 ⇒ |h| = 1 and hn = 1
2 , a contradiction, so in that case there are

no meromorphic functions f , g such that E
(k)
f (S1, l) = E

(k)
g (T1, l). Next let α be a

root of hm − 1 = 0. So α = e2sπi/m, s = 0, 1, . . . ,m− 1. We choose n = tm+1, then

hn = α and so if we choose ĉ = Kd1(1− α)/α, then h− α will be a common factor

of both hm − 1, hn −Kd1/(Kd1 + ĉ). Clearly, in this case we get f1 = αg1.
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From Theorem 1.2, we see that the case b21/(4a1c1) = 1 was not explored. So the

natural question arises what happens in Theorem 1.2 if only the case b21/(4a1c1) = 1

is satisfied, where no such relation between the polynomials P1 and Q1 as mentioned

in Theorem 1.2 exist. Our next theorem will elucidate in this matter. In fact, in

Theorem 1.2, the coefficients associated with all positive powers of P1 and Q1 are

proportionate and so we definitely can deduct b21/(4a1c1) = b22/(4a2c2), which is not

necessarily required in our next theorem.

Theorem 1.3. Let f and g be two meromorphic functions and let k be a non-

negative integer such that f (k), g(k) are not constants. Also let us consider the sets

S1 = {w : P1(w) = 0}, T1 = {w : Q1(w) = 0}, where P1, Q1 are the polynomials

defined as in (1.4), (1.5), with (n,m) = 1 and b21 = 4a1c1, b
2
2 = 4a2c2; having all

simple zeros. Now suppose Ef(k)(S1, l) = Eg(k)(T1, l) and

(I) k = 0 and m > 2 with

(i) l = 2 and n > 4m+ 4 + 4/(k + 1),

(ii) l = 0 and n > 4m+ 7 + 7/(k + 1); or

(II) km > 1 with

(i) l = 2 and n > 4m+ 7,

(ii) l = 0 and n > 4m+ 7 + 7/(k + 1).

Then for a nonzero constant h, we have f (k) ≡ hg(k).

From the proof of Theorem 1.3, the following corollary follows immediately.

Corollary 1.3. Under the same conditions as in Theorem 1.3 let us assume that f

and g are two entire functions, k is a non-negative integer such that f (k), g(k) are

not constants. Also let Ef(k)(S1, l) = Eg(k)(T1, l) and

(i) l = 2 and n > 4m+ 4;

(ii) l = 0 and n > 4m+ 7.

Then for a nonzero constant h, we have f (k) ≡ hg(k).

Next we provide the table to understand the overall comparison between Theo-

rem C and Theorems 1.1–1.3 (see Table 3).

R em a r k 1.3. The Table 3 reveals that:

(i) In Theorem 1.1, when k = 0, the lower bound of n under sharing of weight 2 is

same as that of Theorem C under CM sharing.

(ii) In Theorem 1.1, when k > 1, then as m > 1, the lower bound of n under sharing

of weight 2 is 9 and it continuously decreases while in the case of Theorem C

the minimum value of n is 12 under CM sharing.
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(iii) The case m > 4 is never attended in Theorem 1.1 which also renders an impor-

tant feature in diminishing the lower bound, but in Theorem C, m > 4, may

occur.

(iv) In Theorem 1.2 we have considered a generalized version of the sets as in The-

orem C. Hence, Theorem 1.2 is actually an extended form of Theorem C. Also

for the case b21/(4a1c1) = 1, Theorem 1.2 improves Theorem C by reducing the

cardinality and relaxing the CM sharing of sets. Thus, Theorem 1.2 is a two

step improvement of Theorem C.

(v) Additionally, the Question 1.2 posed in [19] is satisfactorily addressed in Theo-

rems 1.2, 1.3.

Theorem C Theorem 1.1 Theorem 1.2 Theorem 1.3

shared sets

with weight
Ef(k)(S,∞) = Eg(k)(T,∞) Ef(k)(S, 2) = Eg(k)(T, 2) Ef(k)(S1, 2) = Eg(k)(T1, 2) Ef(k)(S1, 2) = Eg(k)(T1, 2)

least cardinality

when k = 0

13

when (n,m) = 1, m > 2

17

when (n,m) 6= 1, m > 4

13

when (n,m) = 1, m > 2

13

when (n,m) 6= 1, m > 2

11

when
b21

4a1c1
=

n(n− 2m)

(n−m)2

13

when
b21

4a1c1
6=

n(n− 2m)

(n−m)2

17

when b21 = 4a1c1,

b22 = 4a2c2, m > 2

least cardinality

when k > 1

> 8 +
4

k + 1

when (n,m) = 1, m > 2

> 12 +
4

k + 1

when (n,m) 6= 1, m > 4

> 6 +
4

k + 1

when (n,m) = 1

> 6 +
4

k + 1

when (n,m) 6= 1

> 6 +
4

k + 1

when
b21

4a1c1
=

n(n− 2m)

(n−m)2

> 8 +
4

k + 1

when
b21

4a1c1
6=

n(n− 2m)

(n−m)2

11

when b21 = 4a1c1,

b22 = 4a2c2

Table 3.

Here we give the following definitions which will be useful for the proof of the main

results of the paper.

Definition 1.4 ([7]). Let P (z) be a polynomial such that P ′(z) has mutually k

distinct zeros given by d1, d2, . . . , dk with multiplicities q1, q2, . . . , qk, respectively.

Then P (z) is said to satisfy the critical injection property if P (di) 6= P (dj) for i 6= j,

where i, j ∈ {1, 2, · · ·, k} and the polynomial is called a critical injective polynomial.

