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SBÍRKY MATURITNÍCH ÚLOH Z MATEMATIKY

Z LET 1879–1934

Dag Hrubý

Sbírky maturitních úloh z matematiky představují užitečný di-
daktický materiál pro učitele matematiky na středních školách.
Podávají svědectví o výuce matematiky v daném období, ve kte-
rém byly vydány. Podnětem k napsání tohoto článku byly sbírky
Josefa Dvořáka z let 1928–1934, které jsem získal v roce 2022 da-
rem. Lze předpokládat, že druhé vydání Dvořákovy sbírky souvisí
se změnou učebních plánů gymnázií a reálek, které byly vydány
v roce 1933 v rámci tzv. Dérerovy reformy.1 Napadlo mne zjistit,
které podobné sbírky byly vydány před rokem 1934. Pro potřeby
tohoto článku jsem vybral pouze sbírky, které mají ve svém názvu
v jistém tvaru slovo maturitní. Podařilo se mi shromáždit násle-
dující sbírky:

Wallentin, F. (1888). Maturitätsfragen aus der Mathematik
zum Gebrauche für die obersten Klassen der Gymnasien und
Realschulen. Gerold’s Sohn.

Sommer, J., & Hübner, V. (1905). Maturitní otázky z mathe-
matiky. Jednota českých mathematiků.

Tomší, F. (1927). Sbírka maturitních příkladů z matematiky
a deskriptivní geometrie. Nákladem vlastním.

Kniha Františka Tomší vyšla ve druhém upraveném vydání:
Tomší, F. (1930). Sbírka maturitních příkladů z matematiky
a deskriptivní geometrie. Jednota československých matema-
tiků a fysiků.

1Ivan Dérer byl v létech 1929–1934 ministrem školství a národní osvěty.
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Dvořák, J. (1928). Maturitní otázky z matematiky. Česká gra-
fické unie a. s.

Kniha Josefa Dvořáka vyšla ve druhém přepracovaném vydání
ve dvou dílech:
Dvořák, J. (1932). Maturitní otázky z matematiky. Díl I. Ná-
kladem vlastním.
Dvořák, J. (1934). Maturitní otázky z matematiky. Díl II. Ná-
kladem vlastním.

Bezloja, A. (1934). Sbírka maturitních úkolů z matematiky pro
střední školy. Dědictví Havlíčkovo.

Nejslavnější sbírkou je sbírka Franze Wallentina, která poprvé
vyšla v roce 1879. Sbírku je možné stále zakoupit např. na Ama-
zonu. Třetí vydání sbírky z roku 1888 má rozsah 200 stran a je
rozděleno do dvou kapitol s názvy Aritmetika a Geometrie. Ka-
pitola Aritmetika obsahuje následující partie matematiky:

rovnice prvního stupně s jednou neznámou, rovnice prvního stupně s více ne-
známými, rovnice druhého stupně s jednou neznámou, rovnice druhého stupně
s více neznámými, neurčité rovnice, aritmetická posloupnost, geometrická po-
sloupnost, výpočet úroků a důchodů, kombinatorika, binomická věta, odmoc-
niny, logaritmy, řetězové zlomky.

Kapitola Geometrie se skládá z podkapitol: Planimetrie, Trigo-
nometrie, Stereometrie, Analytická geometrie, které obsahují tyto
partie matematiky:

konstrukční úlohy, pravidelné mnohoúhelníky, výpočetní úlohy z planimetrie,
goniometrie a goniometrické rovnice, pravoúhlý trojúhelník, obecný trojúhel-
ník, čtyřúhelník, sférická trigonometrie, hranol, válec, jehlan, kužel, pravi-
delná tělesa, přímka, kružnice, elipsa, parabola, hyperbola.

