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SBIRKY MATURITNICH ULOH Z MATEMATIKY

Z LET 1879-1934

Dac HRUBY

Sbirky maturitnich dloh z matematiky pfedstavuji uziteény di-
dakticky materidl pro ucitele matematiky na stiednich skolach.
Podavaji svédectvi o vyuce matematiky v daném obdobi, ve kte-
rém byly vydany. Podnétem k napsani tohoto ¢lanku byly sbirky
Josefa Dvotaka z let 1928-1934, které jsem ziskal v roce 2022 da-
rem. Lze predpokladat, ze druhé vydani Dvorakovy sbirky souvisi
se zménou ucebnich plant gymnazii a realek, které byly vydany
v roce 1933 v ramci tzv. Dérerovy reformy.! Napadlo mne zjistit,
které podobné sbirky byly vydany pred rokem 1934. Pro potieby
tohoto ¢lanku jsem vybral pouze sbirky, které maji ve svém nazvu
v jistém tvaru slovo maturitni. Podarilo se mi shromazdit nasle-
dujici sbirky:

Wallentin, F. (1888). Maturititsfragen aus der Mathematik
zum Gebrauche fiir die obersten Klassen der Gymnasien und
Realschulen. Gerold’s Sohn.

Sommer, J., & Hiibner, V. (1905). Maturitni otdzky z mathe-
matiky. Jednota Ceskych mathematikt.

Tomsi, F. (1927). Sbirka maturitnich ptikladi z matematiky
a deskriptivni geometrie. Nakladem vlastnim.

Kniha Frantiska Tomsi vysla ve druhém upraveném vydani:
Tomsi, F. (1930). Sbirka maturitnich pfikladi z matematiky
a deskriptivni geometrie. Jednota Ceskoslovenskych matema-
tikt a fysiku.

Hvan Dérer byl v létech 1929-1934 ministrem $kolstvi a narodni osvéty.
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Dvotak, J. (1928). Maturitni otdzky z matematiky. Ceska gra-
fické unie a. s.

Kniha Josefa Dvoraka vysla ve druhém prepracovaném vydani
ve dvou dilech:

Dvorak, J. (1932). Maturitni otdzky z matematiky. Dil 1. N&-
kladem vlastnim.

Dvorak, J. (1934). Maturitni otdzky z matematiky. Dil II. N&-
kladem vlastnim.

Bezloja, A. (1934). Sbirka maturitnich ukoli z matematiky pro
stredni skoly. Dédictvi Havlickovo.

Nejslavnéjsi sbirkou je sbirka Franze Wallentina, ktera poprvé
vy$la v roce 1879. Sbirku je mozné stale zakoupit napt. na Ama-
zonu. TTetl vydani sbirky z roku 1888 méa rozsah 200 stran a je
rozdéleno do dvou kapitol s nazvy Aritmetika a Geometrie. Ka-
pitola Aritmetika obsahuje nasledujici partie matematiky:
rovnice prvniho stupné s jednou neznédmou, rovnice prvniho stupné s vice ne-
znamymi, rovnice druhého stupné s jednou neznadmou, rovnice druhého stupné
s vice neznamymi, neurcité rovnice, aritmetickd posloupnost, geometricka po-

sloupnost, vypocet aroku a dichodt, kombinatorika, binomicka véta, odmoc-
niny, logaritmy, retézové zlomky.

Kapitola Geometrie se sklada z podkapitol: Planimetrie, Trigo-
nometrie, Stereometrie, Analytickd geometrie, které obsahuji tyto
partie matematiky:

konstrukéni ulohy, pravidelné mnohotuhelniky, vypocetni tlohy z planimetrie,
goniometrie a goniometrické rovnice, pravouhly trojuhelnik, obecny trojuhel-
nik, ¢tyfuhelnik, sféricka trigonometrie, hranol, vélec, jehlan, kuzel, pravi-
delné télesa, primka, kruznice, elipsa, parabola, hyperbola.

