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A NOVEL STUDY OF PROPERTIES, FUNCTIONAL
EQUATIONS AND FAMILIES OF FUZZY IMPLICATIONS
THROUGH STRICT MONOTONICITY

Priyapada Hembram and Nageswara Rao Vemuri

It is well known that monotonicity has been an important defining criterion for fuzzy
logic connectives, such as fuzzy negations, t-norms, t-conorms and fuzzy implications. Also,
a stronger version of monotonicity, namely strict monotonicity, establishes some significant
representation theorems of continuous fuzzy negations, continuous t-norms and continuous t-
conorms. In this work, we propose the strict monotonicity for fuzzy implications and investi-
gate some necessary conditions on fuzzy implications to fulfill the same. Also, the relationship
between the basic properties, functional equations of fuzzy implications and the strict mono-
tonicity will be investigated. Further, we examine the strict monotonicity for fuzzy implications
that do come from different families of fuzzy implications and show that the strict monotonicity
is a necessary condition for fuzzy polynomial implications, fuzzy rational implications and some
subclasses of (S,N) and f -generated fuzzy implications.

Keywords: fuzzy implications, the law of importation, the law of contra-positive symme-
try, (S;N)-implications, R-implications

Classification: 20M32, 03B52

1. INTRODUCTION

Triangular norms (or shortly, t-norms), triangular conorms (or shortly, t-conorms), fuzzy
negations and fuzzy implications are some of the important fuzzy logic connectives that
play significant role in fuzzy logic, fuzzy control, artificial intelligence, approximate rea-
soning, decision making etc. They are defined as follows:

Definition 1.1. (Baczynski and Jaygram [2], Klement et al. [16])

(i) A function N : [0, 1] → [0, 1] is called a fuzzy negation if it is decreasing and
satisfying N(0) = 1 and N(1) = 0.

(ii) A binary operation T (S) : [0, 1]2 → [0, 1] is called a t-norm (t-conorm), if it is
increasing in both variables, commutative, associative and has 1(0) as the neutral
element.
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(iii) A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it satisfies, for all
x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions:

if x1 ≤ x2, then I(x1, y) ≥ I(x2, y), i. e., I( ·, y) is decreasing, (I1)

if y1 ≤ y2, then I(x, y1) ≤ I(x, y2), i. e., I(x, · ) is increasing, (I2)

I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0. (I3)

Let I denote the set of all fuzzy implications defined on [0, 1].

Note that, fuzzy negations, t-norms, t-conorms and fuzzy implications are well es-
tablished over the decades in various aspects. For more details about these operators,
please refer to [1, 2, 5, 13, 16, 17, 27].

Definition 1.2. (Klement et al. [16])

(i) A fuzzy negation is said to be strict if it is strictly decreasing and continuous.

(ii) A t-norm (t-conorm) is said to be strict if it is strictly increasing in both variables
on (0, 1]× (0, 1]( [0, 1)× [0, 1)) and continuous.

(iii) A t-norm T is called continuous Archimedean if it is continuous and satisfies the
diagonal inequality T (x, x) < x, for all x ∈ (0, 1).

More details about strict t-norms, strict t-conorms and strict negations can be found
in [6, 7, 16, 29, 31, 33].

1.1. Motivation for this paper

With respect to the strict monotonicity of t-norms, t-conorms, t-subnorms and overlap
functions, we have the following observations:

(i) From Definitions 1.4.2, 2.1.2 in [2], observe that strict monotonicity is defined
for fuzzy negations, t-norms and t-conorms only. Further, from Theorems 1.4.12,
2.1.8 and 2.2.8 in [2], note that strict monotonicity of fuzzy negations, t-norms and
t-conorms along with continuity yields some representations of special classes of
fuzzy negations, t-norms and t-conorms. Though, fuzzy implications are also an
important class of fuzzy logic connectives and closely related with fuzzy negations,
t-norms and t-conorms, unfortunately, till date, the strict monotonicity is not
yet defined and studied for fuzzy implications, and consequently, representations
results of fuzzy implications satisfying strict monotonicity are unavailable.

(ii) Theorems 2.4.10 - 2.4.12 and 2.5.17 in [2] prove that monotonicity is one of the
demanding criterion in the characterization of some sub-classes of (S,N)- and
R-implications. Also, the recent works [19, 20] show that strict monotonicity of
fuzzy implications plays an important role in fuzzy inference systems. Due to
the theoretical demand and applicational significance, it is essential to investigate
the strict monotonicity for fuzzy implications. However, there exists, so far, no
systematic study of fuzzy implications that fulfill strict monotonicity.



350 P. HEMBRAM AND N.R. VEMURI

(iii) Cancellation property (equivalently, strict monotonicity for t-norms and t-conorms)
has been extensively studied for fuzzy logic connectives such as t-norms, t-conorms,
t-subnorms and overlap functions, see for instance, [8, 9, 18, 30, 32, 34, 36] over
the decades and characterizations of some classes of cancellative pre t-norms are
investigated in [10, 11]. Nevertheless, a comprehensive study of strict monotonic-
ity for fuzzy implications was never done before, and thus lead to the lack of some
insights of fuzzy implications.

Due to the above facts, it is clear that there is a significant necessity to explore the strict
monotonicity for fuzzy implications. This forms the main motivation for this paper.

1.2. Objectives of the paper

From the motivation of the paper, it is clear that we are interested in a comprehensive
study of strict monotonicity of fuzzy implications. Specifically, we have the following
objectives:

(i) Formulate strict monotonicity for fuzzy implications and investigate basic neces-
sary conditions on fuzzy implications that have strict monotonicity.

(ii) Study the relationship between strict monotonicity and other basic properties,
functional equations of fuzzy implications.

(iii) Investigate the fuzzy implications that satisfy strict monotonicity from different
families of fuzzy implications that are available in the literature.

1.3. Organization of the paper

In Section 2, we formulate the strict monotonicity for fuzzy implications and investigate
some necessary conditions on fuzzy implications to fulfill (SM1) or (SM2) or both. Then,
we analyze the relationship between the strict monotonicity and the basic desirable prop-
erties of fuzzy implications in Section 3. Further, we investigate the relationship between
strict monotonicity and the functional equations of fuzzy implications in Section 4. In
Section 5, we study the strict monotonicity for fuzzy implications that do come from dif-
ferent families. We study the strict monotonicity for fuzzy polynomial implications and
some generalizations in Section 6. Some concluding remarks are discussed in Section 7.

2. STRICTMONOTONICITY OF FUZZY IMPLICATIONS: FORMULATION AND
BASIC OBSERVATIONS

In this section, we formulate strict monotonicity for fuzzy implications and investigate
some important characteristics of fuzzy implications satisfying strict monotonicity. To-
wards this, we start with a remark that motivates the formulation of strict monotonicity
for fuzzy implications.

Remark 2.1. From the truth table of classical implication →, we observe the following
regarding strict monotonicity of →, for all x, y, z ∈ {0, 1}:

(i) Let z < 1. Then x < y implies (x → z) > (y → z).
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(ii) Let x > 0. Then y < z implies (x → y) < (x → z).

Now, we propose a natural generalization of strict monotonicity of classical implica-
tion →, given in Remark 2.1, as follows.

Definition 2.2. A fuzzy implication I on [0, 1] is called

(i) strictly decreasing in the first variable if for all x, y ∈ [0, 1] and z ∈ [0, 1),

x < y implies I(x, z) > I(y, z) (SM1)

(ii) strictly increasing in the second variable if for all x ∈ (0, 1] and y, z ∈ [0, 1],

y < z implies I(x, y) < I(x, z) (SM2)

(iii) strictly monotone (SM) if it is strictly decreasing in the first variable (SM1) and
strictly increasing in the second variable (SM2).

Table 1 presents various examples of fuzzy implications w.r.t. (SM1) and (SM2).

Fuzzy implication (SM1) (SM2)

IN(x, y) =

{
1− x, if y < 1

1, if y = 1
✓ ×

ID(x, y) =

{
1, if x = 0

y, if x > 0
× ✓

IRC(x, y) = 1− x+ xy ✓ ✓

IGD(x, y) =

{
1, if x ≤ y

y, if x > y
× ×

Tab. 1. Examples of fuzzy implications w.r.t. (SM1) and (SM2).

