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KYBERNETIKA — VOLUME 61 (2025), NUMBER 3, PAGES 377-403

ADAPTIVE FRACTIONAL DISTRIBUTED OPTIMIZATION
ALGORITHM WITH DIRECTED SPANNING TREES

HuAwIN PENG, YIHENG WEI, SHUAIYU ZHOU, AND DONGDONG YUE

Distributed optimization has garnered significant attention in past decade, yet existing al-
gorithms mainly rely on Laplacian matrix information for parameter settings, limiting their
adaptability and applicability. To design the fully distributed algorithm, this paper uses an
adaptive weight framework based on directed spanning trees (DST), which not only solves
the consensus optimization problem but also can be extended to solve the resource allocation
problem. The innovative integration of Nabla fractional calculus further improves performance,
enabling efficient discrete-time distributed optimization. Moreover, The proposed algorithms
optimality and convergence properties have been rigorously analyzed, which demonstrates that
they can converge to the optimal solution of the problem under consideration. Finally, numer-
ical simulations are conducted to validate the algorithm’s feasibility and superiority.

Keywords: distribute optimization, fractional calculus, directed graphs, directed spanning
trees, resource allocation, fully distributed

Classification: 05C05,05C20,26A33,90C26

1. INTRODUCTION

In past decade, with the development across multiple research fields, distributed
optimization has garnered significant attention and extensive study. Unlike centralized
optimization, distributed optimization operates by allowing multiple agents to work
together, each solving a part of the problem and sharing information with others in
order to obtain the optimal solution. Distributed optimization has achieved in various
applications such as autonomous driving, smart grids and distributed computing [I| 4]
0, 91 [T6], 18, 27 [40].

To address distributed optimization, algorithm design must consider the network’s
communication topology, such as undirected connected graphs [14] [15] 17, 25, 28], and
digraphs [4, [7, 1T} [12] 20l 24] 33] and so on. These algorithms in [7, 1T, 12} 20], B3]
typically rely on the Laplacian matrix’s eigenvalues or eigenvectors for parameter set-
ting. An algorithm in [24] introduces saddle points for not requiring the knowledge of
Laplacian matrix but faces challenges with vanishing step sizes. Meanwhile, all afore-
mentioned algorithms except [12] require convexity of the local functions. When the
network is large and sparse, the strategy of setting parameters based on the global
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Laplacian matrix with a static gain may lead to high gain and instability. The above
algorithms require global Laplace matrix information or global Lipschitz continuity and
are not fully distributed algorithms. Recently, one possible solution is to consider fully
distributed algorithms. The fully distributed algorithm does not need to rely on the
global Lipschitz continuity of the gradient, nor does it require a priori global Laplacian
information [35], [38] [39]. The fully distributed adaptive algorithm with DST in [35] [38] is
proposed to address the consensus optimization problem of the Lagrange multipliers. A
DST can be found in a distributed way without any knowledge of the Laplacian matrix
[10). However, algorithms in [35], B8] only achieve asymptotic convergence.

In additon, fractional calculus, as an extension of classical calculus, allows derivatives
and integrals to have arbitrary real orders. In recent years, with the deepening study
of complex systems, fractional calculus has gained increasing attention and has been
widely applied in various fields [3, 13, 21] 29] [30]. The algorithm in [I3] shows supe-
rior performance, achieving a convergence speed that surpasses that of the integer order
algorithm. Although fractional calculus has been proven to deliver significant perfor-
mance improvements, its application in distributed optimization algorithms is still in its
early stages [B], 23, 26l 34]. The study in [34] investigates the distributed optimization
problem for fractional nonlinear uncertain multi-agent systems with unmeasured states.
The algorithm in [26] solves the nonlinear fractional fixed-time distributed time-varying
optimization problem over unbalanced directed graphs. However, most of existing al-
gorithms are continuous-time algorithms, which require real-time communication and
gradient computation, leading to increased communication and computational costs. It
is worth mentioning that we have introduced Nabla discrete-time fractional calculus into
the distributed optimization algorithm, significantly reducing computational and com-
munication cost [8,[19, 37, [41]. Similarly, the aforementioned distributed algorithms face
the issue of relying on global Laplacian matrix information.

This work explores fractional distributed optimization on directed graphs. It intro-
duces fractional calculus and design the DST adaptive gain framework. Thus enable
agents to self-determine edge coupling strength based on DST, promoting consensus on
the Lagrangian multiplier of the optimal solution. It separately investigates the DST-
based fractional distributed optimization algorithm and fractional distributed resource
allocation algorithm. The advantages of these algorithms are as follows,

i) This paper designs DST-based adaptive fractional distributed optimization algo-
rithm and resource allocation algorithm, which is applied to solve the distributed
optimization consensus problem and distributed resource allocation problem over
directed graphs, with both proving their Mittag—Lefller convergence.

ii) Unlike traditional distributed algorithms, this paper designs the fully distributed
algorithm. Influenced by the viewpoint of uncertain saddle-point dynamics, this
paper designs an adaptive coupling gain framework based on DST, removing the
dependency on global Laplacian matrix information, eliminating the need for van-
ishing step sizes, and in optimization problems, relaxing the convexity requirement
for local cost functions, significantly enhancing flexibility and applicability. In the
DST-based adaptive strategy, only the gains along the edges associated with the
DST are adaptive.
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iii) This paper combined fractional calculus with adaptive weight mechanisms, the in-
corporation of fractional calculus, particularly Nabla fractional calculus, enriches
the algorithm’s dynamic characteristics, allowing it to better capture memory and
hereditary properties, improves algorithms performance. And it enables the tran-
sition from continuous-time to discrete-time implementations, ensuring robustness
and feasibility.