Sbírka Jana Sommera, profesora gymnázia v Praze III a Vác-
lava Hübnera, profesora reálky na Královských Vinohradech, má
rozsah 130 stran a obsahuje 1 114 úloh.2 Sbírka je rozdělena do
dvou kapitol: Algebra a Geometrie. Kapitola Algebra má tento
obsah:
2V době vydání této sbírky byly Královské Vinohrady čtvrtým největším

samostatným městem na území České republiky. K Praze byly připojeny
v roce 1922.
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rovnice prvního stupně, rovnice druhého stupně o jedné neznámé, rovnice
vyšší o jedné neznámé, rovnice druhého stupně o dvou neznámých, neurčité
rovnice prvního stupně o dvou neznámých, řady aritmetické, řady geomet-
rické, složené úrokování, skupiny, binomická poučka, pravděpodobnost.

Kapitola Geometrie je členěna následovně:

planimetrie, stereometrie, úlohy a rovnice goniometrické, trigonometrie, sfé-
rická geometrie, konstruování algebraických výrazů, algebraické řešení geo-
metrických úloh strojných, analytická geometrie.

Na závěr této sbírky je uvedeno upozornění, ve kterém je mimo
jiné zmíněno, že podle ministerských pokynů pro gymnázia se do-
poručuje k písemné maturitní zkoušce jedna úloha z aritmetiky,
druhá úloha z trigonometrie, třetí úloha ze stereometrie a čtvrtá
úloha z analytické geometrie.

Sbírka Františka Tomší, profesora reálky v Kutné Hoře, má
rozsah 90 stran a obsahuje 357 úloh z matematiky a 220 úloh
z deskriptivní geometrie. Úlohy z matematiky jsou rozděleny do
následujících kapitol: Algebra, Planimetrie, Stereometrie, Trigo-
nometrie rovinná, Trigonometrie sférická, Analytická geometrie.
V kapitole Algebra je zařazeno také 16 úloh z infinitezimálního
počtu. Druhé vydání sbírky obsahuje navíc kapitolu Základy vyšší
matematiky.

Sbírka Josefa Dvořáka, profesora reálky v Písku, rozsahem
392 stran, obsahuje ve svém prvním vydání 480 řešených příkladů.
Je členěna do následujících kapitol: Rovnice, Řady, Složité úroko-
vání, Kombinatorika, Počet pravděpodobnosti, Planimetrie, Ste-
reometrie, Trigonometrie rovinná, Trigonometrie sférická, Analy-
tická geometrie, Začátky počtu infinitezimálního. V kapitole Řady
jsou vedle řad zařazeny také aritmetická a geometrická posloup-
nost. Kapitola Rovnice obsahuje rovnice algebraické, rovnice ira-
cionální, rovnice logaritmické a exponenciální a rovnice gonio-
metrické. Pravděpodobnost je rozdělena na matematickou prav-
děpodobnost, pravděpodobnost v geometrii, matematickou naději
a pravděpodobnost a posteriori. Druhé vydání sbírky obsahuje
navíc historické a metodické poznámky.
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Alois Bezloja, ředitel Státního československého ženského
učitelského ústavu v Brně, je autorem sbírky, která obsahuje
565 úloh. Jsou zde úlohy z aritmetiky (190 úloh), úlohy geomet-
rie (337 úloh) a úlohy zařazené do tzv. dodatku, který obsahuje
38 úloh z pojišťovací aritmetiky, sférické trigonometrie a infinite-
zimálního počtu.

Všechny uvedené sbírky jsou k dispozici v Pedagogické kni-
hovně J. A. Komenského v Praze, Jeruzalémská 957/12. Z uve-
dených sbírek jsem vybral úlohy, které mne zaujaly. Úlohy jsem
řešil podle vlastního uvážení, a tak je velmi pravděpodobné, že
existují jejich elegantnější řešení. Pokud najdete jiné řešení, které
Vám udělá radost, tak mi dejte vědět na adresu hruby@gymjev.cz.

Úloha 1 (Wallentin, 1888, s. 31). Zlomek 674
385 je rozložen na tři

částečné zlomky tak, že součet jejich čitatelů je roven cifernému
součtu jejich jmenovatelů.3

Řešení. Protože platí 385 = 5 ·7 ·11, můžeme požadovaný rozklad
napsat ve tvaru

674

385
=

x

5
+

y

7
+

z

11
. (1)

Podle zadání je součet čitatelů x + y + z roven cifernému součtu
jmenovatelů 5 + 7 + 1 + 1. To znamená, že je

x+ y + z = 14

z = 14− x− y.