2.1. Strict monotonicity of fuzzy implications: Some necessary conditions

In the following, we investigate some necessary conditions on fuzzy implications that
satisfy strict monotonicity.

Lemma 2.3. Let I be a fuzzy implication on [0, 1]. Then the following statements hold
true:

(i) If I satisfies (SM1) (or (SM2)) then I has trivial one region. i. e., for any x, y ∈
[0, 1], I(x, y) = 1 if and only if either x = 0 or y = 1.

(ii) If I is strictly monotone then I has trivial zero region. i. e., for any x, y ∈ [0, 1],
I(x, y) = 0 if and only if x = 1 and y = 0.

P r o o f . Follows directly. □
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Remark 2.4. In general, the converse statements of Lemma 2.3 need not be true always.
To see this,

(i) firstly, consider I0 ∈ I given as follows:

I0(x, y) =

{
1, if x = 0 or y = 1

0, if x > 0 and y < 1
, x, y ∈ [0, 1].

Then, we have

I0(0.5, 0.6) = 0 = I0(0.5, 0.8) but 0.6 ̸= 0.8,

I0(0.5, 0.8) = 0 = I0(0.7, 0.8) but 0.5 ̸= 0.7.

Thus, I0 satisfies neither (SM1) nor (SM2). However, I0 has trivial one region,
following by its definition.

(ii) Secondly, consider IKD ∈ I given by IKD(x, y) = max(1−x, y), for all x, y ∈ [0, 1].
Once again, note that IKD(x, y) = 0 if and only if x = 1 and y = 0. i. e., IKD has
trivial zero region. However, from the statements

IKD(0.4, 0.7) = 0.7 = IKD(0.5, 0.7) but 0.4 ̸= 0.5,

IKD(0.7, 0.2) = 0.3 = IKD(0.7, 0.1) but 0.2 ̸= 0.1,

IKD satisfies neither (SM1) nor (SM2).

Now, we show in the following that trivial range fuzzy implications satisfy neither
(SM1) nor (SM2).

Lemma 2.5. If I is a fuzzy implication on [0, 1] such that I(x, y) ∈ {0, 1} for all x, y ∈
[0, 1] then I satisfies neither (SM1) nor (SM2).

P r o o f . Let I ∈ I be such that I(x, y) ∈ {0, 1} for all x, y ∈ [0, 1].

(i) Let I satisfy (SM1) and a, b ∈ (0, 1) be such that a < b. Since I satisfies (SM1), we
must have 1 = I(0, a) > I(a, a) > I(b, a) > I(1, a) ≥ 0. Since, I(x, y) ∈ {0, 1} for
all x, y ∈ [0, 1], it must follow that some of the values I(0, a), I(a, a), I(b, a), I(1, a)
must be equal and hence, due to (SM1) of I, we get a contradiction to the fact
a < b. Thus, I cannot satisfy (SM1).

(ii) The proof of (SM2) of I is similar to the previous case.

□

Remark 2.6. (i) In general, the converse of Lemma 2.5 need not be true always. To
see this, consider IGD given in Table 1. It is clear that IGD satisfies neither (SM1)
nor (SM2). However, IGD has range equal to [0, 1], by its definition.
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(ii) From Lemma 2.5, it may appear that for a fuzzy implication satisfying strict
monotonicity (SM), the range is entire unit interval [0, 1]. However, this need not
be true always. For instance, let I ∈ I be defined as follows: for all x, y ∈ [0, 1],

I(x, y) =

{
1, if x = 0 or y = 1,
1
3 (1− x+ xy), if x > 0 and y < 1.

(1)

Then clearly, I satisfies (SM). However, the range of I is equal to [0, 1/3] ∪ {1}.

Among the partial functions I(·, y) and I(x, ·) of fuzzy implication I, the function
I(x, 0) plays an important role in the structure of I and also on the satisfiablity of
the basic properties. Recall, from [2], that if I is a fuzzy implication then the function
NI : [0, 1] → [0, 1] defined by NI(x) = I(x, 0), for all x ∈ [0, 1], is always a fuzzy negation
and it is called the natural negation of I.

Proposition 2.7. Let I be a fuzzy implication fulfilling (SM1). Then the following
statements hold true:

(i) NI is a strictly decreasing negation.

(ii) {0, 1} ⊂ Range of NI .

P r o o f . Let I ∈ I satisfy (SM1).

(i) Since I(·, y) is strictly decreasing for all y ∈ [0, 1], it follows directly NI(x) =
I(x, 0), for all x ∈ [0, 1], is also strictly decreasing.

(ii) Since NI is a fuzzy negation, it is clear that {0, 1} ⊆ Range of NI . Suppose that
{0, 1} = Range of NI . Let a, b ∈ (0, 1) be such that a < b. Since I satisfies (SM1),
we must have 1 = I(0, 0) > I(a, 0) > I(b, 0) > I(1, 0) = 0. Since, I(x, 0) ∈ {0, 1}
for all x ∈ [0, 1], some of the values I(0, 1), I(a, 0), I(b, 0), I(1, 0) must be equal
and hence, from (SM1) of I, we have either a = 0 or a = b or b = 1,which is a
contradiction to the fact 0 < a < b < 1. Thus, {0, 1} ⊂ Range of NI .

□

Remark 2.8. Once again observe that the converse of Proposition 2.7 need not be true
always. To see this, note that for IKD, it follows that NIKD

(x) = 1−x, for all x ∈ [0, 1],
a strict fuzzy negation. However, from Remark 2.4, we get that IKD satisfies neither
(SM1) nor (SM2).

3. STRICT MONOTONICITY W.R.T. THE BASIC PROPERTIES OF FUZZY
IMPLICATIONS

In this section, we investigate the relationship between the basic desirable properties
and strict monotonicity of fuzzy implications. Towards this, we recall the basic desirable
properties of fuzzy implications in the following.
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Definition 3.1. (Baczynski and Jayaram [2]) A fuzzy implication I is said to satisfy

(i) the left neutrality property (NP), if

I(1, y) = y, y ∈ [0, 1]. (NP)

(ii) the ordering property (OP), if

x ≤ y ⇐⇒ I(x, y) = 1 x, y ∈ [0, 1]. (OP)

(iii) the identity principle (IP), if

I(x, x) = 1, x ∈ [0, 1]. (IP)

(iv) the exchange principle (EP), if

I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ [0, 1]. (EP)

Lemma 3.2. A fuzzy implication satisfying either (SM1) or (SM2) does not satisfy (IP)
and hence (OP).

P r o o f . Note that if I ∈ I satisfies (OP) then I satisfies also (IP). Thus, we prove the
result only for (IP). For a contradiction, we assume that I satisfies (IP).

(i) Let I satisfy (SM1) and a ∈ (0, 1). Since I satisfies (SM1), we have 1 = I(0, a) >
I(a, a) > I(1, a) > 0. Then, due the fact I satisfies (IP), we get I(a, a) = 1.
Thus, we have I(0, a) = 1 = I(a, a). Now, from (SM1) of I, it follows that a = 0,
a contradiction to our assumption a ∈ (0, 1). Thus, I cannot satisfy (IP) and
consequently, (OP).

(ii) The case of (SM2) is similar to the previous case.

Thus, if I ∈ I satisfies either (SM1) or (SM2) then it does not satisfy both (IP) and
(OP). □

Remark 3.3. (i) For Lemma 3.2, one can also present an alternative proof based on
Lemma 2.3 as follows: Let I ∈ I satisfy (SM2) and (IP). Then, for any x ∈ (0, 1),
we have I(x, x) = 1. Then from Lemma 2.3(i), it follows either x = 0 or x = 1,
which is a contradiction.

(ii) The converse of Lemma 3.2 need not be true always. For example, IKD does not
satisfy both (OP) and (IP), see Table 1.4 in [2]. However, from Remark 2.4(ii), it
follows that IKD satisfies neither (SM1) nor (SM2).