The rest of the paper is organized as follows. Section 2 introduces the preamble
and the problem setup. Section 3 describes DST-based fractional distributed optimiza-
tion algorithm and fractional distributed resource allocation and their Mittag—Leffler
convergence is obtained through proofs. Section 4 verifies the performance of the algo-
rithms numerically through simulations. Section 5 concludes and discusses some future
directions.

2. PRELIMINARIES
2.1. Notation

The real coordinate space with appropriate dimensions is denoted by R and R, is
the real positive scalar subspace. Zj usually represents the set of positive integers.
N, represents the set {a, a + 1, ...}, where a € R. Zy represents the set {1, ...,
N}. Define the N-dimensional identity matrix by Iy and 1y, and the column vector
with N elements being one. 0 denotes a column vector with all zeros. MY is a set
of n x n matrices with zero row sums. Denote col(zy, ..., zn) = [¥{, ..., 4] as
the column vectors. ® is the Kronecker product. * indicates the convolution operation,
ie, z(k)xy(k) = Z?:a+1 x(k—j+a+1y(y)., for ,y : Noy; —» R, a € R,. (fl’) =

%, and T'(z) = 0+Oo e tt*~1dt. Let matrix AT be the transpose of A.
And denote A% = (A + AT)/2 as the undirected version of A. Denote A (or )) as the
maximum (or minimum) eigenvalue of the symmetric matrix A. Denote the gradient of
the f differentiable function by V. If a contineously differentiable funtion f : RY — R
is strictly convex, then there is a convex set Q if (z —y) " [Vf(z) =V f(y)] > 0, Vz, y € Q
with = # y. Define the value of the discrete optimization variable x at time &k by z(k),
and k is omitted after. {V¢x(k) denotes the derivative of the a-order nabla discrete
fractional with respect to k under the definition of Caputo. The function p? = % is
called the rising function, where p € R and ¢ € R.

From the asymptotic properties of the Gamma function, we have lim,_, %Z = 1.
Using mathematical induction and the definition of the rising function, and referring to
[3—5], the following basic properties can be easily derived:

2.2. Graph Theory

A weighted directed graph [22] G(V,E, W) consists of a node set ¥V = Iy, an edge
set £ = {e;; | i # j;i — j}, and a weighted adjacency matrix W = (w;;) € RV*V,
If e;; € £, then i is termed an in-neighbor of j, and the set of all in-neighbors of j is
denoted as N, (7). Similarly, Moy (i) represents the set of all out-neighbors of i.
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The Laplacian matrix £ = (£;;) € RM*Y of G is defined such that £;; = —w;;
for i # j and Ly = Y, wi, for i = 1,...,N. A path refers to a sequence of edges
that connects a pair of nodes. A directed graph G is considered strongly connected if
any pair of nodes is connected by a directed path and weakly connected if any pair of
nodes is connected by a path ignoring the direction of edges. Moreover, the graph is
weight-balanced if 37, v 1) Wij = X2 jen,. () wyi for all i € V.

A DST G(V,E,W) is a spanning tree that originates from a root node with no in-
neighbors and can reach each subsequent node along directed edges, with each node
having a unique in-neighbor except for the root. Let ¢, be the unique in-neighbor of
node p+ 1 in G. Correspondingly, £ and W are the Laplacian matrix and the weighted
adjacency matrix of G, respectively. The set of out-neighbors of i in G is denoted as

Nous (7).

2.3. Nabla fractional calculus

Definition 2.1. (Wei et al. [32]) The ath Griinwald—Letnikov fractional sum of func-
tion f: Ngy1 — R is defined as

SV fR) = (1) () f(k — 1), (1)

where ao > 0, k € Ny41, a € R.

=0

Definition 2.2. (Wei et al. [32]) The ath Caputo fractional difference of function
f :Ngy1-n, — R is defined as

o Vi f(k) = VRV £ (k) (2)
where o € (n —1,n),n € Zy, k € Nyq1, a € R.

Lemma 2.3. (Wei et al. [32]) For any o € (0,1), y(k) e R", n€Zs, k€ Nyp1, a €R
and the positive definite matrix P € R"*™ it has the following inequality

SViy  (k)Py(k) < 2y" (k) PYVRy(k). (3)

Definition 2.4. (Wei et all. [3I]) The discrete-time Mittag—Leffler function based on
the time domain is defined as

400 ot B—1
/\l(k‘ _ a)za+ﬁ 1
FasWha) =3 e )

=0

, (4)

where a > 0, >0, A € C, k € Ny41, and a € R. By taking the inverse nabla Laplace
transform, it can be expressed as follows,

a—p
Fa,8(A k,a) ::Na_l{si_/\}7 (5)

where s € C, and N, 1{-} denotes the inverse nabla Laplace transform.