Po dosazení do rovnice (1) dostáváme

674

385
=

x

5
+

y

7
+

14− x− y

11
=

42x+ 20y + 490

385
.

3Der Bruch 674
385
ist in drei Partialbrüche zu zerlegen, so dass die Summe der

Zähler gleich ist der Summe der Ziffern, aus denen die drei Nenner bestehen.
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Pro čitatele tohoto zlomku platí

42x+ 20y + 490 = 674

42x+ 20y = 184

21x+ 10y = 92

10y = 92− 21x.

Číslo 92− 21x je dělitelné 10. To je možné pouze v případě, že je
x = 2. Potom je 10y = 50, a tedy y = 5 a z = 7. Řešením úlohy
je rozklad 674

385 = 2
5 + 5

7 + 7
11 .

Úloha 2 (Wallentin, 1888, s. 109). Obvod kruhu s poloměrem r
je rozdělen na čtyři části a, b, c, d tak, že pro jejich poměry platí
a : b = 1 : 5, a : c = 2 : 3, d : c = 5 : 2. Vypočtěte obsah
tětivového čtyřúhelníku, který je těmito částmi vymezen.4

Řešení.

Obr. 1: Tětivový čtyřúhelník

Z daných poměrů sestavíme postupný poměr a : b : c : d =
= 4 : 20 : 6 : 15. Úhlu 360◦ odpovídá 45 dílů, jednomu dílu
8◦. Označíme-li S střed kružnice opsané tětivovému čtyřúhelníku
ABCD a úhly α = |∠ASB|, β = |∠BSC|, γ = |∠CSD|, δ =
= |∠DSA| (obr. 1), pak pro obsah daného čtyřúhelníku platí

S =
1

2
r2(sinα+ sinβ + sin γ + sin δ),

4Die Peripherie eines Kreises mit dem radius r ist so in vier Theile a, b, c
und d getheilt, dass sich a : b = 1 : 5, a : c = 2 : 3, d : c = 5 : 2 verhalten. Der
Fläscheninhalt des durch diese Theilungspunkte bestimmten Sehnenviereckes
soll berechnet werden.
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kde r je poloměr kružnice čtyřúhelníku opsané. Z poměrů a : b : c :
: d = 4 : 20 : 6 : 15 dostaneme následující velikosti úhlů: α =
= 32◦, β = 160◦, γ = 48◦, δ = 120◦. Po dosazení do vzorce pro
obsah dostáváme

S =
1

2
r2(sin 32◦ + sin 160◦ + sin 48◦ + sin 120◦)

S =
1

2
r2(sin 32◦ + sin 48◦ + sin 160◦ + sin 120◦)

S =
1

2
r2(2 sin 40◦ cos 8◦ + 2 sin 140◦ cos 20◦)

S = r2(sin 40◦ cos 8◦ + sin 40◦ cos 20◦)

S = r2 sin 40◦ cos 14◦ cos 6◦.

Úloha 3 (Sommer & Hübner, 1905, s. 9). Ve dvou soustavách
logarithmických, které mají základy kladné a celé, jest:

logb a− loga b =
8

3
(2)

ab = 16. (3)

Jest určiti základy a, b.

Řešení. Protože je logb a = log a
log b a tedy také loga b =

log b
log a , můžeme

soustavu napsat ve tvaru

log a

log b
− log b

log a
=

8

3
(4)

log a+ log b = log 16. (5)

Úpravou rovnice (4) dostaneme

3 log2 a−8 log a log b−3 log2 b = (3 log a+log b)(log a−3 log b) = 0.

Platí log a = 3 log b nebo log a = − 1
3 log b. Odtud plyne a = b3

nebo a = b−
1
3 . Po dosazení do rovnice (2) dostáváme b4 = 16 nebo

b
2
3 = 16, tedy b = 2 nebo b = 64. Odpovídající hodnoty pro a jsou

a = 8, a = 1
4 . Vzhledem k zadání úlohy vyhovují hodnoty a = 8

a b = 2.
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Úloha 4 (Sommer & Hübner, 1905, s. 44). Jaký jest trojúhelník
v němž tg α

2 = 2
5 , tg

β
2 = 3

7?