(iii) Interestingly, there are some fuzzy implications satisfying (OP) but also satisfy
(SM) on some proper subset of [0, 1]2. For instance, fuzzy implications ILK, IGG

(see, Table 1.3 in [2]) do satisfy (OP). However, they also satisfy (SM) on the set
{x, y ∈ [0, 1]|x > y}. More details of fuzzy implications satisfying (SM) and (OP)
on some subsets of [0, 1] are provided in Section 5.2 and also in Section 6.
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Now, regarding the strict monotonicity (SM) and (NP), (EP) of fuzzy implications,
we have the following observations:

Example 3.4. Let I and J be two fuzzy implications defined by I(x, y) = 1− x+ xy2

and J(x, y) = IRC(x, y) = 1 − x + xy, respectively, for all x, y ∈ [0, 1]. Then I and J
are strictly monotone.

(i) Since I(1, y) = y2, clearly I does not satisfy (NP), while J(1, y) = y implies that
J satisfies (NP).

(ii) Note that, when x = 0.4, y = 0.6 and z = 0, we have I(x, I(y, z)) = 0.664 ̸=
0.616 = I(y, I(x, z)) which implies that I does not satisfy (EP), while J satisfies
(EP), follows from Table 1.4 in [2].

From Example 3.4, it follows that there exist some strictly monotone fuzzy implica-
tions that satisfy (NP) ((EP)). However, it is to be noted that the strict monotonicity
of fuzzy implication I alone is not sufficient for verifying whether I satisfies (NP) or
(EP), as the case may be.

In the following, let us examine the relationship between the continuity and strict
monotonicity of fuzzy implications. For this purpose, let us recall the following definition.

Definition 3.5. (Baczynski and Jayaram [2]) A fuzzy implication I is said to be con-
tinuous if it is continuous in both variables.

Lemma 3.6. Let I be a fuzzy implication satisfying (SM1). If I is continuous in the
first variable, then NI is strict.

P r o o f . Let I ∈ I be satisfy (SM1) and continuous in the first variable. Then, from
Proposition 2.7, it follows that NI is strictly decreasing. Since I is continuous in the first
variable, it follows also that NI = I(·, 0) is continuous. Thus, NI is a strict negation. □

Remark 3.7. In the following, we show the conditions in Lemma 3.6, in general, are
independent to each other.

(i) Let I : [0, 1]2 → [0, 1] be defined, for all x, y ∈ [0, 1], by

I(x, y) =

{
1− x+ xy, if x ≤ y,
1
2 (1− x+ xy), if x > y.

(2)

Then, I is a fuzzy implication satisfying (SM). However, the negation NI of I
given, for all x ∈ [0, 1], by

NI(x) =

{
1, if x = 0,
1
2 (1− x), if x > 0,

is strictly decreasing but not continuous. Thus, NI is not a strict negation.
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(ii) From Remark 2.4(ii), IKD satisfies neither (SM1) nor (SM2). Thus, it follows that
IFD ∈ I given by

IFD(x, y) =

{
1, if x ≤ y

max(1− x, y), if x > y
, x, y ∈ [0, 1]

does not satisfy (SM). Also, IFD is not continuous, see Table 1.4 in [2]. However,
NIFD

= NC is a strict (in fact strong) negation.

Note that IRC is an example of fuzzy implication that is both strictly monotone and
continuous, see Table 1.4 in [2]. However, in the following remark, we present some
examples of fuzzy implications that show that the strictly monotone and continuity are
two independent properties for fuzzy implications.

Remark 3.8. (i) Note that every strictly monotone fuzzy implication need not be
continuous, in general. For instance, I defined in Eq. (2) is strictly monotone but
is discontinuous at point (1, 0.5).

(ii) Also, note that continuous fuzzy implication need not be strictly monotone, in
general. For instance, IKD satisfies neither (SM1) nor (SM2), due to Remark 2.4(ii)
but IKD is a continuous fuzzy implication, due to Example 1.2.3 in [2].

4. STRICT MONOTONICITY W.R.T. FUNCTIONAL EQUATIONS OF FUZZY
IMPLICATIONS

In this section, we investigate the relationship between the strict monotonicity and three
important functional equations of fuzzy implications.

4.1. Strict monotonicity and the law of importation

The law of importation is one of the significant functional equations which plays a key
role in characterizing some important families of fuzzy implications, see [2, 3, 15, 21, 26].
The law of importation is defined as follows:

Definition 4.1. (Baczynski and Jayaram [2]) A fuzzy implication I is said to satisfy
the law of importation (LI) w.r.t. a t-norm T , if

I(x, I(y, z)) = I(T (x, y), z), x, y, z ∈ [0, 1]. (LI)

In this section, we investigate the relationship between the strict monotonicity (SM) and
the law of importation (LI) of fuzzy implications. Towards this, we have the following
example.

Example 4.2. (i) It is well known that ILK ∈ I satisfies the law of importation
(LI) w.r.t. TLK, see Theorem 7.3.5 in [2]. However, ILK does not satisfy strict
monotonicity, as it satisfies (OP), see Lemma 3.2. Thus, it follows that a fuzzy
implication satisfying (LI) need not satisfy (SM) always.
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(ii) In Example 3.4(ii), note that I does not satisfy (EP). Then, I does not satisfy the
law of importation (LI) w.r.t. any t-norm T , due to Remark 7.3.1 in [2] and hence
(SM) need not imply (LI) always.

(iii) Finally, IRC satisfies both the strict monotonicity (SM) and the law of importation
(LI) ( with TP, see Table 7.1 in [2]).

From Example 4.2, it is clear that there are some fuzzy implications that satisfy
both (SM) and (LI). The following result establishes representations of such fuzzy
implications.

Proposition 4.3. Let I ∈ I satisfy (LI) w.r.t. a t-norm T and NI a strict negation.
Then I is strictly monotone if and only if T is strictly monotone.

P r o o f . Let I ∈ I satisfy (LI) w.r.t. a t-norm T and NI a strict negation. Then, from
[28], I is given by

I(x, y) = NI(T (x,N
−1
I (y))), x, y ∈ [0, 1]. (3)

Since, NI is strict, we obtain directly that I is strictly monotone if and only if T is
strictly monotone. □

Remark 4.4. Note that, in Proposition 4.3, NI of a fuzzy implication I should nec-
essarily be a strict negation. To see this, IWB ∈ I has the natural fuzzy negation
NIWB

= ND2, which is not strict. However, IWB satisfies (LI) w.r.t. every t-norm T ,
see Example 7.3.6 in [2]. Finally, IWB is not strict monotone, due to Lemma 3.2 and
the fact that IWB satisfies (IP).

4.2. Strict monotonicity and the law of contrapositive symmetry

The law of contrapositive symmetry is a functional equation involving a fuzzy negation
and a fuzzy implication and it has been studied in [2, 4, 12]. In the literature, the law
of contrapositive symmetry is defined as follows:

Definition 4.5. (Baczynski and Jayaram [2] and Fodor [12]) Let I be a fuzzy impli-
cation and N a fuzzy negation. We say that I satisfies

(i) the law of contraposition (or in other words, the contrapositive symmetry) with
respect to N , if

I(x, y) = I(N(y), N(x)), x, y ∈ [0, 1]. (CP)

(ii) the law of left contraposition with respect to N , if

I(N(x), y) = I(N(y), x), x, y ∈ [0, 1]. (L-CP)

(iii) the law of right contraposition with respect to N , if

I(x,N(y)) = I(y,N(x)), x, y ∈ [0, 1]. (R-CP)
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If I satisfies the (left, right) contrapositive symmetry with respect to N , then we denote
this by CP(N) (respectively, by L-CP(N), R-CP(N)).

With respect to the strict monotonicity and the law of contrapositive symmetry, we
have the following example.

Example 4.6. (i) Recall that IRC ∈ I satisfies (SM). Also, note that IRC satisfies
(CP) w.r.t the fuzzy negation N(x) = 1− x, for all x ∈ [0, 1].