Adaptive fractional distributed optimization algorithm with directed spanning trees 381

2.4. Technical Lemmas

Lemma 2.5. (Yue et al. [36]) Suppose G contains a DST G. Let £ =L — L.
Define = = (Z,;) € RV=DXN {5 determine the edge relationship between p and j in
L as

-1, ifj=p+1,
Spj =L i =ip, (6)
0, otherwise.

Define Q = (Qp;) € RN-DX(N=1.— O + Q with
Qpj :ij + Qs
ij = ZCGY}J’#j (Ep—‘,—l,c - Lii'”c)’ (7)

Qpj = Zc€9j+l (Lptie— Lipuc)7

where vj+1 represents the vertex set of the subtree of G rooting at node j + 1. Then,
the following statements hold

1. £ has a simple zero eigenvalue corresponding to the right eigenvector 1y, and the
other eigenvalues have positive real parts.

2. 2L = QE.

3. Q can be explicitly written as

Wit1,i;, if j =p,
Qpj = § —Wj+1,4;, if j=1ip—1,
0, otherwise.

4. The eigenvalues of @) are exactly the nonzero eigenvalues of L.

Lemma 2.6. (Bullo et al. [2]) A binary alphabet G with N nodes is weight-balanced
iff 1,£=0.

Lemma 2.7. Consider the Lyapunov function

V=-(XTX+Y'Y), (8)

N | =

where X and Y are variables. Assume that there exists a constant p > 0 such that
Cyoa 1 T
aViV S —pl5X X (9)

Then, it holds that X converges to 0 with the Mittag—LefHler rate.
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Proof. From @D, the fractional sum is applied simultaneously to both sides of the
inequality, and it can be obtains that

1
SVLOCVEV = V(k) = V(e) < —5pf VXX, (10)

which implys that
1
V(k) <V(a)— 5MSV,QQXTX. (11)

It is inferred from and that

%XTX < % (XTX+YTY)
1 1 (12)
<3 (X(a)"X(a) +Y(a)"Y(a)) — 5MSV,;‘XXTX.
By defining z(k) = 1 X T X, and A = 1[X(a)" X (a) + Y (a) 'Y (a)], reads
w(k) < A — SV a (k). (13)
Denote m(k) = A\ — uSV, *x(k) — z(k) > 0, for every k € Ny41, one has
z(k) +m(k) = X\ — uSV, “x(k). (14)
By taking the nabla Laplace transform on both side of , it yields that
rpls) +my(s) = 5 = 22, (19
where x7(s) = Ny{z(k)}, ms(s) = No{m(k)}. Then, it follows that
ry(s) = S - S (16)
Taking the inverse nabla Laplace transform on both sides, one has
z(k) = AFa1(—p, k,a) — m(k) * Foo(—u, k,a) (17)

= A'F&-,l(_/ufv ka a) - m(k) * [1 - }—04,04(_;“7 k? a)]a

Due to the properties of the Mittag-Leffler function, it holds that Fo o(—p, k,a) < 1.
Thus, one has

l’(k) < )\fa,l(fu’kaa)' (18)

Consequently, the convergence of x(k) can be obtained. Due to z(k) = £ XX, X is

Mittag—Leffler convergent. O
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2.5. Problem setup

This work studies two critical problems: distributed consensus optimization and dis-
tributed resource allocation.
The problem of distributed consensus optimization has the following form as

min F(z) = Zil fi(zi),

TzERN™ (19)
st. 1 =x2="--=2Nn,
where z = col(xy,...,2n), F(-) is the global summation-separable cost function and

fi(+) is the local cost function for each agent. Consider N agents interacting over a
digraph G(V, £, W), cooperatively seeking a global minimizer of (19), denoted by z*.

To solve the above optimization problem in a distributed manner, the following as-
sumptions are made.

Assumption 1. The global cost function F(+) is differentiable and strictly convex. Each
local cost function f;(-) is differentiable.

And for the distributed resource allocation problem, it is formulated as

N

min Ge) =3 gi(@),
. (20)
S.t. Z_il T, = d,
where z = col(x1,...,xN), d = Zivzl d;. Each agent has its local resources d; € R and

is associated to a local cost function ¢;(-) : R™ — R. Consider N agents communicating
over a digraph G(V,E, W), cooperatively seeking a global allocation strategy with the
minimum global cost function G(-) and satisfying the sum of the total resources.

For the distributed resource allocation, the following assumption is standard.

Assumption 2. The global cost function G(+) is differentiable and strictly convex. Each
local cost function g;(+) is differentiable.

Assumption 3. The digraph G is strongly connected and weight balanced.

3. MAIN RESULTS
3.1. Distributed consensus optimization problem

Under strongly connected graph conditions, DST can be obtained by a distributed
method even without any prior information about the Laplacian matrix. So a DST-
Based fractional distributed optimization algorithm with adaptive weights is proposed
to solve problem without such knowledge.