Clearly, a critical injective polynomial can have at most one multiple zero.

We have used some usual notations of counting functions like N
1)
E (r, a; f),

NL(r, a; f), N(r, a; f |= 1), N(r, a; f |6 m), N(r, a; f |> m) and N∗(r, a; f, g). For

the definitions of these counting functions, we refer the reader to follow [1], [18].
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2. Lemmas

Next, we present some lemmas that will be needed in the sequel. Henceforth, we

denote by H the following functions:

H =
(F ′′

F ′
−

2F ′

F

)
−
(G′′

G′
−

2G′

G

)
.

Lemma 2.1. Let F and G be non-constant meromorphic functions and let F , G

share 0 IM. Then

N
1)
E (r, 0;F ) 6 N(r,∞;H) + S(r, F ) + S(r,G).

P r o o f. We are not giving the proof as a similar proof can be found in [28]. �

Lemma 2.2. Let F and G be non-constant meromorphic functions and let F , G

share 0 IM. Then

N(r,∞;H) 6 N∗(r, 0;F,G) +N(r,∞; f) +N(r,∞; g)

+N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, F ) + S(r,G),

where N0(r, 0;F
′) is the reduced counting function of those zeros of F ′, where F 6= 0

and N0(r, 0;G
′) is similarly defined.

P r o o f. Here we are not giving the proof as it is similar to the proof of

Lemma 2.2 in [8]. �

Lemma 2.3 ([1]). Let F and G be non-constant meromorphic functions and

let F , G share (0, l). Then

N(r, 0;F ) +N(r, 0;G)−N
1)
E (r, 0;F ) +

(
l−

1

2

)
N∗(r, 0;F,G)

6
1

2
(N(r, 0;F ) +N(r, 0;G)) + S(r, F ) + S(r,G).

Lemma 2.4 ([21]). Let f be a non-constant meromorphic function and let

R(f) =

∑n
k=0 akf

k

∑m
j=0 bjf

j

be an irreducible rational function in f with constant coefficients {ak} and {bj},

where an 6= 0 and bm 6= 0. Then

T (r, R(f)) = dT (r, f) + S(r, f),

where d = max{n,m}.
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Lemma 2.5. Let f and g be two meromorphic functions such that f1 = f (k),

g1 = g(k) are not constants. P and Q are given by (1.2), (1.3). If P (f1) = Q(g1)

and n > 2m + 4, where either k = 0 and m > 2, or km > 1, then f1 ≡ hg1 for a

constant h such that hn = u/a, hn−m = v/b.

P r o o f. Doing exactly the same as in Lemma 2.8 in [19], we have

afn
1 + bfn−m

1 = ugn1 + vgn−m
1 , agm1 (hn − α) = −b(hn−m − β),(2.1)

where h = f1/g1 and α = u/a 6= 0, β = v/b 6= 0. First assume that h is not a

constant, then we have from above that gm1 = −b(hn−m − β)/(a(hn − α)).

Now we discuss the following two cases.

Case 1 (n,m) = 1.

Subcase 1.1 k = 0 and m > 2. In this case, dealing exactly in the same way as in

Case 1, Lemma 2.8 in [19], we get the result.

Subcase 1.2 Here k > 0 and m > 1. Now it is given that

gm1 = −
b(hn−m − β)

a(hn − α)
, i.e., (g(k))m = −

b(hn−m − β)

a(hn − α)
.

First assume h is a non-constant meromorphic function. Since (n,m) = 1, then

hn−m − β and hn − α can have at most one common zero. Hence, hn − α has at

least n − 1 distinct zeros, say α1, α2, . . . , αn−1. Also, let z0 be a zero of h − αi

i = 1, 2, . . . , n− 1 of order p, then it is a pole of (g(k))m of order at least m(k + 1).

Then p > m(k + 1).

(n− 3)T (r, h) 6

n−1∑

i=1

N(r, 0;h− αi) + S(r, h) 6
n− 1

m(k + 1)
T (r, h) + S(r, h)(2.2)

6
n− 1

2
T (r, h) + S(r, h),

a contradiction. Hence, h is constant.

Case 2 (n,m) 6= 1. Assume (n,m) = d and d 6 m. Therefore zn−m − β and

zn − α can have at most m common factors. Therefore zn − α can have at least

n−m distinct zeros, say β1, β2, . . . , βn−m. Next consider the following subcases.

Subcase 2.1 k = 0 and m > 2. Again, every zero of h− βi is a pole of g of order

at least two. Now using the Second Fundamental Theorem we get

(n−m− 2)T (r, h) 6

n−m∑

i=1

N(r, βi;h) + S(r, h) 6
1

2

n−m∑

i=1

N(r, βi;h) + S(r, h)

6
n−m

2
T (r, h) + S(r, h),

a contradiction.
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Subcase 2.2 k > 0 andm > 1. Now proceeding in the same way as in (2.2) we have

(n−m− 2)T (r, h) 6

n−m∑

i=1

N(r, βi;h) + S(r, h) 6
1

m(k + 1)

n−m∑

i=1

N(r, βi;h) + S(r, h)

6
n−m

2
T (r, h) + S(r, h),

a contradiction. Therefore we h must be is a constant and hence, from (2.1) the

result follows. �

Lemma 2.6. Let f1 and g1 be defined the same as in Lemma 2.5 and k be a

non-negative integer. Then for n > 2m+ 7 and

(i) k = 0, m > 2;

(ii) km > 1,

fn−m
1 (afm

1 + b)gn−m
1 (ugm1 + v) 6≡ dt.

P r o o f. Let us consider two cases.