(ii) Also, recall that IKD ∈ I satisfies (CP) w.r.t the fuzzy negation N(x) = 1− x, for
all x ∈ [0, 1]. However, it is already known that IKD satisfies neither (SM1) nor
(SM2).

In the following, we investigate the relationship between strict monotonicity and
contrapositive symmetry of fuzzy implications. Before this, since CP(N) is a functional
equation involving two functions, namely, a fuzzy implication I and a fuzzy negation
N , note that it is not possible to find the functions I and N simultaneously such that
the pair (I,N) satisfies CP(N) and strict monotonicity. However, we assume some
conditions on I and N to establish some relationship between (SM) and CP(N).

Proposition 4.7. Let I be a fuzzy implication that satisfies (SM1) and I(·, 0), I(1, ·)
be two bijections on [0, 1] with NI continuous.

(i) If I satisfies contrapositive symmetry CP(N) w.r.t. some fuzzy negation N then
N is strong.

(ii) If further, I satisfies (NP) then NI = N .

P r o o f . Let I ∈ I satisfy (SM1) and I(·, 0), I(1, ·) be bijections on [0, 1].

(i) Let I ∈ I satisfy CP(N) w.r.t. some fuzzy negation N . First, we show that N
is strict and then strong. When x = 1, CP(N) for I becomes I(N(y), N(1)) =
I(1, y), or equivalently, I(N(y), 0) = I(1, y). i. e., NI(N(y)) = I(1, y). Then
from Lemma 3.6, it follows that NI is strict, and hence, N(y) = N−1

I (I(1, y)), for
all y ∈ [0, 1]. Thus, N being a composition of strict negation and an increasing
bijection, becomes strict. Let x ∈ (0, 1). Since N is strict, N(x) = y ∈ (0, 1). Now,
due to CP(N), we have I(x,N(x)) = I(N(N(x)), N(x)) and hence, N(N(x)) = x,
due to (SM1) of I. Since x ∈ (0, 1) is chosen arbitrarily, N(N(x)) = x, for all
x ∈ [0, 1] and thus, N is strong.

(ii) Follows obviously.
□

Remark 4.8. Note that the converse of Proposition 4.7 need not be true, in general.
i. e., if I ∈ I satisfies (SM) then I need not satisfy CP(N), in general, even N is a strict
negation. For instance, let I(x, y) = 1− x2 + x2y, for all x, y ∈ [0, 1] and N(x) = 1− x,
for all x ∈ [0, 1]. Then, clearly I is strictly monotone and N is a strict negation. Also,
for all x, y ∈ [0, 1], we get I(N(y), N(x)) = 1− x+ 2xy− xy2, which is different from I.
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Lemma 4.9. Let I ∈ I satisfy (SM1), (NP) and NI be strict on [0, 1]. Then the
following statements are equivalent:

(i) I satisfies (CP) w.r.t. N .

(ii) I satisfies (L-CP) w.r.t. N .

(iii) I satisfies (R-CP) w.r.t. N .

P r o o f . Follows from Proposition 4.7 and Proposition 1.5.3 in [2]. □

4.3. Strict monotonicity and T -conditionality of fuzzy implications

In the following, we investigate the relationship between the strict monotonicity and
T -conditionality of fuzzy implications. We recall the following definition.

Definition 4.10. (Baczynski and Jayaram [2]) Let I be a fuzzy implication and T be
a t-norm. We say that the pair (I, T ) satisfies T -conditionality if for all x, y ∈ [0, 1],

T (x, I(x, y)) ≤ y. (TC)

Example 4.11. Let I = IRC ∈ I which is strictly monotone.

(i) Let T (x, y) = max(x + y − 1, 0) be a t-norm. Then, we have T (x, I(x, y)) =
max(x + 1 − x + xy − 1, 0) = xy ≤ y, for all x, y ∈ [0, 1]. Thus the pair (I, T )
satisfies (TC).

(ii) Let T (x, y) = x · y be a t-norm. Then,

T (0.5, I(0.5, 0)) = 0.25 > 0

implies that the pair (I, T ) does not satisfy (TC).

From Example 4.11, it is clear that every pair (I, T ) of fuzzy implication and t-norm
need not satisfy (TC). Since it is impossible to find fuzzy implications I and t-norms
T simultaneously such that the pair (I, T ) satisfies (TC), in the following, we consider
some special t-norms and strictly monotone fuzzy implications and validate (TC) for
them.

Proposition 4.12. Let I be a fuzzy implication satisfying (SM1). Then the following
statements hold true.

(i) The pair (I, T ) never satisfies (TC) for any t-norm T with fuzzy negation NT =
ND1.

(ii) The pair (I, T ) never satisfies (TC) for any strict t-norm T .

P r o o f . Let I be a fuzzy implication satisfying (SM1).
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(i) Let T be a t-norm with fuzzy negation NT = ND1. Suppose that the pair (I, T )
satisfies (TC). Then from (TC), it follows that T (x, I(x, 0)) = 0, for all x ∈ [0, 1].
i. e., NI(x) ≤ NT (x), for all x ∈ [0, 1]. Since NT = ND1, we get NI = ND1, a
contradiction due to Proposition 2.7.

(ii) Let T be a strict t-norm. Then clearly NT = ND1, the least fuzzy negation. Now,
the remaining proof follows from the previous case.

□

5. STRICT MONOTONICITY OF FUZZY IMPLICATIONS FROM DIFFERENT
FAMILIES

In this section, we study the strict monotonicity for fuzzy implications that do come from
well-established families. We do this mainly for the families of (S,N), R,QL, Yager’s f -
g-, h, generalized h and k-generated fuzzy implications. For a comprehensive reading of
these families of fuzzy implications, please refer to [2, 14, 27, 37, 38].

5.1. (S,N)-implications

In the literature, (S,N)-implications are defined as follows.

Definition 5.1. (Baczynski and Jayaram [2]) A function I : [0, 1]2 → [0, 1] is called an
(S,N)-implication if there exist a t-conorm S and a fuzzy negation N such that

I(x, y) = S(N(x), y), x, y ∈ [0, 1].

In the following, we discuss the strict monotonicity for some (S,N)-implications.

Example 5.2. (i) Note that IRC(x, y) = Sp(NC(x), y), for all x, y ∈ [0, 1] and hence,
IRC is an (S,N)-implication. Already, we know that IRC is strictly monotone.

(ii) Note that ILK(x, y) = SLK(NC(x), y), for all x, y ∈ [0, 1] and hence, ILK is also
an (S,N)-implication. Since ILK satisfies (OP), ILK is not strictly monotone, due
to Lemma 3.2.

From Example 5.2, it follows that all (S,N)-implications need not satisfy strict mono-
tonicity. In the following, we investigate (S,N)-implications that satisfy strict mono-
tonicity. Before doing this, note that, since (S,N)-implications involve two functions S
andN , it is not possible to find S andN simultaneously such that the (S,N)-implications
satisfying the strict monotonicity. Due to this, we restrict our investigations to some
well established subclasses of (S,N)-implications.

Theorem 5.3. Let I be an (S,N)-implication generated from some t-conorm S and
continuous fuzzy negation N . Then the following statements are equivalent:

(i) I is strictly monotone.

(ii) S is strictly monotone and N is strict.
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P r o o f . Let I be an (S,N)-implication generated from some t-conorm S and continuous
fuzzy negation N .

(i) ⇒ (ii). Let I be strictly monotone. Then, from Proposition 2.7, we have NI = N
is strict. Now, it is enough to show that S is strictly monotone. Let x < 1 and
y1, y2 ∈ [0, 1] be such that S(x, y1) = S(x, y2). Since N is strict, there exists some
x′ ∈ (0, 1] such that N(x′) = x. Thus, we have

S(x, y1) = S(x, y2) ⇐⇒ S(N(x′), y1) = S(N(x′), y2)

⇐⇒ I(x′, y1) = I(x′, y2) ⇐⇒ y1 = y2.

This shows that S is cancellative or equivalently strictly monotone.