Consider any DST G of G for the algorithm. Each agent i € V has its own local
estimate x; € R™ of the optimal decision variable x* and the auxiliary variable y; €
R™. Communication between agents is only through their in-neighbors. Each agent @
communicates x; over GB(V, &, B(k)), where B(k) = (b”(k)) is the weight matrix for
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the dynamic coupling gain at B(a) = W and communicates y; over G. Hereafter, k is
omitted. Design the algorithm as follows,

Cya,.. — () — (e — ) () — 2y
avkxi = - ’Ylvfz(xz) ZjeNm(i) bzy (xz l'g) Zjel\f;n(i) Wij (yz y])v (21&)

Cyoa
a Vi ZZJ.GMH(Z_) bij(wi — x5), (21b)
with dynamic coupling gains
R if T 73
bij =4 e € £18 (22a)
bp+1,ip7 if €ji € g,
SVibpi1i, = 12T, = Tp11) = e iy @1 — )T (@i, — 2pp1), (22b)

for 71,72 € Ry. From , each agent ¢ and its in-neighbor j update only when

communicating z; and when the edge e;; is in G. By defining = = col(zy, ..., zn), y =
col(yy, ..., yn), flx) = Ef\il fi(x;), the algorithm reads
acvgx = —’}/1Vf(.13) - ([-:B & In)x - (‘C & In)y7 (23&)
SViy= (LS oL, (23b)

Theorem 3.1. Suppose Assumptions [If and [3| hold. If (Z,%) is an equilibrium point of
, then it holds that T = x*, where z* is the global minimizer of .

Proof.
When (z,7) is an equilibrium of , thus
0=-nVf(@) - (LFel)z— (LoL,)y, (24a)
0=(LPoI,)z. (24b)

Let x = 1y ®xg, for some 2o € R", so (LB®1,)r = (LP1x)® (I,z0). By Lemma
1y is the right eigenvector of £ and £ corresponding to their simple zero eigenvalues,
so it implies that (£P1x) ® (I,20) = 0. Therefore, T =z = 1y ® x.

By Lemma 15 L = 0. Therefore, left-multiplying by 15 ® L, results in

0=—m(y®L)Vf@) — (1§ @ L)(LP@L,)z — (1§ 9 L,)(L° @ 1,)y

— (1} ®L)V(3), (25)

which implies that va:l filxo) =0, i.e., F(xzg) = 0. According to the strict convexity
of F(-), it leads to 2* = 1y ® . Hence, T = x*. 0

Note that if (Z,7) is an equilibrium point of ([23), (Z, y + 1y ® k) will also be an
equilibrium point of , for any x € R™. Let any equilibrium point (Z,§) transferred
to the origin with applying a change of coordinates

u=x—ZI, (26a)
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fi=(EeL)u, (26¢)
v=(EeL)y, (26d)
where fi = col(fiy, -+, fiy—1) and fi, = i, — fip+1, P € Zn—1. Consequently, by Lemma

and the properties of the Kronecker product, the algorithm and the adaptive
law are as follows,

Vin=-nEeL)h-(Q°eL)i—- (Q®I,), (27a)
SVir=(Q° o L)k, (27h)
aCVng—H,ip = Y2 (ftp — Zjeﬂfout(p+1) ﬂj—l)Tﬂpa (27c)

where h = Vf(u+2) — Vf(Z), and Q as well as QF are defined as in Lemma [2.5 based
on the DST G. More specifically, Q% = Q + QB contains the fixed matrix @, and the
following time-varying matrix
) bjt1i,, ifj=p,
i = —bj+1,ij7 if j =1, -1, (28)
0, otherwise.

Theorem 3.2. Under Assumptions [I| and |3] algorithm and the adaptive law
drive z = col(z1, ..., 2, ..., xN) to z* with Mittag—Leffler rate for all ¢ € V, and for any
initial condition z;(a), y;(a) € R™. Moreover, the weights Bp+17ip, p € In_1 converge to
some finite constant value.

Proof. The first step is to prove for system with arbitrary initial conditions, (fi,
7) Mittag—Leffler converges to the origin, and the weights BpH,ip, p € In_1, converge
to some finite constant values.

Using the positive definiteness of the matrix @Q°, reflect the stability of in the
adaptive coupling weights l_)p_._l,ip, p € In_1. Consider the following Lyapunov function

V=V,+V, (29a)
1 _+_ N-1 1 _
Vi=gh i+, 3 Gorii, = dni1i,)” (20b)
MNQTQ) 1, o+
Vo =50 5Bt (it ), 29¢
QY S(n+v) (p+v) (29¢)

where Q° > 0 is guaranteed by Lemma and @py1,5, € Ry, p € Iy_1 will be decided
later. According to Lemma @ the fractional difference of V), along the trajectory of

is
VIV <—mp' EoL)h-p (QPeL)i- i (Q®L,)»

N-1,7 _ _\T (30)
+ Zle (bp+17ip - ¢p+1,ip)(l‘p - Zj+1€/\7011t(p+1) Nj) Hp-
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According to , it holds that when j = p, b1, i = Qpp When j+1 € Nyw(p+1),
it means that i; — 1 =P, 50 bpy1,i, = QB Let ® € RN-Dx(N=1) i defined as

Gj+1,;, i J=p,
(I)pj == _¢j+1,ij7 lf] = ip — 17 (31)
0, otherwise.