Case 1. First assume k = 0, m > 2. Also let us assume

fn−m(afm + b)gn−m(ugm + v) ≡ dt.

For the case (n,m) = 1 the result follows from Lemma 2.7 in [19]. Here we shall

discuss the Subcase 2.2 in Lemma 2.7 of [19] when (n,m) 6= 1. Let z0 be a zero

of g of order p and a pole of f of order q. Then we have (n − m)p = nq ⇒ p =

n/(n−m)q > 1. Therefore, here we have p > 2. Again, a zero of ugm + b is a pole

of fn−m(afm + b) of order at least n.

Now using the Second Fundamental Theorem we have

(m− 1)T (r, g) 6 N(r, 0; g) +N(r, 0;ugm + v) + S(r, g)

6
1

2
N(r, 0; g) +

1

n
N(r, 0;ugm + v) + S(r, g)

6
1

2
T (r, g) +

m

n
T (r, g) + S(r, g),

a contradiction for m > 2.

Case 2. Consider km > 1. First, if possible, let us assume

fn−m
1 (afm

1 + b)gn−m
1 (ugm1 + v) ≡ dt.

From Lemma 2.4 we get

(2.3) T (r, f1) = T (r, g1) + S(r, g1),

hence S(r, f1) = S(r, g1).
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Let z1 be a zero of g1 of order p1 and hence a pole of f1 of order q1 (> k+1). Then

we have (n−m)p1 = nq1 > n(k+1), i.e., p1 > n(k + 1)/(n−m) > 2n/(n−m) > 2,

therefore p1 > 3. Next let z2 be a zero of ug
n−m
1 + v = (g1 − γ1) . . . (g1 − γm) of

order p2 and clearly z2 will be a pole of f1 of order q2 (> k + 1). Then we have

p2 = nq2 > n(k+1). Now using the Second Fundamental Theorem and (2.3) we have

mT (r, g1) 6 N(r, 0; g1) +N(r,∞; g1) +N(r, 0;ugm1 + v) + S(r, g1)

6
1

3
N(r, 0; g1) +

1

n(k + 1)

m∑

i=1

N(r, 0; g1 − γi)

+N(r, 0; fn−m
1 (afm

1 + b)) + S(r, g1)

6
m

2n
(T (r, f1) + T (r, g1)) +

1

3
(T (r, f1) + T (r, g1)) + S(r, g1)

6
m

n
T (r, g1) +

2

3
T (r, g1) + S(r, g1),

which gives a contradiction for n > 2m+ 7. �

Lemma 2.7. Let f1 and g1 be defined the same as in Lemma 2.5 and k be a

non-negative integer. If there exist two constants A (6= 0) and B such that

1

P (f1)
=

A

Q(g1)
+B,

and n > 2m+ 7, where either k = 0, m > 2 or km > 1, then B = 0.

P r o o f. Assume B 6= 0, proceeding exactly in the same way as in Lemma 2.7

of [19] we get

fn−m
1 (afm

1 + b)gn−m
1 (ugm1 + v) = dt.(2.4)

For the case (n,m) = 1 the result follows from Lemma 2.7 in [19]. When (n,m) 6= 1,

then from Lemma 2.6 of the present paper we have a contradiction and the rest

follows from Lemma 2.7 in [19]. �

Lemma 2.8. Let ϕ(z) = b2(zn−m − A)2 − 4ac(zn−2m − A)(zn − A), where

A, a, b, c ∈ C
∗, (m,n) = 1, n > 3m and b2 6= 4ac. Then the following results hold.

(i) If et0 is any multiple zero of ϕ, then t0 satisfies cosh(mt0) = 1 or cosh(mt0) =

b2(n−m)2/(2acn(n− 2m))− 1.

(ii) Each multiple zero of ϕ is of multiplicity two whenever b2/(4ac) 6= n(n− 2m)/

(n−m)2.

P r o o f. We omit the proof as it can be found in the proof of Lemma 2.5 in [8].

�
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Lemma 2.9. Let ϕ(z) = b2(zn−m − A)2 − 4ac(zn−2m − A)(zn − A), where

A, a, b, c ∈ C
∗, b2/(4ac) = n(n− 2m)/(n−m)2, n > 2m and (n,m) = 1. Then

it can have exactly one multiple zero of multiplicity four.

P r o o f. The result can be easily obtained from Lemma 2.6 in [8]. �

Lemma 2.10. Let P (z) = azn + bzn−m + czn−2m + d, where a, b, c ∈ C
∗. If

b2/(4ac) = n(n− 2m)/(n−m)2, then P is critically injective polynomial.

P r o o f. Here we are not giving the proof as it can be obtained in the proof of

Lemma 2.7 in [8]. �

3. Proofs of the theorems

P r o o f of Theorem 1.1. Let us consider F = P (f1) and G = Q(g1), where

f1 = f (k), g1 = g(k) and consider the following cases.

Case 1. First assume H 6≡ 0. We have

N(r,∞;H) 6 N(r, 0; f1) +N(r, 0; g1) +N(r,∞; f1) +N(r,∞; g1) +N∗(r, 0;F,G)

+N(r, 0;nafm
1 + (n−m)b) +N(r, 0;nugm1 + (n−m)v)

+N
1

o1(r, 0; f
′

1) +N
1

o2(r, 0; g
′

1) + S(r, f1) + S(r, g1),

where N
1

o1(r, 0; f
′

1) is the reduced counting function of those zeros of f
′

1 which are

not zeros of f1P (f1)(naf
m
1 + (n − m)b) and N

1

o2(r, 0; g
′

1) is the reduced counting

function of those zeros of g′1 which are not zeros of g1Q(g1)(nug
m
1 + (n−m)v). So

(n+m)(T (r, f1) + T (r, g1))

6 N(r, 0; f1) +N(r, 0; g1) +N(r,∞; f1) +N(r,∞; g1) +N(r, 0;F )

+N(r, 0;G) +N(r, 0;nafm + (n−m)b) +N(r, 0;nugm1 + (n−m)v)

−N1
o1(r, 0; f

′

1)−N1
o2(r, 0; g

′

1) + S(r, f1) + S(r, g1).