(ii) ⇒ (i). Let S be strictly monotone and N strict. We show that I satisfies (SM2)
only since the proof for other case can be obtained similarly. For this purpose,
let x > 0 and y1, y2 ∈ [0, 1] be such that I(x, y1) = I(x, y2). This implies that
S(N(x), y1) = S(N(x), y2). Since N is strict and x > 0, we have N(x) < 1. From
the strict monotonicity of S, we get y1 = y2, and hence, I satisfies (SM2).

This completes the proof. □

Remark 5.4. Theorem 5.3 presents a characterization of (S,N)-implications that sat-
isfy strict monotonicity but only for the case of (S,N)-implications with the continuous
negations N . However, the (S,N)-implications with non-continuous negations need not
satisfy the strict monotonicity. To see this, consider IWB, which is also an (S,N)-
implication. Clearly, the natural negation of IWB is ND2, which is non-continuous.
Then, IWB(x, y) = 1 = IWB(z, y), for any x, z ∈ [0, 1) and y ∈ [0, 1]. Thus, IWB does
not satisfy (SM1) and hence, it is not strictly monotone.

5.2. R-implications

In the following, we study the strict monotonicity for R-implications.

Definition 5.5. (Baczynski and Jayaram [2]) A function I : [0, 1]2 → [0, 1] is called an
R- implication if there exists a t-norm T such that

I(x, y) = sup{t ∈ [0, 1]|T (x, t) ≤ y}, x, y ∈ [0, 1].

Lemma 5.6. No R-implication is strictly monotone.

P r o o f . Let I be an R-implication. Then I satisfies (IP), due to Theorem 2.5.4 in [2].
Thus, I is not strictly monotone, follows from Lemma 3.2. □

Remark 5.7. (i) From Lemma 5.6, it follows that, if I ∈ I is strictly monotone then
it cannot be an R-implication IT for any t-norm T . Thus, strict monotonicity
has become a basic criterion to characterize whether a fuzzy implication is an
R-implication or not.
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(ii) Recall, from Theorem 2.5.4 in [2], that every R-implication I satisfies (IP). That
is, at least for the region S = {(x, y) ∈ [0, 1]2|x ≤ y}, I takes value 1, and hence it
is not strictly monotone on S and consequently, on [0, 1]2 also. However, sometimes
it may happen that R-implications may fulfill either (SM1) or (SM2) or both on
the remaining part of the unit square i. e., {(x, y) ∈ [0, 1]2|x > y}. For instance,
consider an R-implication ILK which is generated by the t-norm TLK. It is clear
that ILK does not satisfy strict monotonicity on {(x, y) ∈ [0, 1]2|x ≤ y}, as it
takes the constant 1. However, for x, y ∈ [0, 1] with x > y, it is easy to see that
ILK(x, y) = 1−x+y satisfies both (SM1) and (SM2), and hence strictly monotone
on the set {(x, y) ∈ [0, 1]2|x > y}, i. e., the lower triangle of [0, 1]2.

In view of Remark 5.7(ii), we propose the following definition.

Definition 5.8. If a fuzzy implication I satisfies (SM1) ((SM2)) on a subset S of [0, 1]2

then we say I is locally left strictly monotone(locally right strictly monotone) on S. If
I satisfies both (SM1) and (SM2) on S, then we say that I is locally strict monotone
(SM) on S.

In the following, we investigate the local strict monotonicity for R-implications. For
this purpose, we consider only the class of R-implications that are generated from con-
tinuous t-norms, due to the availability of characterization and representation results,
see [2, 16].

Now, in view of Remark 5.7(ii) and Definition 5.8, we investigate the strict mono-
tonicity of IT , generated from continuous t-norm T , on the set {(x, y) ∈ [0, 1]2|x > y}.
For a better readability, we use the following notation: S1 = {(x, y) ∈ [0, 1]2|x ≤ y},
S2 = {(x, y) ∈ [aα, eα]

2 for some α |x > y} and S3 = {(x, y) /∈ [aα, eα]
2 for any α |x >

y}. Clearly, S2 ∪ S3 = {(x, y) ∈ [0, 1]2|x > y} and S1 ∪ S2 ∪ S3 = [0, 1]2.

Theorem 5.9. Let IT be an R-implication generated from a continuous t-norm T given
as in Theorem 2.1.10 in [2]. Then,

(i) IT is locally left strictly monotone on S2 if and only if each ITα
is locally left

strictly monotone on [0, 1].

(ii) IT is locally right strictly monotone on S2 if and only if each ITα
is locally right

strictly monotone on [0, 1].

(iii) IT is only locally left strictly monotone on S3 but not locally right strictly mono-
tone on S3.

P r o o f . Let IT be an R-implication generated from a continuous t-norm T given as in
Theorem 2.1.10 in [2]. Then IT is given for all x, y ∈ [0, 1] by

IT (x, y) =


1, if x ≤ y,

aα + (eα − aα) · ITα

(
x−aα

eα−aα
, y−aα

eα−aα

)
, if x, y ∈ [aα, eα] and x > y,

y, otherwise.

(4)

Now, it is clear that IT does not satisfy (SM), due to (OP).
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(i) Let (x, y) ∈ S2. Then from Eq.(4), it follows that

IT (x, y) = aα + (eα − aα) · ITα

(
x− aα
eα − aα

,
y − aα
eα − aα

)
.

Now, the proof of IT is locally left strictly monotone on S2 if and only if each ITα

is locally left strictly monotone on [0, 1] follows obviously.

(ii) This proof is similar to the previous case.

(iii) This proof follows directly from the definition of IT .

□

Remark 5.10. Let T = TM, a continuous t-norm on [0, 1]. Then IT = IGD satisfies
neither (SM1) nor (SM2). However, IGD satisfies locally right strictly monotonicity on
the set {(x, y) ∈ [0, 1]2|x > y}.

Now, in the following, we discuss the locally strict monotonicity of R-implication IT
in the case T is continuous Archimedean.

Theorem 5.11. Let IT be an R-implication generated from a continuous Archimedean
t-norm. Then the following statements hold true:

(i) IT is locally left strictly monotone on S2 ∪ S3.

(ii) IT is locally right strictly monotone on S2 ∪ S3 \ {(x, y) ∈ [0, 1]2|y ̸= 0}.

(iii) IT is locally strictly monotone on S2 ∪ S3 \ {(x, y) ∈ [0, 1]2|y ̸= 0}. Moreover, if T
is nilpotent, IT is locally strictly monotone on S2 ∪ S3.

P r o o f . Follows from Theorem 2.5.21 in [2] directly. □

5.3. QL-implications

In the literature QL-operations are defined as follows.

Definition 5.12. (Baczynski and Jayaram [2]) A function I : [0, 1]2 → [0, 1] is called
a QL-operation if there exist a t-norm T , a t-conorm S and a fuzzy negation N such
that

I(x, y) = S(N(x), T (x, y)) , x, y ∈ [0, 1] .

If I is a QL-operation generated from the triple (T, S,N), then it is denoted by IT,S,N .

From Remark 2.6.3 in [2], note that every QL-operation need not be a fuzzy im-
plication. In case a QL-operation is a fuzzy implication, it is called a QL-implication.
Regarding the strict monotonicity of QL-implications, we have the following example.
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Example 5.13. (i) Note, from Table 2.8 in [2], that IRC is a QL-implication. Also
from Table 1, it follows that IRC is strictly monotone.

(ii) Note, also from Table 2.8 in [2], that ILK is a QL-implication. However, since ILK

satisfies (OP) and due to Lemma 3.2, ILK is not strictly monotone.

From Example 5.13, note that there do exist some QL-implications that are also
strictly monotone. In the following, we investigate conditions on QL-implications for
satisfying the strict monotonicity.

Theorem 5.14. If a QL-implication IT,S,N is strictly monotone then fuzzy negation N
and t-norm T are strictly monotone.