Them, substituting into yields

N—1,7 _ T
Zp 1 (bp+1 ip Pp+1, ip)(Mp - Zj+1€./\70ut(p+1) Mj)TMp
N-1 =B - \T - _\T-
= Zp 1 (Qp, p:“p Z] 1,j#p p/’(‘j)TlU’P = (Ppphtp + Zg 1,j#p (I)jp:“j)—r:“p

! (32)
Z Z ijj fp — (I)jpﬂj Hp
= _T[(QB - ) L.]f.
From Assumption |1 and —, it follows that
ViV <—mp EoL)h—p QP eL)i— i (Q®L,)»
i [(QF - @) e L] a 4
=—mp E@L)h—p" [(QF-Q°+®)aL,]n—pa' L,)v (33)
=—mp E@L)h—p" [(QF-QP+ @)L, ai—a" (QelL,)r
<-—mAMa p-ma E@ L)Y - [(Q+ @) @ Li—p' (Q@ L),
where 7’ = ¢ (u + 2) — ¢(2) with ¢(2) = col(y1(z1), -+, Yn(zn)).
By using Young’s inequality, it yields that
=T 5 Qh/T ETE In h =T = 2;\ ETE h/Th/
—mp (ERL)N < ”2”+ (2® ) _“2“+%( 2) . (34a)
T =TT = =Ta XOTOVoT5
_ATQeL,)p < u2u v §2®In)v < u2u L M@ g))v v (34b)

Moreover, assume that ||[¢(z)| < vV NK for all 2 € R¥™, and K can be unknown.
Hence, it holds as follows,

WUR < ([ + )|+ [o(*)])? < ANK>. (35)
From —, it can be obtained that
VeV, < -1 ((Q+ @+ mAN)In_1)@L)a+ i i
+ == (QTQ) "0+ 2NK*INETE). (36)

By Lemma [2.3] the fractional difference of V,, is computed as

VRV, < i EeL)h—i Qe L)y —mr (E@L)h—r (Q®L)r.  (37)



Adaptive fractional distributed optimization algorithm with directed spanning trees 387

Like , by using Young’s inequality and the positive definiteness of )°, it is inferred
that

Iz 5
—nA (E@L)h <5+ 2NK*EAETE), (38a)
_  MQTQETE | MQ)P
.
- RI,r < + , 38b
p(Qel,) NGD) 1 (38b)
_ A@)PT  ANK*BNETE)
— =1 <
nr (E@I)h 5+ GD : (38¢)
7 (Q® L)y <—AQ*)7'p. (33d)
According to (37) and (38)), one has
M@ ) +20QTQ) +  AMQ%) 1 2NK*{AETE)[1+A(Q°)]
Cyoa T
SV, < UV'v+ . (39
¢ gy T Q) (39
According to 1' and 1 , aCVgV in 1) is upper bounded by
Coa T CANQTQ) o
VRV <= [(Q+ @ +mAMNIn 1) @ L — =0 v+ mp ji+n, (40)

4

where ;= 1+ 2 @RQIAQ@ O ang , — N K22 ”“HHM}

A(Q#)?
Let § € R, be an arbitrarily small positive scalar. If &7 i > d, then for any 11,1, €
R+, there exists a sufficiently large n € R, satisfying n > 1 + =2, ensuring that

ata’

ni' i > i ji +no. Thus, the inequality holds

Coa T s Ao o AQTQ) 1
ViV < —p {[@° —nIy-1+ Q% + A In ] @ L i — — ’P (41)
where
$2,i 301 - 3ON_21 %¢N71,1
1001 ®3,is e e 5ON_12
o — ) : . ) )
LdN—21 : o ON-1ins  ZON-1,N-2
FON-11 3ON-12 0 FON-1N-2 DNy

The aim is to ensure V¢V < 0. From , clearly it holds true when ®°*—nIy_1 > 0,
where ®° is decided by the choice of appropriate ¢,1,i,. Denote Q1 = [¢2;, — 7], and

Q1 ® 1 T
Qk? = ;;' ¢p+l,: -7 ) where $p = §[¢p17 ¢p27 Ty ¢p,p71] , D= 27 T N —1.
When ¢a;, > 1, Q1 > 0. Assume €,_1 > 0, p > 2. Due to |¢p;| < |¢;41, z]| Vi€ l,—1

PN i=2 P51
in 7 w;ﬂ;ﬁlsﬂp < % So when choosing ¢p41,6, > 7+ 2(297 Q, > 0.