Sbirka Jana Sommera, profesora gymnézia v Praze III a Véc-
lava Hiibnera, profesora realky na Kralovskych Vinohradech, méa
rozsah 130 stran a obsahuje 1114 tloh.? Shirka je rozdélena do
dvou kapitol: Algebra a Geometrie. Kapitola Algebra ma tento
obsah:

2V dobé vydani této sbirky byly Kralovské Vinohrady ¢étvrtym nejvétsim
samostatnym méstem na tzemi Ceské republiky. K Praze byly pfipojeny
v roce 1922.
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rovnice prvniho stupné, rovnice druhého stupné o jedné neznamé, rovnice
vys$i o jedné neznamé, rovnice druhého stupné o dvou neznamych, neurcité
rovnice prvniho stupné o dvou neznamgych, fady aritmetické, fady geomet-
rické, slozené tirokovani, skupiny, binomickad poucka, pravdépodobnost.

Kapitola Geometrie je ¢lenéna nasledovneé:

planimetrie, stereometrie, Glohy a rovnice goniometrické, trigonometrie, sfé-
ricka geometrie, konstruovani algebraickych vyrazi, algebraické reseni geo-
metrickych aloh strojnych, analytickd geometrie.

Na zavér této sbirky je uvedeno upozornéni, ve kterém je mimo
jiné zminéno, Ze podle ministerskych pokynt pro gymnéazia se do-
porucuje k pisemné maturitni zkousce jedna tloha z aritmetiky,
druhé tdloha z trigonometrie, tieti iloha ze stereometrie a ctvrta
tloha z analytické geometrie.

Sbirka Frantiska Tomsi, profesora redlky v Kutné Hofe, ma
rozsah 90 stran a obsahuje 357 tloh z matematiky a 220 tloh
z deskriptivni geometrie. Ulohy z matematiky jsou rozdéleny do
nasledujicich kapitol: Algebra, Planimetrie, Stereometrie, Trigo-
nometrie rovinnd, Trigonometrie sférickd, Analytickd geometrie.
V kapitole Algebra je zarazeno také 16 tloh z infinitezimalniho
poctu. Druhé vydani sbirky obsahuje navic kapitolu Zdklady vyssi
matematiky.

Sbirka Josefa Dvoraka, profesora realky v Pisku, rozsahem
392 stran, obsahuje ve svém prvnim vydani 480 fesenych prikladu.
Je ¢lenéna do nasledujicich kapitol: Rovnice, Rady, SloZité iroko-
vdni, Kombinatorika, Pocet pravdépodobnosti, Planimetrie, Ste-
reometrie, Trigonometrie rovinnd, Trigonometrie sférickd, Analy-
tickd geometrie, Zacdtky poctu infinitezimdlniho. V kapitole Rady
jsou vedle fad zarazeny také aritmeticka a geometricka posloup-
nost. Kapitola Rowvnice obsahuje rovnice algebraické, rovnice ira-
cionalni, rovnice logaritmické a exponencialni a rovnice gonio-
metrické. Pravdépodobnost je rozdélena na matematickou prav-
dépodobnost, pravdépodobnost v geometrii, matematickou nadéji
a pravdépodobnost a posteriori. Druhé vydani sbirky obsahuje
navic historické a metodické poznamky.
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Alois Bezloja, feditel Statniho dceskoslovenského Zenského
ulitelského tstavu v Brné, je autorem sbirky, ktera obsahuje
565 tloh. Jsou zde ulohy z aritmetiky (190 tloh), tlohy geomet-
rie (337 tloh) a tlohy zafazené do tzv. dodatku, ktery obsahuje
38 tloh z pojistovaci aritmetiky, sférické trigonometrie a infinite-
zimalniho poctu.

Vsechny uvedené sbirky jsou k dispozici v Pedagogické kni-
hovné J. A. Komenského v Praze, Jeruzalémskéa 957/12. Z uve-
dengch sbirek jsem vybral tilohy, které mne zaujaly. Ulohy jsem
tesil podle vlastniho uvazeni, a tak je velmi pravdépodobné, ze
existuji jejich elegantnéjsi feseni. Pokud najdete jiné feSeni, které
Vam udéla radost, tak mi dejte védét na adresu hruby@gymjev.cz.