Řešení. Platí, že tg α
2 =

√
1−cosα
1+cosα = 2

5 a tg β
2 =

√
1−cos β
1+cos β = 3

7 .

Po umocnění obdržíme

1− cosα

1 + cosα
=

4

25
a

1− cosβ

1 + cosβ
=

9

49
.

Odtud již plyne cosα = 21
29 a cosβ = 20

29 . Nyní se zaměříme na čísla
20, 21, 29. Pokud odhalíme, že je 202+212 = 292, tak máme úlohu
vyřešenou. Hledaný trojúhelník je pravoúhlý s přeponou délky 29
a odvěsnami délek 20 a 21.

Úloha 5 (Tomší, 1930, s. 15). Určiti obsah lichoběžníku ze zná-
mých stran a, b, c, d.

Řešení. Obsah S lichoběžníku je rovem součtu obsahů kosodélníku
AECD a trojúhelníku EBC (obr. 2). Pro obsah kosodélníku platí
SAECD = cv, kde v je výška lichoběžníku. Tuto výšku určíme ze
vzorce S =

(
a+c
2

)
v pro obsah lichoběžníku. Je tedy v = 2S

a+c .
Obsah trojúhelníku EBC určíme pomocí Hérónova vzorce. Pro
obvod 2s tohoto trojúhelníku platí 2s = a − c + b + d, resp. s =
= a−c+b+d

2 . Po dosazení do Hérónova vzorce dostaneme

SEBC =
√
s(s− a+ c)(s− b)(s− d)

SEBC =
√(

a−c+b+d
2

) (
b+c+d−a

2

) (
a−c−b+d

2

) (
a−c+b−d

2

)
SAECD = cv =

2Sc

a+ c
.

Obr. 2: Lichoběžník ABCD
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Pro obsah lichoběžníku platí S = SAECD +SEBC = 2Sc
a+c +SEBC .

Je tedy S − 2Sc
a+c = SEBC a S · a−c

a+c = SEBC a S = a+c
a−cSEBC . Po

dosazení za SEBC obdržíme výsledný vzorec

S =
1

4

(
a + c

a − c

)√
(a − c + b + d)(b + c + d − a)(a − c − b + d)(a − c + b − d).

Úloha 6 (Tomší, 1930, s. 48). Ohniskem paraboly y2 = 2px
vedena sečna rovnoběžná s osou y. Vepsati takto vzniklé úseči
největší pravoúhelník, jehož dva vrcholy leží na sečně a dva na
parabole.

Řešení.

Obr. 3: Parabola
y2 = 2px

Označíme-li x-ovou souřadnici průsečíku přím-
ky AD s osou x jako x, pak bude |AB| = p

2 − x
a |AD| = 2

√
2px (obr. 3). Pro obsah pravoúhel-

níku dostáváme

S =
(p
2
− x
)
2
√
2px =

√
2p3x− 8p2x2 + 8px3.

Snadno můžeme odhadnout, že minimální hod-
notu má funkce S = S(x) v bodech x = 0
a x = p

2 . Maximum určíme pomocí první de-
rivace

dS

dx
=

p3 − 8p2x+ 12px2√
2p3x− 8p2x2 + 8px3

.

Nulové body první derivace jsou kořeny rovnice 12px2 − 8px2 +
+ p3 = p(6x− p)(2x− p) = 0. Snadno nahlédneme, že maximum
je v bodě x = p

6 .