Through mathematical induction, it follows that ®°*—nIy_; = Qn_1 is positive definite.
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Moreover, since Q and T are fixed, choosing sufficiently large ®pt1,i, always ensures
that A(®° —nIy_1+ QS) > =1 A(Y). Then, [®° —nly_1+ Qs +7A(T)In_1] is positive
definite. Let M = [®* —nIy_1 +Q° + 1 A(T)In_1]. From 7 it can be obtained that
AMQTQ)

TR CALEALS (42)

SVRV < —20(M)( 5 (5

Obviously, it follows that V¢V < —2A(M)(3"f). Then, according to and
Lemma it is concluded that i converges to the origin with Mittag—Leffler rate.

3 T
Similarly, can be computed as SV§V < —M(%fﬁﬁ). Therefore, based on the
Mittag—Leffler convergence of i and Lemma |2.7] ¥ is also Mittag—Leffler convergent.

Thus (fi, 7) converges to the origin with Mittag-Leffler rate and the weights byy1.,,
p € In_1, converge to some finite constant values.

The next step is to prove the algorithm and the adaptive law drive z =
col(z1,..., 24 ..., xN) to z* with Mittag—Leffler rate for all < € V. Since (@i, 7) converges
to the origin with Mittag—Leffler rate and null-space of = is spanned by 1y, (z, y) in
also converges to (T + 1y ® 7, § + 1y ® k) for some 7, K € R™, in the original
coordinates. According to the uniqueness of the optimizer x*, seek a contradiction to
find 7 = 0.

Then, assume 7 # 0 and the steady-state dynamics of 7 can be obtained by as

1
0=Sver=—(1) @ISV

N
71 * 1 T pB *
1

fﬁ(1;£®1n)(§+lj\r®n)

= %VF(J:* 1) £0,

which is a contradiction. Thus 7 = 0. Therefore, any trajectory of converges to
an equilibrium point (Z, § + 1y ® k), for some k € R™. According to Theorem the
agents’ estimates col(z1,...,2;,...,xy) converge to the optimizer z* of . O

In this subsection, an adapted fractional distributed optimization algorithm is pro-
posed. It relies on DST to design a new adapted framework, which means that dynamic
coupling gains update as the agents communicate along the DST G. Theorem and
Theorem respectively prove the optimality and convergence of the algorithm. The
former analyzes the relationship between the equilibrium point and the optimal solution,
while the latter shows that the algorithm can converge to the equilibrium point with
Mittag—Leffler rate from any initial value so that we can get the solution of problem .

The proposed adaptive DST fractional distributed optimization algorithm demon-
strates significant advantages in solving distributed optimization problems:

i) The fully distributed algorithm eliminates the need for global Laplacian matrix
information through an adaptive coupling weight mechanism, making it highly
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scalable for large-scale systems. The algorithm relaxes the convexity requirement
for local cost functions, allowing non-convex objectives, which significantly expands
its applicability to a wider range of real-world problems.

ii) The algorithm achieves significant improvements in convergence performance. Com-
pared to the algorithm in [35], which only attains asymptotic convergence, the pro-
posed algorithm realizes Mittag—Leffler convergence. Notably, when the fractional
order a = 1x, the proposed algorithm reduces to exponential convergence, not
only maintaining a high convergence rate but also aligning with the convergence
properties of classical integer algorithm.

iii) The integration of fractional calculus enhances the algorithm’s dynamic proper-
ties, thereby improving convergence speed and optimization performance. Also,
the fractional calculus enables the proposed algorithm to achieve discrete-time
operation, making it more suitable for real-world applictions.

Remark 1. Because just using for proving convergence, K can be unknown. For any
initial z(a), y(a) € RN™, and any parameters i, 72 € Ry, algorithm (21)) can ensure
convergence. When setting parameters v; and -, different purposes can be achieved
based on the different effects of v; and 72. 77 can be increased to allows larger step
sizes because of decreasing the local cost, while increasing v, enhances the importance
of communicating the estimates of the global minimizer.

Remark 2. 1n; and 79, although they are related to the global Laplace information, are
not used in the design of the algorithm , and the conditions they fulfill are already
established. Therefore, the designed algorithm still does not rely on the Laplace matrix
information of the global network and is a fully distributed algorithm.

3.2. Distributed resourece allocation problem

Under Assumption [2[ and [3} problem has a unique solution z*. There exists a
unique y* € R™ which is the Lagrangian multiplier as follows,

Vg(@®) + 1y @y" =0,

(1§ ®I,)(z* — D) =0, (44
where Vg(z) = col(Vgi(x1),...,Vgn(zn)) and D = col(dy,...,dn). In the same way,
it is the KKT condition of the question . Specifically, given the Lagrangian function
of problem (20), i.e., L(z,y) = g(z) +y' (1§ ® In)(z — D), the KKT condition
consists of VyL(z,y) =0 and V,L(z,y) = 0.