P r o o f . Let a QL-implication IT,S,N be strictly monotone. Then from Proposition 2.7,
it follows that N is strictly monotone. Suppose T is not strictly monotone. Then there
exist some x, y1, y2 ∈ (0, 1] with y1 < y2 and satisfying T (x, y1) = T (x, y2). Then, it
follows that S(N(x), T (x, y1)) = S(N(x), T (x, y2)), which implies that IT,S,N (x, y1) =
IT,S,N (x, y2) with y1 < y2. This is a contradiction to the fact that IT,S,N is strictly
monotone. Thus, T is strictly monotone. □

Remark 5.15. (i) In Theorem 5.14, the t-conorm S need not be strictly monotone
always. To see this, let T = Tp, S = SLK and N = NC. Then, from the duality
between t-norms and t-conorms and Theorem 2.18 in [16], it follows that S = SLK

is not strictly monotone. However, from Table 2.8 in [2], we get that the QL-
implication IT,S,N = IRC is strictly monotone.

(ii) Let S be a t-conorm, T a t-norm and N a fuzzy negation such that IT,S,N is a
fuzzy implication. Note that if S is strictly monotone (implies S is positive, see
Definition 2.2.2 in [2]) then from Proposition 2.6.7 in [2], we get that N = ND2,
which is not strict and hence, the QL-implication IT,S,N = IWB satisfies neither
(SM1) nor (SM2).

Since there are no characterization results available for QL-implications, so far, in gen-
eral, we content ourselves with the necessary conditions provided in Theorem 5.14 for
the strict monotonicity of QL-implications.

5.4. f-generated implications

In [37], Yager proposed a new family of fuzzy implications from the additive generators
of continuous Archimedean t-norms. They are defined as follows.

Definition 5.16. (Baczynski and Jayaram [2], Yager [37]) Let f : [0, 1] → [0,∞] be a
strictly decreasing and continuous function with f(1) = 0. The function I : [0, 1]2 →
[0, 1] defined by

I(x, y) = f−1(x · f(y)), x, y ∈ [0, 1],

with the understanding 0 · ∞ = 0, is called an f -generated implication.
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If I is an f -generated implication then it is denoted by If . We use IF to denote the
set of f -generated implications. Two subsets of IF are classified as follows:

• IF,∞ – the family of f -generated implications such that f(0) = ∞.

• IF,1 – the family of f -generated implications such that f(0) < ∞.

With respect to the strict monotonicity for f -implications, we have the following
example:

Example 5.17. (i) Recall that IRC is an f -implication generated by f(x) = 1 − x,
for all x ∈ [0, 1]. Then, from Table 1, it follows that IRC is strictly monotone.

(ii) Also, from Example 3.1.3(i) in [2], recall that IYG ∈ IF. Since I(0.3, 0) = 0 =
I(0.6, 0), it follows that IYG does not satisfy (SM1) and hence strict monotonicity.

From Example 5.17, it follows that f -implications need not satisfy strict monotonicity,
in general. In the following, we investigate the f -implications which fulfill the strict
monotonicity.

Lemma 5.18. Let If be an f -generated fuzzy implication. Then the following state-
ments hold true:

(i) If satisfies (SM2).

(ii) If satisfies (SM1) only when f(0) < ∞.

P r o o f . Let If ∈ IF.

(i) Follows from Lemma 6.25 in [35].

(ii) Let f(0) < ∞. Then, from Lemma 3.1.8 in [2], (SM1) of If follows directly.

□

Corollary 5.19. Let If be an f -generated fuzzy implication. Then If is strictly mono-
tone if and only if f(0) < ∞, i. e., If ∈ IF,1.

Remark 5.20. From Corollary 5.19, note that the strict monotonicity is a criterion to
characterize whether an f -generated fuzzy implication belongs to the set IF,1 or not.

5.5. g-generated implications

In [37], Yager proposed also a new family of fuzzy implications using the multiplicative
generators of continuous Archimedean t-norms. They are defined as follows.

Definition 5.21. (Baczynski and Jayaram [2], Yager [37]) Let g : [0, 1] → [0,∞] be a
strictly increasing and continuous function with g(0) = 0. The function I : [0, 1]2 → [0, 1]
defined by

I(x, y) = g(−1)

(
1

x
· g(y)

)
, x, y ∈ [0, 1],

with the understanding 1
0 = ∞ and ∞·0 = ∞, is called a g-generated implication, where

the function g(−1) is the pseudo inverse of g.
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If I is a g-generated implication then it is denoted by Ig. Let IG denote the family
of g-generated implications. Let us use the following notation for subclasses of IG:

• IG,∞ – the family of g-generated implications such that g(1) = ∞.

• IG,1 – the family of g-generated implications such that g(1) < ∞.

With respect to the strict monotonicity of g-generated implications, we have the
following.

Theorem 5.22. Let Ig be a g-generated implication. Then the following statements
are true.

(i) Ig satisfies (SM2) if and only if g(1) = ∞.

(ii) Ig satisfies (SM1) on (0, 1)× (0, 1) if and only if g(1) = ∞.

P r o o f . Let Ig be a g-generated implication.

(i) (⇒) Let Ig satisfy (SM2) and suppose g(1) < ∞. Then Ig is given, for all x, y ∈
[0, 1], by

Ig(x, y) =

{
1, if x ≤ g(y),

g−1
(

1
x · g(y)

)
, if x > g(y).

(5)

Now, choose x, y1, y2 ∈ [0, 1] be such that y1 < y2 and x ≤ g(y1), g(y2). Then, from
Eq.(5), it follows that Ig(x, y1) = 1 = Ig(x, y2), while y1 < y2, a contradiction.
Thus, g(1) = ∞.
(⇐) Conversely, let Ig be a g-implication such that g(1) = ∞. Then, from Propo-
sition 4.4.1 in [2], it follows that Ig ∈ IG,∞ = IF,∞. Thus, from Lemma 5.18(i), it
follows that Ig satisfies (SM2).

(ii) (⇒) Let Ig satisfy (SM1) on (0, 1) and suppose g(1) < ∞. Then, for any y ∈ (0, 1)
choose x1 < x2 ∈ (0, 1] such that x1 ≤ g(y) and x2 ≤ g(y). Then, from Eq.(5), we
get that Ig(x1, y) = 1 = Ig(x2, y) with x1 < x2, a contradiction. Thus, we have
g(1) = ∞.

(⇐) Conversely, assume that g(1) = ∞. Then Ig(x, y) = g−1
(

1
x · g(y)

)
, for all

x, y ∈ [0, 1]. Since g(0) = 0, for any different x1, x2 ∈ (0, 1], we get Ig(x1, 0) =
0 = Ig(x2, 0) and hence, Ig does not satisfy (SM1) at 0. On the other hand, for
any y ∈ (0, 1) and x1, x2 ∈ (0, 1], the condition Ig(x1, y) = Ig(x2, y) implies that
x1 = x2. Thus, on (0, 1), g-implication Ig satisfies (SM1) whenever g(1) = ∞.

□

Corollary 5.23. g-generated implications are not strictly monotone.

Remark 5.24. From Corollary 5.23, it follows that if I ∈ I is strictly monotone then I
cannot be a g-generated implication for any g-generator. Thus, strict monotonicity be-
comes a criterion to characterize whether a fuzzy implication is a g-generated implication
or not.
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5.6. h-generated fuzzy implications

In [27], Massanet and Torrens proposed a new family of fuzzy implications using the
additive generators of representable uninorms. They are defined as follows.

Definition 5.25. (Massanet and Torrens [27]) Fix an e ∈ (0, 1) and let h : [0, 1] →
[−∞,+∞] be a strictly increasing and continuous function with h(0) = −∞, h(e) = 0
and h(1) = +∞. The function Ih : [0, 1]2 → [0, 1] defined, for all x, y ∈ [0, 1], by

Ih(x, y) =

 1 if x = 0,
h−1 (x · h(y)) if x > 0 and y ≤ e,
h−1

(
1
x · h(y)

)
if x > 0 and y > e,

is called an h-generated implication.

Remark 5.26. Let Ih be an h-generated implication and x1, x2 ∈ (0, 1] be such that
x1 < x2. Then, from Definition 5.25, it follows that Ih(x1, e) = e = Ih(x2, e). Thus,
Ih does not satisfy (SM1). However, except at y = e, the h-generated implication Ih

satisfies (SM1) always, which is proved below.

