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Abstract. Let (Ω,F ,P) be a probability space, where F is countably generated, and X be
a Polish space. Let ϕ be a random dynamical system with time T on X. The skew product
flow {Θt, t ∈ T} induced by ϕ is a family of continuous operators acting on PrΩ(X), the set
of all probability measures on X×Ω with marginal P, which is a Polish space equipped with
the narrow topology. In this work, we introduce and study the notion of narrow recurrence
of the flow {Θt, t ∈ T} on PrΩ(X) and we give some results, which can be considered as an
initiation of applications of properties of topological dynamics on stochastic process theory
and random dynamical systems.
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1. Introduction

Let X be a complex Banach space. In the following, by an operator, we mean

a linear and continuous map acting on X .

A very central notion in topological dynamics that has a long story is that of

recurrence, which goes back to Poincaré (see [12]), and it refers to the existence of

points in the space for which parts of their orbits under a continuous map return

to themselves, in other words, a vector x ∈ X is called a recurrent vector for an

operator T acting on X if there exists a strictly increasing sequence (nk) of positive

integers such that

T nkx → x.

The purpose of this note is the study of the notion of recurrence, together with its

variations, in the context of topological dynamics. Some examples and characteri-
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zations of recurrence for special classes of operators have appeared in [6], [7], [11]

and a systematic study of this notion goes back to the works of Furstenberg [9], and

Gottschalk and Hedlund [10].

Instead of the norm topology, by taking density in the weak topology, we can con-

sider the notions of weak hypercyclicity, weak recurrence and weak orbits in general.

The study of weak orbits was began in 1996 by Van Neerven in [14]. Important

contribution to weak hypercyclicity is due to Bès, Chan and Sanders (see [3], [4],

[5], [13]). Moreover, the notion of weak recurrence was studied in [1] by Amouch et al.

In [15], [16], we studied the weak recurrence also known as narrow recurrence

of a new class of operators and semi groups, which are the Markov kernels and

transition functions, respectively, along with their characteristics. Our aim was to

utilize this concept to study the distributional stability of Markov chains on general

state spaces.

Now, throughout in the sequel, (Ω,F ,P) is a probability space, where F is assumed

countably generated, and X is a Polish space equipped with a complete metric d.

The σ-algebra of Borel sets of X is denoted by B. The product space X × Ω is

understood to be a measurable space with the product σ-algebra B⊗F , which is the

smallest σ-algebra on X × Ω with respect to which both the canonical projections

πX : X × Ω → X and πΩ : X × Ω → Ω are measurable. Let T be either N or R+

understood with their respective natural topologies (and Borel σ-algebras). The set

of all subsets of X is denoted by P(X), the set of all probability measures on X

is denoted by Pr(X) and the set of all probability measures on X × Ω with the

marginal P is denoted by PrP(X × Ω).

In this paper, following a similar approach as in the articles [15] and [16], we

study some properties of recurrence within the context of topological dynamics for

random dynamical systems. More precisely, the contribution of the paper is two-

fold. First, we examine recurrence within the framework of topological dynamics for

a novel class of operator families, namely the skew product flows induced by random

dynamical systems, and study their characteristics. Second, we exploit the concept

of recurrence to study the stability of random dynamical systems.

The paper is organized as follows. In Section 1, we give a summary of some

notions and results concerning random dynamical systems that we will need in the

next paragraphs. In Section 2, we introduce the notion of narrow recurrence for

random dynamical systems and provide a simple example. In Section 3, we give some

properties that characterize the narrow recurrence of random dynamical systems.

In particular, we characterize the narrow recurrence of random dynamical systems

in terms of the convergence of measures of random sets. We also present results

that characterize the narrow recurrence of random dynamical systems, based on the

existence of other topologies on PrΩ(X) that are equivalent to the narrow topology.
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2. The basic set-up

In this part, we give a summary of some notions and results that we will need in

the next paragraph. For a comprehensive exposition on this subject see [2] and [8].

Definition 1. Let v : T × Ω → Ω, (t, ω) 7→ vtω be a measurable map. We say

that v or (vt)t∈T is a flow of measure preserving transformations on (Ω,F ,P) if it

satisfies the following:

(1) vt preserves the probability measure P for any t ∈ T,

(2) vt+s = vt ◦ vs for all s, t ∈ T, and v0 = idΩ.