The resource allocation problem in a distributed system can be transformed into
a consensus optimization problem using the KKT condition, which is regarded as a set of
consensus constraints, i.e., the solution needs to satisfy all the KKT conditions so that
the system reaches the consensus state. Consider the DST-based system resulting from
incorporating a distributed integral feedback action of local dual variables as follows,

o Viz=—r1(Vg(z) +y), (45a)
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CVey=ao-D—(LPeI,)y— (L21,)z, (45b)
SViz= (L oLy, (45¢)

with dynamic coupling gains

gy ={Y  Haicdis (46)
Bp+1i,, ifej €8,

gv?ﬁpﬂn‘p = “2[(yip — Yp+1) — Zjeﬂout(p+1)(yp+l - yj)]T(yip = Yp+1),5 (46b)
where k1, ko € Ry and LP is the gain-dependent Laplacian matrix defined as

L} = —Biwij, i #J,
N
B _ o
Ly = E P Bijwij, i=1,...,N.

The product of the weight w;; and the gain 3;; defines the feedback gain of the relative
error vector (y; — y;) for agent ¢ when updating its states y; and z;. It’s important to
note that a;; is not specified in and , as there are no self-loops in the system.
According to , the gain 3;; is adjusted only when the edge e;; € £. This update
process relies on agent 4, agent j, and all the out-neighbors of agent ¢ in DST, so it is
distributed.

Theorem 3.3. Suppose Assumptions 2 and 3 hold. If (z, 7, ) is an equilibrium of
and z* is the global minimizer of , then (z,7) = (z*, 1y ® y*).

Proof. Substituting (Z,g, z) into (45b)), it follows that
0=z-D—(L°RL)j— (L®1,)z (47)

Since for any £8 € MY, there exists (£° ®1,,)7 = 0 such that § = 1y ® yo, where
yo € R™ is some vector. Therefore, left-multiplying by (1—1\5 ®1,,), it can be obtained
that

0=(1y ®L)@ D)~ 1y @ L)L @ L)j — (1y @ L) (L ® 1)z
:(1; ®1,)(x - D) — (1L£ ® 1)z

Given that 1} £ = 0, there has (1} ® I,,)(Z — D) = 0. Combining this with Vg(z) +
1y ® yo = 0, it can result in and follows that (Z,7) = (2*, 1y ® y*) exists and is
unique.

Additionally, there are infinitely many solutions z that satisfy (L ® I,,)z2 = ¢ — D
because rank(£) = N — 1. In fact, if (Z,y, 2) is an equilibrium of , then for any
Az e R (Z,y,Z2+ 1y ® Az) is also an equilibrium of . a

(48)

Theorem has completed the optimality analysis, indicating that the equilibrium
point of is the optimal solution to the problem . Next, Theorem will
explore the convergence of , proving whether the algorithm can converge to the
equilibrium point from any initial value.
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Theorem 3.4. Under Assumptions 2 and 3, the adaptive algorithm drives (z,y)
to (z*,1x ® y*) with Mittag—Leffler rate for any initial condition z(a),y(a),z(a) €
RN™ x RV™ x RN™ and any Bij(a) € R with spanning-tree-based m-strongly convexity
holding. Moreover, the adaptive gains Bpﬂ,ip ,p € In_1, converge to some finite constant
values.

The spanning-tree-based m-strongly convexity can be explained as follows. There
exists a scalar m € R, such that the following condition (referred to as Va,y € RN"

(z—y) (LY ®1,)(Vg(z) — Vg(y)) = m(z —y) (LY @ L)) (z — y), (49)
where LU = 2T

W E ' E is the unweighted Laplacian matrix of the undirected spanning tree
GY based on G (

is defined as in Lemma .

—
—
—
—

Proof. The first step of the proof is to show that each trajectory of converges to
a equilibrium of .

Define the error vectors between the trajectory of and any equilibrium (Z, g, )
of as follows,

W=r—I, v=y—¥y, nN=2z-—2, (50a)
p=EL)p, v1=EaL), 7=EIL,)n. (50b)
In a component-wise form, fi = col(fi1, ..., fin—1) where fi, = 15, — ppy1, P € In_1.

Note that £% € MN.
According to , by using the statement 2) of Lemma the properties of the
Kronecker product and the fact that (£ ® I,,)§ = 0, a new system comes out

OV = —k1(E@1,)h — k17, (51a)
Ve =1—(Q°®L,)1 - (Q®L,)7, (51b)
SV =(Q°®1L,), (51c)
Cyooan - _ T-

a Vkﬁp—i-l,ip = KQ(UP — Zjeﬁouc(p+1) ’Uj_l) Vp, P (S IN—17 (51(1)

where h = Vg(u+ ) — Vg(Z), and Q (resp. Q° ), is defined as in Lemma [2.5{ based on
the DST G and the (resp. gain-dependent) Laplacian matrix. More specifically, Q° =
QP + @ contains the fixed matrix Q7 (note that SV¢3;; = 0 if e;; € E\E ), and the
time-varying matrix

Bit1,i,Wit14,,  if j=p,
Qpy = —Bitri, Wiy, i G =ip—1, (52)
0, otherwise.

Consider the following candidate Lyapunov function

_143MQTQ)

y
LT e (@)

Vi + VP +
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where Vi = 307 1, Vi = 30T 0435 25 (By g1, () =Gy, )2, Vi = 3(040) T (04
7), and Q° > 0is guaranteed by 3) of Lemma-, and €1, ¢p114, ERy,p=1,..., N1,
will be determined later.