Using Lemmas 2.3, 2.1 from above, we have

(n− 1)T (r) 6
1

2
(N(r, 0;F ) +N(r, 0;G)) +N

1)
E (r, 0;F ) +

(1
2
− l

)
N∗(r, 0;F,G)

+N(r,∞; f1) +N(r,∞; g1)−N1
o1(r, 0; f

′

1)−N1
o2(r, 0; g

′

1) + S(r),

where T (r) = T (r, f1) + T (r, g1) and S(r) = S(r, f1) + S(r, g1) = o(T (r)).
(n
2
− 1

)
T (r) 6 N(r, 0; f1) +N(r, 0; g1) + 2(N(r,∞; f1) +N(r,∞; g1))(3.1)

+
(3
2
− l

)
N∗(r, 0;F,G) +N(r, 0;nafm

1 + (n−m)b)

+N(r, 0;nugm1 + (n−m)v) + S(r).
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From (3.1) we have

(3.2)
(n
2
− 2

)
T (r) 6

( 2

k + 1
+m

)
T (r)

+
(3
2
− l

)
(NL(r, 0;F ) +NL(r, 0;G)) + S(r)

6

( 2

k + 1
+m

)
T (r)

+
(3
2
− l

)
(N (r, 0;F |> l + 2) +N(r, 0;G |> l + 2)) + S(r)

6

( 2

k + 1
+m

)
T (r) +

(3
2
− l

) 1

l + 1
(N(r, 0; f1) +N(r,∞; f1)

+N(r, 0; g1) +N(r,∞; g1)) + S(r)

6

( 2

k + 1
+m

)
T (r) +

(3
2
− l

) 1

l + 1

(
1 +

1

k + 1

)
T (r) + S(r).

Now from (3.2) for

(i) l = 2 and n > 2m+ 4 + 4/(k + 1),

(ii) l = 0 and n > 2m+ 7 + 7/(k + 1),

we arrive at a contradiction.

Case 2. Let H ≡ 0 and then integrating we have

1

F
=

C

G
+D ⇒

1

P (f1)
=

C

Q(g1)
+D, i.e.,

Q(g1)

P (f1)
= C +DQ(g1),

where C (6= 0), D are finite constants. Clearly, if the zeros of P (f1) and Q(g1) have

different multiplicities, then either C = 0 or ∞, a contradiction. Hence, the zeros of

P (f1) and Q(g1) are of the same multiplicity, i.e., P1(f1) and Q1(g1) share 0 CM.

Now, from the proof of Theorem 1.7 in [19] and with the help of Lemmas 2.5, 2.6,

and 2.7, the result follows immediately. �

P r o o f of Theorem 1.2. Let us consider Q1 defined as in (1.5). Then from the

assumption Q1 = KP1 + ĉ, comparing the coefficient we have a2 = Ka1, b2 = Kb1

and c2 = Kc1, d2 = Kd1 + ĉ.

Also let us assume F = P1(f1) and G = Q1(g1). Clearly, here F and G share (0, l).

Case 1. Let b21/(4a1c1) 6= n(n− 2m)/(n−m)2, 1. Now, F ′ = (P1(f1))
′ =

P ′

1(f1)f
′

1 = fn−2m−1
1 (na1f

2m
1 +b1(n−m)fm

1 +c1(n−2m))f ′

1, G
′ = gn−2m−1

1 (na2g
2m
1 +

b2(n−m)gm1 + c2(n− 2m))g′1. We know T (r, F ) = nT (r, f1)+S(r, f1) and T (r,G) =

nT (r, g1) + S(r, g1).

Next let αi, i = 1, 2, . . . , k1 be the distinct zeros of na1z
2m + b1(n − m)zm +

c1(n− 2m).
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Subcase 1.1 First let us consider H 6≡ 0. Now from Lemma 2.2 we have

N(r,∞;H) 6 N(r, 0; f1) +N(r, 0; g1) +N(r,∞; f1) +N(r,∞; g1)(3.3)

+N∗(r, 0;F,G) +

k1∑

i=1

N(r, αi; f1) +

k1∑

i=1

N(r, αi; g1)

+N
2

o1(r, 0; f
′

1) +N
2

o2(r, 0; g
′

1) + S(r, f1) + S(r, g1),

where N
2

o1(r, 0; f
′

1) is the reduced counting function of those zeros of f
′

1 which are

not zeros of f1P1(f1)
k1∏
i=1

(f1 − αi); similarly N
2

o2(r, 0; g
′

1) can be defined. Clearly

P1(αi), Q1(αi) 6= 0 and P1(0) ·Q1(0) 6= 0. Applying the Second Fundamental Theo-

rem to f1 and g1 we have

(n+ k1)(T (r, f1) + T (r, g1))

6 N(r, 0; f1) +N(r, 0; g1) +N(r,∞; f1) +N(r,∞; g1)

+N(r, 0;F ) +N(r, 0;G) +

k1∑

i=1

(N(r, αi; f1) +N(r, αi; g1))

−N2
o1(r, 0; f

′

1)−N2
o2(r, 0; g

′

1) + S(r, f1) + S(r, g1),

i.e.,

(n− 1)T (r) 6 N(r,∞; f1) +N(r,∞; g1) +N(r, 0;G) +N(r, 0;F )(3.4)

−N2
o1(r, 0; f

′

1)−N2
o2(r, 0; g

′

1) + S(r).