Definition 2 (Random dynamical system). Let (vt)t∈T be a flow of measure

preserving transformations on (Ω,F ,P). A random dynamical system with time T

on X over (Ω,F ,P, (vt)t∈T) is a measurable map

ϕ : T×X × Ω → X, (t, x, ω) 7→ ϕ(t, ω)x

with ϕ(0, ω) = idX , and for every s ∈ T there exists Ns ∈ F , P(Ns) = 0 such that

ϕ(t+ s, ω) = ϕ(t, vsω) ◦ ϕ(s, ω)

for all t ∈ T and for all ω ∈ NC
s .

R em a r k 1. A random dynamical system ϕ is said to be continuous if the map

ϕ(t, ω) : X → X, x 7→ ϕ(t, ω)x

is continuous for all t ∈ T and for all ω outside a P-nullset not depending on t.

R em a r k 2.

(1) We can relate any random dynamical system ϕ with a measurable map

Θ: T×X × Ω → X × Ω, (t, x, ω) 7→ (ϕ(t, ω)x, vtω).

(2) The family {Θt; t ∈ T} := {Θ(t, ·, ·); t ∈ T} is called the skew product flow

induced by ϕ, and satisfies Θt+s = Θt◦Θs for all t, s ∈ T and Θ0 = id on X×Ω.

(3) For every t ∈ T, the skew product map Θt acts on functions on X × Ω in the

usual way,

Θf((x, ω)) = f ◦Θt(x, ω) = f(ϕ(t, ω)x, vtω) for any function f on X × Ω.

(4) For every t ∈ T, the skew product map Θt acts also on measures on X × Ω by

the relationship

Θtµ(A) = µ(Θ−1
t (A)) ∀A ∈ B ⊗ F , ∀ t ∈ T.
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(5) The actions of Θt on measures and on functions are related by

∫

X×Ω

Θth dµ =

∫

X×Ω

hd(Θµ)

for all measures µ on B ⊗ F and for all measurable functions h : X × Ω → R

which are µ-integrable.

We recall the definition of a closed random set.

Definition 3 (Closed random set). A random set

A : Ω → P(X), ω 7→ A(ω)

is said to be closed, if A takes values in the closed subsets of X , and for any x ∈ X

the map ω 7→ d(x,A(ω)) is measurable.

R em a r k 3. A random set

U : Ω → P(X), ω 7→ U(ω)

is said to be an open random set if if its complement

U c : Ω → P(X), ω 7→ U c(ω)

is a closed random set.

We recall the definition of a random probability measure.

Definition 4 (Random measure). A random probability measure or Markov

kernel on X is a map

µ : B × Ω → [0, 1], (B,ω) 7→ µω(B)

satisfying

(1) for every B ∈ B, ω 7→ µω(B) is measurable,

(2) for P-almost every ω ∈ Ω, B 7→ µω(B) is a probability measure on X .

The measure µ is denoted by ω 7→ µω.

R em a r k 4. We identify two random measures ω 7→ µω and ω 7→ νω if µ = ν

P-a.s.; that is if µω = νω for P-almost all ω. We denote the set of all random measures

on B×X by

PrΩ(X) = {µ : B ×X → [0, 1] : ω 7→ µω random measure}

with two random measures identified if they coincide P-a.s.
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Proposition 1. Let ω 7→ µω be a random measure on X . Then:

⊲ For all measurable h : X × Ω → X with h bounded or nonnegative the map

ω 7→

∫

X

h(x, ω) dµω

is measurable.

⊲ The map

µ : A 7→

∫

Ω

∫

X

1A(x, ω) dµω dP(ω) with A ∈ B ⊗ F

defines a probability measure on X×Ω, which is the marginal of µ on Ω is P; that

is πΩµ = P.

⊲ For every probability measure µ on X × Ω with πΩµ = P, there exists a unique

P-a.s. random measure ω 7→ µω such that
∫

Ω

∫

X

h(x, ω) dµ(x, ω) =

∫

Ω

∫

X

h(x, ω) dµω dP(ω)

for every bounded measurable h : X × Ω → R.

R em a r k 5. Let Pr(X × Ω) the set of all probability measures on X × Ω, and

PrP(X×Ω) the set of all probability measures on X×Ω with the marginal P; that is,

PrP(X × Ω) = {µ ∈ Pr(X × Ω): πΩµ = P}.

The map

A 7→

∫

Ω

∫

X

1A(x, ω) dµω dP(ω) ∀A ∈ B ⊗ F

defines an isomorphism between PrΩ(X) and PrP(X×Ω). Henceforth we only speak

of the random measures.