Theorem 5.27. Let I be a h-generated fuzzy implication on [0, 1]. Then,

(i) I is locally left strictly monotone on (0, 1]× ([0, 1) \ {e}).

(ii) I satisfies (SM2) always.

P r o o f . Let Ih be an h-generated implication.

(i) Let y ∈ [0, 1) \ {e} and x1, x2 ∈ (0, 1] be such that Ih(x1, y) = Ih(x2, y).

• Let y ∈ [0, e). Then Ih(x1, y) = Ih(x2, y) implies that h−1 (x1 · h(y)) =
h−1 (x2 · h(y)). Now, from the strictness of h, it follows directly that x1 = x2.

• Let y ∈ (e, 1]. Then Ih(x1, y) = Ih(x2, y) implies that h−1
(

1
x1

· h(y)
)

=

h−1
(

1
x2

· h(y)
)
. Now, from the strictness of h, it follows directly that x1 =

x2.

(ii) Let x > 0 and y1, y2 ∈ [0, 1] be such that Ih(x, y1) = Ih(x, y2). Note that, for
y1, y2, there are three possibilities, namely, y1, y2 ∈ [0, e] or y1, y2 ∈ (e, 1] or y1, y2
belong to different intervals. As the proof for first two cases directly follows from
the strictness of h, we discuss the third case. Let y1 ∈ [0, e] and y2 ∈ (e, 1]. Then,
from Ih(x, y1) = Ih(x, y2) and strictness of h, we get that x2 · h(y1) = h(y2).
Since h(y1) < 0 and h(y2) > 0, it is not possible to have some x ∈ (0, 1] such
that x2 · h(y1) = h(y2). Thus, the third possibility does not occur and hence, Ih

satisfies (SM2).

□

From Theorem 5.27, it follows that h-generated implications are locally strictly mono-
tone on (0, 1]× ([0, 1) \ {e}).
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5.7. generalized (h, e)-generated fuzzy implications

In the following, we recall the definition of (h, e)-generated fuzzy implications.

Definition 5.28. (Hliněná et al. [14]) Fix an e ∈ (0, 1) and let h : [0, 1] → [−∞,+∞]
be a strictly increasing and continuous function with h(e) = 0 and h(1) = +∞. The
function Ihg,e : [0, 1]2 → [0, 1] defined, for all x, y ∈ [0, 1], by

Ihg,e(x, y) =


1 if x = 0,

h(−1)
(
x
e · h(y)

)
if x > 0 and y ≤ e,

h−1
(
e
x · h(y)

)
if x > 0 and y > e,

(6)

where the function h(−1) is the pseudo-inverse of h.

Theorem 5.29. Let Ihg,e be a generalized (h, e)-generated implication. Then,

(i) Ihg,e is locally right strictly monotone if and only if the second variable of Ihg,e

lies in (e, 1].

(ii) Ihg,e is locally left strictly monotone when the second variable is in (e, 1).

P r o o f . Let Ihg,e be any generalized (h, e)-generated implication.

(i) (⇒) Let Ihg,e be locally right strictly monotone and x > 0, y1, y2 ∈ [0, 1). Then

choose y1, y2 ∈ [0, e] be such that y1 < y2 and −∞ <
x

e
h(y1),

x

e
h(y2) < h(0).

Then, from Eq.(6), it follows that, Ihg,e(x1, y) = 0 = Ihg,e(x, y) while y1 < y2.
Thus, Ihg,e does not satisfy (SM2) when the second variable lies in [0, e].
(⇐) Let x > 0 and y1, y2 ∈ (e, 1]. Then, from Eq.(6), it follows that,

Ihg,e(x, y1) = Ihg,e(x, y2) ⇐⇒ h−1
( e

x
· h(y1)

)
= h−1

( e

x
· h(y2)

)
⇐⇒

e

x
· h(y1) =

e

x
· h(y2) ⇐⇒ h(y1) = h(y2) ⇐⇒ y1 = y2,

due to the fact h is strictly increasing. Thus, Ihg,e is locally right strictly monotone
when the second variable lies in (e, 1].

(ii) Let x, y ∈ (0, 1] and z ∈ (e, 1] be such that I(x, z) = I(y, z). Then from Eq.(6),
due to the strictness of h, we get x = y directly.

□

Corollary 5.30. Generalized (h, e)-generated implications are locally strictly monotone
if and only if the second variable lies in (e, 1).

Thus, in this case too, the strict monotonicity plays an important role in character-
izing a fuzzy implication is a generalized (h, e)-implication or not.
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5.8. k-generated fuzzy implications

In [38], Zhou proposed a new family of fuzzy implications using the continuous multi-
plicative generators of t-norms. They are defined as follows.

Definition 5.31. (Zhou [38]) Let k : [0, 1] → [0, 1] be a strictly increasing and contin-
uous function with k(1) = 1. The function Ik : [0, 1]2 → [0, 1] defined by

Ik(x, y) = k(−1)

(
1

x
· k(y)

)
, x, y ∈ [0, 1],

with the understanding 0
0 = 1 and 1

0 = +∞ and where k(−1) is the pseudo-inverse of k,
is called a k-generated implication.

In this case, Ik is given by, for all x, y ∈ [0, 1],

Ik(x, y) = k−1
(
min(

1

x
k(y), 1)

)
. (7)

For a k-generated fuzzy implication Ik with generator k, let us denote a subset Dk of
[0, 1]2 as follows:

Dk = {(x, y) ∈ (0, 1]× [0, 1)|x > k(y)}.

Theorem 5.32. Let I be a k-generated implication. Then,

(i) I satisfies the locally right strictly monotonicity on Dk of [0, 1]2.

(ii) I satisfies locally left strictly monotonicity on Dk of [0, 1]2.

P r o o f . Let Ik be a k-generated implication for some generator k.

(i) Let x > 0, y1, y2 ∈ [0, 1). We discuss locally right strict monotonicity of Ik in three
cases.

• Let x > 0, y1 < y2 ∈ [0, 1) be such that x ≤ k(y1), k(y2). Then from Eq.(7),
it follows that Ik(x, y1) = 1 = Ik(x, y2), which shows that Ik need not satisfy
(SM2).

• Let x > 0, y1, y2 ∈ [0, 1) be such that x > k(y1), k(y2). Then from Eq.(7), it
follows that

Ik(x, y1) = Ik(x, y2) ⇐⇒ k−1

(
1

x
· k(y1)

)
= k−1

(
1

x
· k(y2)

)
⇐⇒

1

x
· k(y1) =

1

x
· k(y2) ⇐⇒ k(y1) = k(y2) ⇐⇒ y1 = y2,

due to the fact k is strictly increasing. Thus, in this case Ik satisfies locally
right strict monotonicity on Dk.
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• Let x > 0, y1 < y2 ∈ [0, 1) be such that k(y1) < x ≤ k(y2). Then from Eq.(7),
it follows that

Ik(x, y1) = Ik(x, y2) ⇐⇒ k−1

(
1

x
· k(y1)

)
= 1 ⇐⇒ 1

x
· k(y1) = 1 ⇐⇒ x = k(y1),

a contradiction. Thus, there exist no x > 0, y1 < y2 ∈ [0, 1) be such that
k(y1) < x ≤ k(y2) and Ik(x, y1) = Ik(x, y2). Thus, in this case also, Ik does
not satisfy (SM2).

(ii) This proof is similar to the previous case.
□

Corollary 5.33. k-generated implication Ik is locally strict monotone on Dk of [0, 1]2.

Remark 5.34. From Corollary 5.33, note that the strict monotonicity is not fulfilled
by k-generated fuzzy implications and hence, the strict monotonicity is a criterion to
characterize k-generated implications.

6. FUZZY POLYNOMIAL IMPLICATIONS W.R.T. STRICT MONOTONICITY

In [23], Massanet et al proposed a class of fuzzy implications that are expressible as
bivariate polynomials on [0, 1]. They are defined as follows.