Applying Lemma 2.3 from (3.4) we have

(n− 1)T (r) 6 N(r,∞; f1) +N(r,∞; g1) +N
1)
E (r, 0;F ) +

(1
2
− l

)
N∗(r, 0;F,G)

+
1

2
(N(r, 0;F ) +N(r, 0;G))−N2

o1(r, 0; f
′

1)−N2
o2(r, 0; g

′

1) + S(r)

6 N(r,∞; f1) +N(r,∞; g1) +N
1)
E (r, 0;F ) +

(1
2
− l

)
N∗(r, 0;F,G)

+
1

2
(T (r, F ) + T (r,G))−N2

o1(r, 0; f
′

1)−N2
o2(r, 0; g

′

1) + S(r).

Using Lemma 2.1 from above we get

(n− 1)T (r) 6
n

2
T (r) +N(r,∞; f1) +N(r,∞; g1) +N(r,∞;H)

+
(1
2
− l

)
N∗(r, 0;F,G)−N2

o1(r, 0; f
′

1)−N2
o2(r, 0; g

′

1) + S(r).
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Next using (3.3) from above we get

(3.5)(n
2
− 1

)
T (r) 6 N(r,∞; f1) +N(r,∞; g1) +N(r,∞;H)

+
(1
2
− l

)
N∗(r, 0;F,G)−N2

o1(r, 0; f
′

1)−N2
o2(r, 0; g

′

1) + S(r)

6 N(r, 0; f1) +N(r, 0; g1) + 2(N(r,∞; f1) +N(r,∞; g1))

+
(3
2
− l

)
N∗(r, 0;F,G) +

k1∑

i=1

N(r, αi; f1) +

k1∑

i=1

N(r, αi; g1) + S(r)

6 2(N(r,∞; f1) +N(r,∞; g1)) +
(3
2
− l

)
(NL(r, 0;F ) +NL(r, 0;G))

+ (k1 + 1)T (r) + S(r)

6 2(N(r,∞; f1) +N(r,∞; g1))

+
(3
2
− l

)
(N(r, 0;F |> l + 2) +N(r, 0;G |> l + 2))

+ (k1 + 1)T (r) + S(r)

6 (k1 + 1)T (r) +
2

k + 1
T (r) +

(3
2
− l

) 1

l+ 1

× (N(r, 0; f1) +N(r,∞; f1) +N(r, 0; g1) +N(r,∞; g1)) + S(r)

6 (k1 + 1)T (r) +
2

k + 1
T (r) +

(3
2
− l

) 1

l+ 1

(
1 +

1

k + 1

)
T (r) + S(r).

Now k1 6 2m, then from (3.5) for

(i) l = 2 and n > 4m+ 4 + 4/(k + 1),

(ii) l = 0 and n > 4m+ 7 + 7/(k + 1),

we have a contradiction.

Subcase 1.2. H ≡ 0. Then integrating we have

1

P1(f1)
=

D1

Q1(g1)
+D2,

where D1 (6= 0), D2 are finite constants. Using Lemma 2.4 we have

(3.6) T (r, f1) = T (r, g1) +O(1).

Now from above we have

1

P1(f1)
=

D1 +D2Q1(g1)

Q1(g1)
,

Q1(g1)

P1(f1)
= D1 +D2Q1(g1).

Clearly, if the zeros of P1(f1) and Q1(g1) have different multiplicity, then either

D1 = 0 or∞, a contradiction. Hence, the zeros of P1(f1) and Q1(g1) are of the same

multiplicity, i.e., P1(f1) and Q1(g1) share 0 CM.
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Using the Second Fundamental Theorem in view of (3.6) we have

(3.7) nT (r, g1) +O(1) = T (r,Q1(g1))

6 N(r,∞;Q1(g1)) +N(r, 0;Q1(g1)− d2)

+N(r, 0;Q1(g1) +D1/D2) + S(r, g1)

6 N(r,∞; g1) +N(r, 0; gn−2m
1 (a2g

2m
1 + b2g

m
1 + c2))

+N(r,∞; f1) + S(r, g1)

6 (2m+ 3)T (r, g1) + S(r, g1),

a contradiction. Therefore either d2 = −D1/D2 or D2 = 0.

Subcase 1.2.1. First assume d2 = −D1/D2, then

1

P (f1)
=

D2g
n−2m
1 (a2g

2m
1 + b2g

m
1 + c2)

Q1(g1)
.

Since b22/(4a2c2) 6= n(n− 2m)/(n−m)2, 1 therefore a2z
2m+b2z

m+c2 has all simple

zeros which are poles of f1 and hence of multiplicity at least of > n(k + 1). Now

let z0 be a zero of g1 of order p and a pole of f1 of order q. Then we have (n−2m)p =

nq ⇒ p = n/(n− 2m)q > 1, i.e., p > 2.

So using the Second Fundamental Theorem we have

(3.8) 2mT (r, g1) 6 N(r, 0; g1) +N(r, 0; a2g
2m
1 + b2g

m
1 + c2) +N(r,∞; g1) + S(r, g1)

6

(1
2
+

2m

n
+

1

k + 1

)
T (r, g1) + S(r, g1),

a contradiction for n > 4m+ 4.

Subcase 1.2.2. Let D2 = 0. Hence, finally we have P1(f1) = DQ(g1), where

D = 1/D1. So

(3.9) fn−2m
1 (a1f

2m
1 + b1f

m
1 + c1) = D(a2g

n
1 + b2g

n−m
1 + c2g

n−2m
1 + d2 − d1/D)

= D(G − d1/D).