We recall the definition of a random continuous function.

Definition 5 (Random continuous function). A random continuous function is

a function f : X × Ω → R such that:

(1) for all x ∈ X , the x-section ω 7→ f(x, ω) is measurable,

(2) for all ω ∈ Ω, the ω-section x 7→ f(x, ω) is continuous and bounded,

(3) ω 7→ sup{|f(x, ω)| : x ∈ X} is integrable with respect to P.

R em a r k 6 (See [2]).

(1) Two random continuous functions are identified if they coincide P-a.s.

(2) Every random continuous function is jointly measurable.

(4) The set of all random contiuous functions is a linear space denoted by CΩ(X).

(4) The map |·|∞ : f 7→
∫

Ω
sup
x∈X

|f(x, ω)| dP(ω) defines a norm on CΩ(X).
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In the following, for every µ ∈ PrΩ(X) and for every h ∈ CΩ, we use the notation:

µ(h) =

∫

Ω

∫

X

h(x, ω) dµω dP(ω) =

∫

Ω

∫

X

h(x, ω) dµ(x, ω).

Proposition 2 ([2]). For any random measure µ and f, g ∈ CΩ(X), we have:

|µ(f)− µ(g)| 6 |f − g|∞.

We finish basic results by the key results in this work.

Definition 6. The narrow topology is the coarsest topology on PrΩ(X) such that

µ 7→ µ(f)

is continuous for all f ∈ CΩ(X).

Theorem 1. Let ϕ be a continuous random dynamical system on X and

{Φt, t ∈ T} the skew product flow induced by ϕ. For any t ∈ T, Φt maps PrΩ(X) to

itself, and Φt is continuous on PrΩ(X) with respect to the narrow topology.

3. The narrow recurrence of random dynamical systems

In this section, we introduce the notion of narrow recurrence for random dynamical

systems.

Definition 7. Let ϕ be a random dynamical system on X and {Φt, t ∈ T}

the skew product flow induced by ϕ. The orbit of a random probability measure

µ ∈ PrΩ(X) under ϕ is defined as

Orb(ϕ, µ) := {Φtµ : t ∈ T}.

Definition 8. Let ϕ be a random dynamical system on X and {Φt, t ∈ T}

the skew product flow induced by ϕ. A random probability measure µ is said to

be a narrow recurrent probability measure of ϕ if there exists a strictly increasing

sequence (nk) of positive integers and a sequence of time points (tnk
) from T such that

Φtn
k
µ

N
−→
k→∞

µ.

We denote by N-Rec(ϕ) the set of all narrow recurrent random probability measures

for ϕ.
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R em a r k 7. Let ϕ be a random dynamical system on X and {Φt, t ∈ T} its

skew product on Ω × X . Suppose that ϕ admits an invariant probability measure

µ ∈ PrΩ(X), that is Φtµ = µ for all t ∈ T. Then µ is a narrow recurrent measure

of ϕ, which means that

Inv(ϕ) ⊂ N-Rec(ϕ),

where Inv(ϕ) is the set of all invariant probability measures under ϕ.

4. Characterization of the narrow recurrence

of random dynamical systems

In this section, we provide some properties that characterize the narrow recurrence

of random dynamical systems, which can be considered as extensions of the narrow

recurrence characterizations for Markov chains with discrete and continuous time

proven in [15] and [16], respectively, to random dynamical systems.

The following result is based on the Portmanteau theorem for random dynam-

ical systems, see [8], and provides useful conditions equivalent to the narrow re-

currence of random dynamical systems. In particular, it characterizes the narrow

recurrence of random dynamical systems in terms of the convergence of measures

of random sets.

Theorem 2. Let ϕ be a random dynamical system on X , {Φt, t ∈ T} the skew

product flow induced by ϕ and µ ∈ PrΩ(X). The following statements are equivalent:

(1) µ ∈ N-Rec(ϕ).

(2) There exists a strictly increasing sequence (nk) of positive integers such that

lim
k

Φtn
k
µ(F ) 6 µ(F ) for every closed random set F.

(3) There exists a strictly increasing sequence (nk) of positive integers such that

lim
k

Φtn
k
µ(U) > µ(U) for every open random set U.

P r o o f. (1) ⇒ (2): Suppose that µ ∈ W-Rec(ϕ), then there exists a strictly

increasing sequence (nk) of positive integers such that

Φtn
k
µ

N
−→
k→∞

µ.