Definition 6.1. (Massanet et al. [22], Massanet et al. [23]) Let n ∈ N. A binary
operator I: [0, 1]2 → [0, 1] is called a fuzzy polynomial implication of degree n if it is a
fuzzy implication function and its expression is given by

I(x, y) =
∑

0≤i,j≤n
i+j≤n

aijx
iyj , (8)

for all x, y ∈ [0, 1], aij ∈ R and there exist some 0 ≤ i, j ≤ n with i + j = n such that
aij ̸= 0.

Theorem 6.2. Every fuzzy polynomial implication is strictly monotone.

P r o o f . Let I be a fuzzy polynomial implication given by (8).

• Let x, y ∈ [0, 1], z ∈ [0, 1). Then, we get

I(x, z) = I(y, z) ⇐⇒
∑

0≤i,j≤n
i+j≤n

aijx
izj =

∑
0≤i,j≤n
i+j≤n

aijy
izj

⇐⇒
∑

0≤i,j≤n
i+j≤n

aij(x
i − yi)zj = 0

⇐⇒ xi − yi = 0 ⇐⇒ x− y = 0 ⌈due to aij ̸= 0.

Thus, I satisfies (SM1).
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• I satisfies (SM2) can be proved similarly.
□

Remark 6.3. (i) Note that every strictly monotone fuzzy implication need not be
a fuzzy polynomial implication. For example, I defined in Eq. (2) is a strictly
monotone fuzzy implication which is not a fuzzy polynomial implication.

(ii) Also note that, strict monotonicity is a necessary condition for a fuzzy implication
I to be a fuzzy polynomial implication. Thus, strict monotonicity provides a
partial characterization of fuzzy polynomial implications.

As a generalization to fuzzy polynomial implications, Massanet et al proposed fuzzy
(OP)-polynomial implications in [24] as follows.

Definition 6.4. (Massanet et al. [24]) A binary operator I : [0, 1]2 → [0, 1] is called
a fuzzy (OP)-polynomial implication of degree n if it is a fuzzy implication and its
expression is given by

I(x, y) =


1, if x ≤ y,∑
0≤i,j≤n
i+j≤n

aijx
iyj , if x > y, (9)

for all x, y ∈ [0, 1], aij ∈ R and there exist some 0 ≤ i, j ≤ n with i + j = n such that
aij ̸= 0.

Remark 6.5. If I is a fuzzy (OP)-polynomial implication, then from Definition 6.4, I
satisfies (OP). Consequently, I does not satisfy the strict monotonicity (SM), due to
Lemma 3.2. Strictly speaking, I does not satisfy (SM) on the set {(x, y) ∈ [0, 1]2|x ≤ y}.
For the strict monotonicity of I on the remaining region, we have the following result.

Lemma 6.6. Every fuzzy (OP)-polynomial implication is locally strict monotone on
the set S2 ∪ S3. i. e., {(x, y) ∈ [0, 1]2|x > y}.

P r o o f . Follows from Theorem 6.2. □

As yet another generalization of fuzzy polynomial implications, Massanet et al pro-
posed fuzzy rational implications in [25] as follows.

Definition 6.7. (Massanet et al. [25]) Consider n,m ∈ N. A binary operator I :
[0, 1]2 → [0, 1] is called a fuzzy rational implication of degree (n,m) if it is a fuzzy
implication function and its expression is given by

I(x, y) =

∑
0≤i,j≤n
i+j≤n

aijx
iyj

∑
0≤s,t≤m
s+t≤m

bstx
syt

, (10)

for all x, y ∈ [0, 1] where
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(i) aij ∈ R for all 0 ≤ i, j ≤ n and i + j ≤ n and there exist some 0 ≤ i, j ≤ n with
i+ j = n such that aij ̸= 0.

(ii) bst ∈ R for all 0 ≤ s, t ≤ m and s+ t ≤ m and there exist some 0 ≤ s, t ≤ m with
s+ t = m such that bst ̸= 0.

(iii) the polynomials p(x, y) =
∑

0≤i,j≤n
i+j≤n

aijx
iyj and q(x, y) =

∑
0≤s,t≤m
s+t≤m

bstx
syt have no

factors in common.

(iv) q(x, y) ̸= 0, for all x, y ∈ [0, 1].

Proposition 6.8. Every fuzzy rational implication is strictly monotone.

P r o o f . Let I be fuzzy rational implication of the form (10) for some polynomials p
and q satisfying the conditions given in Definition 6.7. We prove that I satisfies (SM2)
only since the proof for (SM1) follows similarly. Let x, y, z ∈ [0, 1] be such that x > 0
and I(x, y) = I(x, z). Then, we get

I(x, y) = I(x, z) ⇐⇒

∑
0≤i,j≤n
i+j≤n

aijx
iyj

∑
0≤s,t≤m
s+t≤m

bstx
syt

=

∑
0≤i,j≤n
i+j≤n

aijx
izj

∑
0≤s,t≤m
s+t≤m

bstx
szt

⇐⇒
∑

0≤i,j≤n
i+j≤n

aijx
iyj ·

∑
0≤s,t≤m
s+t≤m

bstx
szt =

∑
0≤s,t≤m
s+t≤m

bstx
syt ·

∑
0≤i,j≤n
i+j≤n

aijx
izj

⇐⇒
∑

(0≤i,j≤n) & (0≤s,t≤m)
(i+j≤n)&(s+t≤m)

cijstx
i+syjzt =

∑
(0≤i,j≤n) & (0≤s,t≤m)
(i+j≤n) & (s+t≤m)

cijstx
i+sytzj

⇐⇒
∑

(0≤i,j≤n) & (0≤s,t≤m)
(i+j≤n) & (s+t≤m)

cijstx
i+s(yjzt − ytzj) = 0,

for some constants cijst ∈ R. Since p, q are non-zero polynomials, clearly some constants
cijst ∈ R are non-zero. Thus, for all x > 0, we get xi+s(yjzt−ytzj) = 0, which obviously
implies y = z. □

Note that Remark 6.3 holds true for fuzzy rational implications also.



Strict monotonicity of fuzzy implications 373

7. CONCLUDING REMARKS

In this work, we recalled that monotonicity has been used to define the fuzzy logic
connectives such as fuzzy negations, t-norms, t-conorms and fuzzy implications. How-
ever, it is pointed out that the strict monotonicity is not yet proposed and studied for
fuzzy implications, in general. Since fuzzy implications are not commutative, we pro-
posed strict monotonicity of fuzzy implications in each variable, as (SM1) and (SM2).
Then, we investigated some necessary conditions on fuzzy implications to fulfill either
(SM1) or (SM2) or both. Next, we explored the relationship between the basic proper-
ties, functional equations of fuzzy implications and the strict monotonicity. Finally, we
have studied the strict monotonicity for fuzzy implications that do come from different
families of fuzzy implications. The salient features of the work done are as follows:

• It was proved that the trivial range fuzzy implications do not satisfy strict mono-
tonicity.

• It was shown that the strict monotonicity of fuzzy implications is independent of
other basic properties and functional equations of fuzzy implications.

• The sub-classes of (S,N)-implications and f -implications that satisfy the strict
monotonicity were investigated.

• Since none of R-implications, Yager’s g-implications, h, generalized (h, e) and k-
implications satisfy either (SM1) or (SM2), it is to be noted that strict monotonic-
ity becomes a criterion to validate whether a fuzzy implication belongs to these
families of fuzzy implications, whatever the case it is. Also, we have investigated
the sub-regions of the unit square on which the aforementioned fuzzy implications
satisfy either (SM1) or (SM2) or both locally, whatever the case it is.

• It was shown that the strict monotonicity is a necessary condition for fuzzy polyno-
mial implications and fuzzy rational implications. Since fuzzy (OP)-implications
do not satisfy the strict monotonicity, it was proved that they are locally strictly
monotone on the set {(x, y) ∈ [0, 1]2|x > y}.

Finally observe that, in this work, we have obtained some insights of fuzzy impli-
cations satisfying the strict monotonicity without assuming any additional conditions/
properties of fuzzy implications. However, it is obvious that the strict monotonicity along
with some properties of fuzzy implications will enable us to glean more perspectives of
fuzzy implications in the future.
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