Subcase 1.2.2.1. Let d2 6= d1/D. Applying the Second Fundamental Theorem

to G and using (3.6), from (3.9) we have

(3.10)

nT (r, g1) +O(1) = T (r,G)

6 N(r, 0;G− d2) +N(r,∞;G) +N(r, 0;G− d1/D) + S(r, g1)

6 N(r, 0; g1) +N(r, 0; a2g
2m
1 + b2g

m
1 + c2) +N(r,∞; g1)

+N(r, 0; f1) +N(r, 0; a1f
2m
1 + b1f

m
1 + c1) + S(r, g1)

6

(
2 + 4m+

1

k + 1

)
T (r, g1) + S(r, g1),

a contradiction as n > 4m+ 4.
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Subcase 1.2.2.2. If d2 − d1/D = 0, i.e., D = d1/d2, then

fn−2m
1 (a1f

2m
1 + b1f

m
1 + c1) = Dgn−2m

1 (a2g
2m
1 + b2g

m
1 + c2).

Suppose h = f1/g1. Then we have

(3.11) a1g
2m
1 (hn −KD) + b1g

m
1 (hn−m −KD) + c1(h

n−2m −KD) = 0.

Subcase 1.2.2.2.1. If h is a non-constant meromorphic function, then from (3.11)

we have

g2m1 +
b1(h

n−m −KD)

a1(hn −KD)
gm1 +

c1(h
n−2m −KD)

a1(hn −KD)
= 0,

i.e.,

(
gm1 +

b1(h
n−m −K ′)

2a1(hn −K ′)

)2

=
b21(h

n−m −K ′)2 − 4a1c1(h
n −K ′)(hn−2m −K ′)

4a21(h
n −K ′)2

(3.12)

=
ϕo(h)

4a21(h
n −K ′)2

,

where K ′ = KD.

As by the statement of the theorem n > 3m, from Lemma 2.8, if ϕo has multiple

zero et0 , then cosh(mt0) = 1 or cosh(mt0) = b21(n−m)2/(2a1c1n(n− 2m))− 1, and

each multiple zero of ϕo has multiplicity two.

Let et0 be a multiple zero of ϕo. Then either
1
2 (e

mt0 + e−mt0) = 1 ⇒ (et0)m = 1

or 1
2 (e

mt0 + e−mt0) = b21(n−m)2/(2a1c1n(n− 2m)) − 1 = p (say) ⇒ (et0)m =

p ±
√
p2 − 1, i.e., there exist at most m + 2m = 3m multiple zeros of order two.

Hence, ϕo has at least 2n − 2m − 2 · 3m = 2n − 8m distinct simple zeros, say (νi,

i = 1, 2, . . . , 2n− 8m).

Applying the Second Fundamental Theorem to h, we have

(3.13) (2n−8m−2)T (r, h)6

2n−8m∑

i=1

N(r, νi;h)+S(r, h) 6 (n−4m)T (r, h)+S(r, h),

a contradiction for n > 4m+ 3.

Subcase 1.2.2.2.2. Consider h is a constant, then from (3.11) we get hn = KD =

hn−m = hn−2m ⇒ hm = 1 and hence |f1| = |g1|.

Case 2. Consider b21/(4a1c1) = n(n− 2m)/(n−m)2. If b21/(4a1c1) = n(n− 2m)/

(n−m)2, then we have

na1f
2m
1 + b1(n−m)fm

1 + c1(n− 2m) = na1

(
fm
1 +

b1(n−m)

2na1

)2
= na1

m∏

i=1

(f1 − αi)
2.

Therefore, F ′ =
m∏
i=1

(f1 − αi)
2f ′

1 and G′ =
m∏
i=1

(g1 − αi)
2g′1.
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Subcase 2.1. Let H 6≡ 0, we have

N(r,∞;H) 6 N(r, 0; f1) +N(r, 0; g1) +N∗(r, 0;F,G)

+

m∑

i=1

(N(r, αi; f1) +N(r, αi; g1)) +N
2

o1(r, 0; f
′

1)

+N
2

o2(r, 0; g
′

1) + S(r, f1) + S(r, g1),

where N
2

o1(r, 0; f
′

1) is the reduced counting function of those zeros of f
′

1 which are

not zeros of f1P1(f1)
k∏

i=1

(f1 − αi); similarly, N
2

o2(r, 0; g
′

1) can be defined.

Now proceeding in the same way as in (3.4), (3.5) for k1 = m and

(i) l = 2 and n > 2m+ 4 + 4/(k + 1),

(ii) l = 0 and n > 2m+ 7 + 7/(k + 1),

we have a contradiction.

Subcase 2.2. Assume H ≡ 0. Then integrating we have

1

(P1(f1))
=

A1

(Q1(g1))
+A2,

where A1 (6= 0), A2 are constants. Also proceeding similarly as in (3.7) and (3.8),

we have A2 = 0 and then P1(f1) = AQ1(g1), where A = 1/A1.

Now,

(3.14) fn−2m
1 (a1f

2m
1 + b1f

m
1 + c1) = A(a2g

n
1 + b2g

n−m
2 + c2g

n−2m
1 + d2 − d1/A).

Subcase 2.2.1. Let d2 6= d1/A. From Lemma 2.10 the polynomial a2z
n+b2z

n−m+

c2z
n−2m + d2 − d1/A is critically injective. Hence, it can have at most one multiple

zero of multiplicity three and at least n− 2 distinct zeros (δi, i = 1, 2, . . . , n− 2).