Uloha 1 (Wallentin, 1888, s. 31). Zlomek % je rozloZen na tii
Castecné zlomky tak, ze soucet jejich citateli je roven cifernému

soudtu jejich jmenovatelt.?

Resent. ProtoZe plati 385 = 5-7-11, méZeme pozadovany rozklad
napsat ve tvaru

674 x

Yy z
%5_5+7+1r (1)

Podle zadani je soucet c¢itateld x 4+ y + z roven cifernému souctu
jmenovateli 5 4+ 7+ 1 + 1. To znameni, ze je

r+y+z=14
z=14—x—y.

Po dosazeni do rovnice (1) dostéavame

674 «x

64 _z 4—z—y 42z + 20y +490
385 5 -

11 385

N
+

3Der Bruch % ist in drei Partialbriiche zu zerlegen, so dass die Summe der

Zahler gleich ist der Summe der Ziffern, aus denen die drei Nenner bestehen.
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Pro citatele tohoto zlomku plati

42z + 20y + 490 = 674
42z + 20y = 184
21z + 10y = 92
10y = 92 — 21z.
Cislo 92 — 21z je délitelné 10. To je moZné pouze v piipadé, Ze je
x = 2. Potom je 10y = 50, a tedy y = 5 a 2 = 7. ReSenim tlohy
je rozklad % = % + % + 1—71

Uloha 2 (Wallentin, 1888, s. 109). Obvod kruhu s polomérem r
je rozdélen na Ctyfti ¢asti a, b, c,d tak, ze pro jejich poméry plati
a:b=1:5,a:c=2:3,d:c=25:2 Vypoctéte obsah
tétivového ¢tyithelniku, ktery je témito éastmi vymezen.*

Resend.

Obr. 1: Tétivovy ¢tyfuhelnik
7 danych pomeért sestavime postupny pomér a : b : c: d =
=4 :20 : 6 : 15. Uhlu 360° odpovida 45 dilii, jednomu dilu
8°. Oznacime-li S stied kruznice opsané tétivovému ctytthelniku
ABCD a Ghly a = [LASB|, 8 = |[£BSC|, v = |£CSD|, ¢ =
= |£DSA| (obr. 1), pak pro obsah daného ¢tyfuhelniku plati

1
S = §T2(Si1'104 + sin 8 + siny + sin d),

4Die Peripherie eines Kreises mit dem radius r ist so in vier Theile a,b, ¢
und d getheilt, dasssicha:b=1:5,a:c=2:3,d:c=>5:2 verhalten. Der
Flidscheninhalt des durch diese Theilungspunkte bestimmten Sehnenviereckes
soll berechnet werden.



222 DaG HRUBY

kde r je polomér kruznice ¢tyitahelniku opsané. Z poméria : b: c:
:d=4:20:6 : 15 dostaneme néasledujici velikosti uhli: a =
= 32°, B = 160°, v = 48°, 6 = 120°. Po dosazeni do vzorce pro
obsah dostavame

1

S = 5r2(sin 32° + sin 160° + sin 48° + sin 120°)
1

S = 5r2(sin 32° + sin 48° + sin 160° + sin 120°)

1
S = 57”2 (2sin40° cos 8° + 2sin 140° cos 20°)
S = r?(sin 40° cos 8° + sin 40° cos 20°)

S = 72 8in 40° cos 14° cos 6°.

Uloha 3 (Sommer & Hiibner, 1905, s. 9). Ve dvou soustavich
logarithmickych, které maji zaklady kladné a celé, jest:

log, a —log, b= % (2)
ab = 16. (3)

Jest urciti zéklady a, b.

Reseni. Protoze je log, a = llzz‘; a tedy také log, b = llggz, miZeme
soustavu napsat ve tvaru
loga logb 8
-2 @
logb loga 3
log a + log b = log 16. (5)

Upravou rovnice (4) dostaneme
3log® a—8log alogb—3log® b = (3log a+logb)(loga—3logh) = 0.