Úloha 7 (Dvořák, 1932, s. 20). Jest stanoviti racionální kořeny
soustavy rovnic.

x2 + xy + y2 = 7 (6)

x+ x2y2 + y = 7. (7)

Řešení. Proti roku 1932 máme výhodu, že si pomocí GeoGe-
bry můžeme rychle ukázat geometrickou interpretaci dané úlohy
(obr. 4).
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Obr. 4: Grafické řešení úlohy 7

Nyní ihned vidíme, že úloha má 6 řešení. Snadno ověříme, že pod-
mínkám úlohy vyhovují dvojice (1; 2), (2; 1), (1;−3), (−3; 1). Zbý-
vající dvojice nejsou dvojice racionálních čísel. Tyto úvahy pod-
poříme algebraickým řešením dané soustavy. Zvolíme-li substituci
x + y = u, xy = v, pak je u2 = (x + y)2 = x2 + 2xy + y2 = x2 +
+ y2 + 2v. Po dosazení do rovnic (6), (7) obdržíme soustavu

u2 − v = 7 (8)

u+ v2 = 7. (9)

Odečteme-li druhou rovnici od prvé, dostaneme rovnici

u2 − v2 − v − u = 0

(u+ v)(u− v)− (u+ v) = 0

(u+ v)(u− v − 1) = 0.

Z poslední rovnice plyne u+ v = 0 nebo u− v− 1 = 0. V případě
u = −v dostaneme po dosazení do rovnice (8) nebo (9) rovnici
u2 + u − 7 = 0, která ale nemá racionální kořeny. Zbývá tedy
možnost v = u−1. Po dosazení do rovnice (8) nebo (9) dostaneme
rovnici u2 − u− 6 = (u− 3)(u+2) = 0. Je tedy u = 3, v = 2 nebo
u = −2, v = −3. V případě u = 3, v = 2 dostáváme soustavu

x+ y = 3

xy = 2.
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Řešením této soustavy jsou dvojice (2; 1), (1; 2). V případě u =
= −2, v = −3 dostáváme soustavu

x+ y = −2

xy = −3.

Řešením této soustavy jsou dvojice (−3; 1), (1;−3).

Poznámka. Není těžké odhadnout, že osy elipsy x2 + xy+ y2 = 7
jsou přímky y = x a y = −x a můžeme tak určit souřadnice
vrcholů elipsy. Po dosazení do rovnice elipsy dostáváme tyto sou-
řadnice

(
√
7;−

√
7), (−

√
7;
√
7),

(√
7

3
;

√
7

3

)
,

(
−
√

7

3
;−
√

7

3

)
.

Pro poloosy pak platí a =
√
14, b =

√
14
3 . Protože střed elipsy leží

v počátku soustavy souřadnic, můžeme říci, že elipsa x2 + xy +
+ y2 = 7 vznikla z elipsy x2 + 3y2 = 14 jejím otočením o úhel
φ = 3

4π. Příslušná transformace je dána rovnicemi

x′ = x cosφ+ y sinφ = x cos
3

4
π + y sin

3

4
π = −x

√
2

2
+ y

√
2

2

y′ = −x sinφ+ y cosφ = −x sin
3

4
π + y cos

3

4
π = −x

√
2

2
− y

√
2

2
.

V soustavě souřadnic Ox′,y′ má elipsa x2 + xy + y2 = 7 rovnici
x′2

a2 + y′2

b2 = 1. Po dosazení za x′ a y′ postupně dostáváme

(x− y)2

14
+

(x+ y)2

14
3

= 2

(x− y)2 + 3(x+ y)2 = 28

x2 + xy + y2 = 7.

Maturitní zkoušky na gymnáziích byly v Rakousko-Uhersku
zavedeny v roce 1849 v rámci Bonitz–Exnerovy reformy. K jejich
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výrazné změně došlo v roce 1908, kdy se uskutečnila tzv. Marche-
tova reforma.5 Jedním z výsledků Marchetovy reformy je zavedení
pojmu funkce a základů infinitezimálního počtu do učebních os-
nov matematiky na gymnáziích a reálkách. Sbírky maturitních
úloh z matematiky, které byly vydány před rokem 1908, úlohy
z matematické analýzy neobsahují. Z rozboru zde uvedených sbí-
rek maturitních úloh z matematiky plyne, že obsahují v průměru
náročnější úlohy v porovnání se současným stavem. Srovnávat ná-
ročnost výuky matematiky na gymnáziích v první polovině dva-
cátého století (přesněji do roku 1939) se současnou výukou ma-
tematiky je obtížné, protože probíhala za zcela jiných podmínek.
V této souvislosti doporučuji článek Petra Vopěnky Memorandum
o škole a matematice.6
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