Applying the Second Fundamental Theorem to g1 and using (3.6), we have

from (3.14) that

(3.15) (n− 3)T (r, g1) 6

n−2∑

i=1

N(r, δi; g1) +N(r,∞; g1) + S(r, g1)

6 N(r, 0; f1) +N(r, 0; a1f
2m
1 + b1f

m
1 + c1)

+
1

k + 1
N(r,∞; g1) + S(r, g1)

6 (2m+ 1)T (r, f1) +
1

k + 1
T (r, g1) + S(r, g1)

6

(
2m+ 1 +

1

k + 1

)
T (r, g1) + S(r, g1),

a contradiction for n > 2m+ 4 + 1/(k + 1).
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Subcase 2.2.2. A = d1/d2. Finally, from (3.14) we get

fn−2m
1 (a1f

2m + b1f
m
1 + c1) = Agn−2m

1 (a2g
2m
1 + b2g

m
1 + c2),

i.e.,

(3.16) a1g
2m
1 (hn −KA) + b1g

m
1 (hn−m −KA) + c1(h

n−2m −KA) = 0.

Subcase 2.2.2.1. If h is a non-constant meromorphic function, then we get

(
gm1 +

b1(h
n−m −KA)

2a1(hn −KA)

)2

=
b21(h

n−m −KA)2 − 4a1c1(h
n −KA)(hn−2m −KA)

4a21(h
n −KA)2

=
ϕ1(h)

4a21(h
n −KA)2

.

Next from Lemma 2.9, ϕ1 can have at most one multiple zero of multiplicity four

and at least 2n − 2m − 4 distinct simple zeros, say yi, (i = 1, 2, . . . , 2n − 2m − 4).

Then applying the Second Fundamental Theorem to ‘h’ we have

(3.17)

(2n− 2m− 6)T (r, h) 6

2n−2m−4∑

i=1

N(r, yi;h) + S(r, h) 6 (n−m− 2)T (r, h) + S(r, h),

a contradiction for n > m+ 4.

Subcase 2.2.1.2. If h is a constant, then from (3.16), hn = KA = hn−m = hn−2m

and so hn = KA = Kd1/d2 = Kd1/(Kd1 + ĉ), hm = 1. Hence, we get the result. In

particular, if ĉ = 0, then we get f1 ≡ g1. �

P r o o f of Theorem 1.3. Assume F = P1(f1) and G = Q1(g1).

Case 1. Assume H 6≡ 0, then proceeding in the same way as in (3.4), (3.5) we

have a contradiction.

Case 2. Let H ≡ 0. Then integrating we have

(3.18)
1

P1(f1)
=

E1

Q1(g1)
+ E2,

where E1 (6= 0), E2 are two constants.

Next we show that E2 = 0. Now proceeding in the same manner as in (3.7) we

have E2 = 0 or E1/E2 = −d2.

Subcase 2.1. Assume E1/E2 = −d2, then

1

P1(f1)
=

E2(g
n−2m
1 (a2g

2m
1 + b2g

m
1 + c2))

Q1(g1)
=

E2(a2g
n−2m
1 (gm1 + b2/2a2)

2)

Q1(g1)
.
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Now assume z0 be a zero z
m + b2/2a2 of order p, then it is also a pole of P1(f1).

Then we have 2p > n(k+1) ⇒ p > 1
2n(k+1). Also assume z1 be a zero of order q and

hence a pole of f1, therefore (n−2m)q > n(k+1) ⇒ q > n(k + 1)/(n− 2m) > (k+1),

i.e., q > k + 2. Using the Second Fundamental Theorem we have

mT (r, g1) 6 N(r, 0; g1) +N(r,∞; g1) +N(r, 0; gm1 + b2/2a2) + S(r, g1)(3.19)

6

( 1

k + 2
+

1

k + 1
+

2m

n(k + 1)

)
T (r, g1) + S(r, g1)

for k = 0, m > 2, n > 4m + 5 and for k,m > 1 and n > 4m + 5 we arrive at a

contradiction.

Subcase 2.2. E2 = 0. From (3.18) we have P1(f1) = EQ1(g1) (E = 1/E1). Again,

(3.20) fn−2m
1 (a1f

2m
1 + b1f

m
1 + c1) = E

(
gn−2m
1 (a2g

2m
1 + b2g

m
1 + c2) + d2 −

d1
E

)
.

Subcase 2.2.1. Let us consider d2 − d1/E 6= 0. Applying the Second Fundamental

Theorem to G and using (3.20), (3.6) we have

nT (r, g1) +O(1)(3.21)

= T (r,G) 6 N(r, 0;G− d2) +N(r,∞;G) +N(r, 0;G− d1/E) + S(r, g1)

6 N(r, 0; g1) +N(r, 0; a2g
2m
1 + b2g

m
1 + c2) +N(r,∞; g1)

+N(r, 0; f1) +N(r, 0; a1f
2m
1 + b1f

m
1 + c1) + S(r, g1)

6

(
2m+ 2 +

1

k + 1

)
T (r, g1) + S(r, g1),

a contradiction as n > 2m+ 3.

Subcase 2.2.2. Let d2 − d1/E = 0. Now

(3.22) fn−2m
1 (a1f

2m
1 + b1f

m
1 + c1) = gn−2m

1 (a3g
2m
1 + b3g

m
1 + c3),

where a3 = Ea2, b3 = Eb2 and c3 = Ec2 and b22 = 4a2c2 implies b
2
3 = 4a3c3.