Plati loga = 3logb nebo loga = —%log b. Odtud plyne a = b3
nebo a = b~ 3. Po dosazeni do rovnice (2) dostavame b* = 16 nebo
b3 = 16, tedy b = 2 nebo b = 64. Odpovidajici hodnoty pro a jsou
a=28,a= i. Vzhledem k zadani tlohy vyhovuji hodnoty a = 8
ab=2.
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Uloha 4 (Sommer & Hiibner, 1905, s. 44). Jaky jest trojihelnik
v némz tg 5 = %, tgs = %?

9, & pm i t oy a l—cosa __ 2 B8 _ l—cosf8 __ 3
Reseni. Plati, Ze tg 5 = \/17coca = 5 2185 = \/T7c0ss = 7
Po umocnéni obdrzime

1—cosa 4 1—-cosp 9

1+cosa 25 ° 1+cosB 49

cev 21 20 p o~y >
Odtud jiz plyne cos a = 55 a cos 3 = 5¢. Nyni se zamétime na ¢isla

20,21, 29. Pokud odhalime, Ze je 202 +212 = 292, tak mame tlohu
vyfesenou. Hledany trojihelnik je pravouhly s pfeponou délky 29
a odvésnami délek 20 a 21.

Uloha 5 (Tomsi, 1930, s. 15). Uréiti obsah lichobézniku ze zn4-
mych stran a, b, ¢, d.

Resend. Obsah S lichobézniku je rovem souc¢tu obsahii kosodélniku
AECD a trojtihelniku EBC (obr. 2). Pro obsah kosodélniku plati
Sapcp = cv, kde v je vyska lichobézniku. Tuto vysku urcime ze
vzorce S = (%) v pro obsah lichob&/miku. Je tedy v = 25
Obsah trojuhelniku EBC ur¢ime pomoci Hérénova vzorce. Pro
obvod 2s tohoto trojuhelniku plati 2s = a — ¢+ b + d, resp. s =

= %ﬂ""d. Po dosazeni do Hérénova vzorce dostaneme
SEBC = \/S(S —a—+ C)(S — b)(s — d)

Sppe = \/(afc;errd) (btetd=a) (a=e—bid) (a=ctb—d)

2S¢

Sapcp =cv =

a+c

A E a B
Obr. 2: Lichobéznik ABCD
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Pro obsah lichobéZniku plati S = Sagcp + Segsc = % + SeBc-

Je tedy S — 2f_i = SEBC a S- % = SEBC asS= Zi_iSEBc. Po

dosazeni za Sgpc obdrzime vysledny vzorec

s=1 <“+C) V@—ctbtdbtetd—a)a—c—b+d(a—ctb—d).
4 \a—c

Uloha 6 (Tomsi, 1930, s. 48). Ohniskem paraboly y?> = 2px
vedena sefna rovnobézna s osou y. Vepsati takto vzniklé tseci
nejvétsi pravouhelnik, jehoz dva vrcholy lezi na seéné a dva na
parabole.
Resend.

Oznacime-li z-ovou soufadnici pruseciku prim-
v ky AD s osou x jako x, pak bude |[AB| = £ — =
a |AD| = 24/2px (obr. 3). Pro obsah pravothel-
niku dostavame

§ = (% —)2y/2pz = Vopa — 877 + Spa.

Snadno mizeme odhadnout, Ze miniméalni hod-
notu ma funkce S = S(x) v bodech x = 0
A B a z = £. Maximum uréime pomoci prvni de-
rivace

Obr. 3: Parabola
y2 = 2pa ds p? — 8p’x + 12px?

do V2p3x — 8p2x? 4 8pad

(ST~

Nulové body prvni derivace jsou kofeny rovnice 12px? — 8px? +
+ p% = p(6x — p)(2x — p) = 0. Snadno nahlédneme, Ze maximum

je vbodé x = £.