Let C be a closed random set. For p ∈ N, we put

fp(x, ω) = 1−min{pd(x,C(ω)), 1}.
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Then fp ∈ CΩ(X), fp > 1C , and fp decreases monotonically to 1C with k → ∞. For

every fixed p,

lim
k

Φtn
k
µ(C) 6 limΦtn

k
µ(fp) = µ(fp),

hence

lim
k

Φtn
k
µ(C) 6 inf

p
µ(fp) = µ(C).

(2) ⇒ (3): A simple complementation argument proves this equivalence.

(3) ⇒ (1): Suppose that there exists a strictly increasing sequence (nk) of positive

integers such that

lim
k

Φtn
k
µ(U) > µ(U) for every open random set U.

It suffices to prove that lim
k

Φtn
k
µ(f) = µ(f) for every random continuous function f

with 0 6 f 6 1. We first establish

lim
k

Φtn
k
µ(f) 6 µ(f).

Fix m ∈ N and define Cp ⊂ X × Ω, 0 6 p 6 m by

Cp(ω) =
{

x ∈ X : f(x, ω) >
p

m

}

,

then Cp is a closed random set. We get from (3)

µ(f) >
1

n

m
∑

p=1

lim
k

Φtn
k
µ(Cp) > lim

k

1

m

m
∑

p=1

Φtn
k
µ(Cp) > lim

k
Φtn

k
µ(f)−

1

m
.

Since m is arbitrary we obtain

lim
k

Φtn
k
µ(f) = µ(f)

for every random continuous function f with 0 6 f 6 1. �

The following results are based on the existence of topologies on PrΩ(X) that are

equal to the narrow topology. Let f be a bounded function on X . The function f is

Lipschitz if

‖f‖L = sup
x 6=y

|f(x)− f(y)|

d(x, y)
< ∞.

We put ‖f‖BL = ‖f‖L + sup
x∈X

|f(x)|, and we define the Banach space BLΩ(X) of

random Lipschitz functions on X ,

BLΩ(X) := {f ∈ CΩ(X) : ω 7→ ‖f(·, ω)‖BL < C for some C P-a.s.}.
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Theorem 3. Let ϕ be a random dynamical system on X , {Φt, t ∈ T} the skew

product flow induced by ϕ and µ ∈ PrΩ(X). Then µ ∈ N-Rec(ϕ) if and only if there

exists a strictly increasing sequence (nk) of positive integers such that

Φtn
k
µ(g) −→

k→∞
µ(g)

for every g ∈ BLΩ(X) with 0 6 g 6 1 and ‖g(·, ω)‖BL 6 1 P-a.s.

P r o o f. Let T be the coarsest topology on PrΩ(X) such that µ 7→ µ(g), is

continuous for all g ∈ BLΩ(X) with 0 6 g 6 1 and ‖g(·, ω)‖BL 6 1 P-a.s. The topol-

ogy T and the narrow topology on PrΩ(X) are equal P-a.s., see [8], Proposition 4.9.

Then µ ∈ N-Rec(ϕ) if and only if there exists a strictly increasing sequence (nk) of

positive integers such that

Φtn
k
µ(g) −→

k→∞
µ(g)

for every g ∈ BLΩ(X) with 0 6 g 6 1 and ‖g(·, ω)‖BL 6 1 P-a.s. �

Corollary 1. Let ϕ be a random dynamical system on X , {Φt, t ∈ T} the skew

product flow induced by ϕ and µ ∈ PrΩ(X). Then µ ∈ N-Rec(ϕ) if and only if there

exists a strictly increasing sequence (nk) of positive integers such that

Φtn
k
µ(g) −→

k→∞
µ(g)

for every g ∈ BLΩ(X).

P r o o f. Since

{g ∈ BLΩ(X) : g > 0 and ‖g(·, ω)‖BL 6 1 P-a.s.} ⊂ BLΩ(X) ⊂ CΩ(X),

it follows that that the narrow topology on PrΩ(X) is generated by BLΩ(X), hence

µ ∈ N-Rec(ϕ) if and only if there exists a strictly increasing sequence (nk) of positive

integers such that

Φtn
k
µ(g) −→

k→∞
µ(g)

for every g ∈ BLΩ(X). �

Since the σ-algebra F is assumed countably generated, then there exists a count-

able algebra A = {An : n ∈ N} generating F . Hence we can define a metric ζ

on PrΩ(X) as

ζ(µ, ν) =
∑

n∈N

1

2n
sup

{
∫

An

(µω(g)−νω(g)) dP(ω) : g ∈ BL(X), 0 6 g 6 1, ‖g‖L 6 1

}

for any µ, ν ∈ PrΩ(X).
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Theorem 4. Let ϕ be a random dynamical system on X , and {Φt, t ∈ T} be the

skew product flow induced by ϕ and µ ∈ PrΩ(X). Then µ ∈ N-Rec(ϕ) if and only if

there exists a strictly increasing sequence (nk) of positive integers such that

lim
k

ζ(Φtn
k
µ, µ) = 0.