Now from above we have

(a1f
n
1 − a3g

n
1 ) + (b1f

n−m
1 − b3g

n−m
1 ) + (c1f

n−2m − c3g
n−2m
1 ) = 0(3.23)

⇒ g2m1 (a1h
n − a3) + gm1 (b1h

n−m − b3) + (c1h
n−2m − c3) = 0,

where h = f1/g1.

Subcase 2.2.2.1. Let h be a non-constant meromorphic function and finally

from (3.23) we get

g2m1 +
b1h

n−m − b3
a1hn − a3

gm1 +
c1h

n−2m − c3
a1hn − a3

= 0.
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Using the facts b21 = 4a1c1 and b22 = 4a2c2, from above we get

(3.24)(
gm1 +

b1h
n−m − b3

2(a1hn − a3)

)2
=

(b1h
n−m − b3)

2 − 4(a1h
n − a3)(c1h

n−2m − c3)

4(a1hn − a3)2

=
hn−2m(4a1c3h

2m − 2b1b3h
m + 4a3c1)

4(a1hn − a3)2

=
hn−2mb21(4a1(c3/b

2
1)h

2m − 2b1(b3/b
2
1)h

m + 4a3c/b
2
1)

4(a1hn − a3)2

=
hn−2mb21((c3/c1)h

2m − 2(b3/b1)h
m + a3/a1)

4a21(h
n − (a3/a1))2

=
hn−2mb21c∗(h

m − b∗/c∗)
2

4a21(h
n − a∗)2

=
hn−2mc3(h

m − β)2

a1(hn − a∗)2
,

where a∗ = a3/a1, b∗ = b3/b1, c∗ = c3/c1 and b∗/c∗ = β.

Subcase 2.2.2.1.1. Suppose n is even. Assume n = 2r. From (3.24) we have

(
gm1 +

b1h
n−m − b3

2a1(hn − a∗)

)2
=

hn−2mc3(h
m − β)2

a1(hn − a∗)2
,

gm1 +
b1h

2r−m − b3
2a1(h2r − a∗)

= ±
( c3
a1

)1/2hr−m(hm − β)

h2r − a∗
,

i.e.,

(3.25) gm1 = −
b1h

2r−m − b3
2a1(h2r − a∗)

±
(c3/a1)

1/2hr−m(hm − β)

h2r − a∗

=
−(b1h

2r−m − b3)± 2a1(c3/a1)
1/2hr−m(hm − β)

2a1(h2r − a∗)
.

Now it can be seen that the numerator and denominator can have at most r +m

common factors. Therefore the denominator has at least r −m distinct zeros, say,

γ1, γ2, . . . , γr−m. Now using the Second Fundamental Theorem we have

(r −m− 2)T (r, h) 6

r−m∑

i=1

N(r, 0;h− γi) + S(r, h)

6
1

m(k + 1)

r−m∑

i=1

N(r, 0;h− γi) + S(r, h)

6
r −m

m(k + 1)
T (r, h) + S(r, h) 6

r −m

2
T (r, h) + S(r, h),

a contradiction.
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Subcase 2.2.2.1.2. Suppose n is odd. Again b21/(4a1c1) = 1 = b23/(4a3c3) and we

have

(3.26)
fn−2m
1

gn−2m
1

=
a3g

2m
1 + b3g

m
1 + c3

a1f2m
1 + b1fm

1 + c1
=

a3(g
m
1 + b3/2a3)

2

a1(fm
1 + b1/2a1)2

,

⇒ hn−2m = a∗
(gm1 + b3/2a3)

2

(fm
1 + b1/2a1)2

⇒ h = a∗
(gm1 + b3/2a3)

2

hn−2m−1(fm
1 + b1/2a1)2

.

Since n is odd, it follows that n− (2m+ 1) is even and we can have a meromorphic

function σ such that

h = a∗
(gm1 + b3/2a3)

2

hn−2m−1(fm
1 + b1/2a1)2

= σ2.

As f1, g1 and h are meromorphic, so also is σ. Putting h = σ2 in (3.24) we have

(
gm1 +

b1σ
2n−2m − b3

2a1(σ2n − a∗)

)2
=

σ2(n−2m)c3(σ
2m − β)2

a1(σ2n − a∗)2
.

So,

gm1 +
b1σ

2n−2m − b3
2a1(σ2n − a∗)

= ±
( c3
a1

)1/2σn−2m(σ2m − β)

σ2n − a∗
.(3.27)

From (3.27) we have

(3.28) gm1 = −
b1σ

2n−2m − b3
2a1(σ2n − a∗)

±
( c3
a1

)1/2σn−2m(σ2m − β)

σ2n − a∗
.

Now for all cases in (3.28), if the numerator −(b1σ
2n−2m − b3) ± 2(c3/a1)

1/2a1 ×

σn−2m(σ2m−β) and the denominator σ2n−a∗ have any common factor σ−x, then x

will be a zero of −(b1a∗− b3z
2m)± 2(c3/a1)

1/2a21z
n(z2m−β). Hence, the numerator

and denominator can have at most n+ 2m common factors. Hence, σ2n − a∗ has at

least 2n− (n + 2m) = n − 2m factors, say σ − µi, (i = 1, 2, . . . .n − 2m), which are

not factors of numerator. Again,

(n− 2m− 2)T (r, σ) 6

n−2m∑

i=1

N(r, µi;σ) + S(r, σ)

6
1

m(k + 1)

n−2m∑

i=1

N(r, µi;σ) + S(r, σ)

6
n− 2m

m(k + 1)
T (r, σ) + S(r, σ) 6

n− 2m

2
T (r, σ) + S(r, σ),

since σ is not rational, it implies a contradiction for n > 2m+ 4.

Case 2.2.2.2. If h is a constant, then we get f1 ≡ hg1. �
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