Uloha 7 (Dvorak, 1932, s. 20). Jest stanoviti racionalni kofeny
soustavy rovnic.
oy +yi=7 (6)
a2yt fy="1. (7)
Reseni. Proti roku 1932 méame vyhodu, Ze si pomoci GeoGe-

bry mutzeme rychle ukazat geometrickou interpretaci dané tlohy
(obr. 4).
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Obr. 4: Grafické feseni ulohy 7
Nyni ihned vidime, ze tloha mé 6 feSeni. Snadno ovérime, ze pod-
minkdm tlohy vyhovuji dvojice (1;2),(2;1), (1; —3),(—=3;1). Zby-
vajici dvojice nejsou dvojice racionalnich ¢isel. Tyto ivahy pod-
pofime algebraickym fesenim dané soustavy. Zvolime-li substituci
r+y=u,ry =0, pak je u? = (z +y)? = 22 + 2oy + ¢y = 2% +
+ y? + 2v. Po dosazeni do rovnic (6), (7) obdrzime soustavu

w—v="7 (8)
utv?="7. (9)

Odecteme-li druhou rovnici od prvé, dostaneme rovnici

uw—vP—v—u=0

(u+v)(u—v)—(u+v)=0
(u+v)(u—v—1)=0.

Z posledni rovnice plyne v+ v = 0 nebo u —v — 1 = 0. V pfipadé
u = —v dostaneme po dosazeni do rovnice (8) nebo (9) rovnici
u? +u — 7 = 0, kterd ale nemé racionalni kofeny. Zbyva tedy
moznost v = u— 1. Po dosazeni do rovnice (8) nebo (9) dostaneme
rovnici u? —u —6 = (u—3)(u+2) = 0. Je tedy u = 3,v = 2 nebo
u = —2,v=—3.V pfipadé u = 3,v = 2 dostavame soustavu

r+y=3
Ty = 2.
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Resenim této soustavy jsou dvojice (2;1),(1;2). V pifpadé u =

—2,v = —3 dostavame soustavu
r+y=-2
Yy = —3.

Resenim této soustavy jsou dvojice (—3;1), (1; —3).

Pozndmka. Neni tézké odhadnout, Ze osy elipsy 22 +ay+y2 =7
jsou pfimky y = = a y = —z a mizeme tak urcit souradnice
vrcholi elipsy. Po dosazeni do rovnice elipsy dostavame tyto sou-
fadnice

(VT =VT), (=VT; V), <\/§ \/2) ’ (\/Z\/z> '

Pro poloosy pak plati a = v14,b = 13—4. Protoze stied elipsy lezi
v pocatku soustavy soufadnic, mfizeme ¥ici, Ze elipsa 2 + xy +
+ y? = 7 vznikla z elipsy 22 + 3y? = 14 jejim otocenim o thel
p = %TF. Prislusna transformace je dana rovnicemi

3 2 2
2’ =xcosp+ysing = xcos -7+ ysin—m = —m£ —I—y£
4 4 2 2
Y = —Tsiny + ycosy = —xsmzﬂ'—kycoszﬂz —x7 —yT.

V soustavé soufadnic O, s ma elipsa z? + 2y + 3% = 7 rovnici
72 12
> 4+ %5 = 1. Po dosazeni za 2’ a y’ postupné dostavame
2 2
x — x +
(w—y)”  (@+y)” _

—9
14
14 5

(z—y)?+3(x+y)* =28
P try+yt=T.

Maturitni zkousky na gymnéziich byly v Rakousko-Uhersku
zavedeny v roce 1849 v ramci Bonitz—Exnerovy reformy. K jejich
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vyrazné zméné doslo v roce 1908, kdy se uskutecnila tzv. Marche-
tova reforma.® Jednim z vysledk@ Marchetovy reformy je zavedeni
pojmu funkce a zdklada infinitezimalniho poc¢tu do ucebnich os-
nov matematiky na gymnéaziich a realkach. Sbirky maturitnich
uloh z matematiky, které byly vydany pred rokem 1908, tlohy
z matematické analyzy neobsahuji. Z rozboru zde uvedenych sbi-
rek maturitnich tloh z matematiky plyne, Ze obsahuji v primeéru
naroc¢néjsi tlohy v porovnani se souc¢asnym stavem. Srovnavat na-
ro¢nost vyuky matematiky na gymnaziich v prvni poloviné dva-
catého stoleti (pfesnéji do roku 1939) se soucasnou vyukou ma-
tematiky je obtizné, protoze probihala za zcela jinjych podminek.
V této souvislosti doporucuji ¢lanek Petra Vopénky Memorandum
o skole a matematice.®
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