P r o o f. The topology on PrΩ(X) induced by ζ metrises the narrow topology, [8],

Theorem 4.16. Then µ ∈ N-Rec(ϕ) if and only if there exists a strictly increasing

sequence (nk) of positive integers such that:

lim
k

ζ(Φtn
k
µ, µ) = 0.

�

Theorem 5. Let ϕ be a random dynamical system on X , and {Φt, t ∈ T} the

skew product flow induced by ϕ and µ ∈ PrΩ(X). Assume that there exists a

strictly increasing sequence (nk) of positive integers such that for every f ∈ CΩ(X)

with P{ω ∈ Ω: 0 6 f(·, ω) 6 1} = 1, we have Φtn
k
µ(f) −→

k→∞
µ(f), then

µ ∈ N-Rec(ϕ).

P r o o f. Let T be the coarsest topology on PrΩ(X) such that µ 7→ µ(f) is

continuous for all f ∈ CΩ(X) with P{ω ∈ Ω: 0 6 f(·, ω) 6 1} = 1. We show that T

and the narrow topology on PrΩ(X) are equal P-a.s.

Pick f ∈ CΩ(X) with f > 0 P-a.s. and let ε > 0. Since ω 7→ sup
x∈X

f(x, ω) is

integrable, there exists N ∈ N such that
∫

FN

sup
x∈X

f(x, ω) dP(ω) <
ε

3
,

where FN =
{

ω ∈ Ω: sup
x∈X

f(x, ω) > N
}

. Thus

|f − f ∧N |∞ 6

∫

FN

sup
x∈X

f(x, ω) dP(ω) <
ε

3
,

where f ∧N = min{f,N}. Fix ν ∈ PrΩ(X), and put

U =
{

σ ∈ PrΩ(X) : |ν(f ∧N)− σ(f ∧N)| <
ε

3

}

=
{

σ ∈ PrΩ(X) :
∣

∣

∣

ν(f ∧N)

N
−

σ(f ∧N)

N

∣

∣

∣
<

ε

3N

}

.

Since

0 6
(f ∧N)

N
6 1,
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U is an open neighborhood of ν in the topology under consideration. We get for any

σ ∈ U ,

|ν(f)− σ(f)| 6 |ν(f)− ν(f ∧N)|+ |ν(f ∧N)− σ(f ∧N)|+ |σ(f)− σ(f ∧N)| < ε.

This holds for ν ∈ PrΩ(X) arbitrary. Consequently ν 7→ ν(f) is continuous for every

f ∈ CΩ(X) with f > 0. Finally, ν 7→ ν(f) = ν(f+) − ν(f−) for every f ∈ CΩ(X).

Hence T coincides with the narrow topology P-a.s. �

In the following, we consider any random measure µ ∈ PrΩ(X) as a random

variable µ : Ω → Pr(X) with values in the Polish space Pr(X), equipped with the

Borel σ-algebra of the narrow topology, see [8]. We choose a metric d on Pr(X) and

we define on PrΩ(X) the metric α:

α(µ, ν) = inf{ε > 0: P({ω ∈ Ω: d(µω , νω) > ε}) 6 ε} ∀µ, ν ∈ PrΩ(X).

Theorem 6. Let ϕ be a random dynamical system on X , {Φt, t ∈ T} be the skew

product flow induced by ϕ and µ ∈ PrΩ(X). Assume that there exists a strictly

increasing sequence (nk) of positive integers such that lim
k
α(Φtn

k
µ, µ) = 0, then

µ ∈ N-Rec(ϕ).

P r o o f. The topology induced by the metric α is stronger than the narrow

topology on PrΩ(X), see [8], Propostion 5.4. Then, if there exists a strictly increasing

sequence (nk) of positive integers such that

lim
k

α(Φtn
k
µ, µ) = 0, then Φtn

k
µ

N
−→
k→∞

µ,

hence µ ∈ N-Rec(ϕ). �
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