According to Lemma @ the fractional difference of Vj is shown as

OV < —kii (E@L)h — kit 7, (54a)
< —kimi i — ki D, (54b)

2
< —wkmii i+ e i+ :—1@%, (54c)

€2

T KT T
< (62 — /ﬁm)ﬁ ,l_L + 47’17 v, (54(:1)
€2

where €2 € R} is to be decided later. The step in (54b)) is derived from the fact that
AT (E®1,)h > mp' i as known from (50a) and (49) and Young’s inequality was used

to get .

According to Lemma |2 E the fractional difference of Vf is formulated as

VeVl <o -9 (QP@L,)o -0 (Q®L,)
)

N1 - (55)
_ —\T =
T szl Wotviiy (Bp+1.6, = Gpt1.6,) (0 = Zjﬂe/\’/out(pﬂ) %)
Define ® € RV-DX(N=1) zg
Gjt1,i,Wit1,i;, i J=Dp,
Ppj = —Pit1i;Wirr;, i j =1 =1, (56)
0, otherwise.
According to and , it follows that
> Qppa if Jj=n
Wit .= oY _ 57a
L Py {ij, if j+1€ Nows(p+1), o)
&y, if j=p,
w 3 iy g - / 57b
P41y Oyt Ly {cbj,,, if j+1 € Nouw(p+1). (57b)
From , it is inferred that
N-1 _
_ — T~
Zp—1 Wp+1i, (Bpt1,i, — Pp+1,i,) (Up — Zﬂlex\’fout(pﬂ) %)
_ N-1
B
—Z Qppvp Zj:Lj?ép ijvj) Up
N-1
_ T = 58
— Zp . (<I>pp1/p + Zj Ljstp D;p0;)  Up (58)

_Zp 1 ZJ 1 Q]Bp JP)UTUP

7' (Q7 — @) @ L]0
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Therefore, it implies from that

CVeVY <o -9 (Q° 9 L)i— v (QeL)i+7 [(QF — @) ®1L,],

=0 -7 (Q°+®)®1,)0 -1 (Q®L,)7. (59)

The time-varying matrix Q° has been eliminated in , and all the matrices remained
are constant. Also using Young’s inequality, it holds that

~ 5T 75 (O7 L)
CVVE <o h—5 ((Q° + @)@ 1,0+ % LT (@ Qaln

2
1o 2@ L1 g i
St (QS)MTM+(T+§)UT%UT((Q +®)©1L,)0 (60)
T
+/\(Q2 Dy

According to Lemma the fractional difference of Vj; is computed as
SViVa <o p—0" Qe L)+ -7 (Q®L)n. (61)

Using Young’s inequality, it follows that

s 3\ T s
OV, < gg(le)ﬂ i+ (g )17 T+ )\ic(ngC)g)UT’U + )‘(462 )ﬁTﬁ
+ A(fs) RS A(le)ﬂTﬂ —MQ*)7" 7 (62)
s 5y T s
< A(;S)ﬂTﬂﬂL <A<§ 4 i?fo))ﬁT@ - A(ff LT

From , , and , the fractional difference of V; along the trajectory of
(51)) is hmlted by

(]. + SS\(QTQ))(Fle — €1 — 62) T_

Cyoa _
ViV <— : Lp
61&2(625) (63)
_ s ~8\s . AQTQ) 1
(@ L+ Q7)) e LJs - 24 DTy
. . K}2 1 3X T XQ T X T )\2 S
where v € R is given by v = lieltﬂg?@ﬁ?)] + 2 Az((%s)@ +2 (Q2 D 4 (4Q ) 4 %
The aim is to make SV‘;Vl < 0 by choosing appropriate parameters €1, €3, and
®p+1,i,, P =1,..., N —1. Because Q is fixed, selecting €; and €5 satisfying €1 +€2 < kK1m
such that — (1+3>‘(QT€?/\)2((51T c=c2) 5T < 0. Because v and (QP)® are fixed, it only needs

to choose appropriate ¢,1;, such that the inequality ®* — yIx_1 > 0 holds.
According to similar mathematical induction procedures in [36], for any positive real
number ¥, there exists an appropriate choice of ¢p+1,ip. Specifically, let

’_Y _ =2 ¢]1 ',1
G2y > —— Ppt1,i, >+ 4 ’ 51] —
W2,iy wp+1 ip ( p—l)

)
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_ Qp— .
where Q1 = [¢2,;, w2, —7], and Q, = pl ¥p _ | with g, = $[gp1wpr,

%—;r ¢p+1,ipwp+1,ip -7
¢p2wp2,...,¢p7p_1wp7p_1]T,p = 2,...,N — 1. Then, the positive definiteness of ®5 —
AIn—1(n_1) is guaranteed by the Schur complement and the induction principle.

Let M’ = [(®° — yIx_; + (Q?)*) ® I,]. From (63), it can be obtained that

Coa 2014+ 3MQTQ)) (kim —e1 —€2) 1 _+_
V=T a2%(Q%) G (64)
5y T
—2AUWW(%@TW~—593;99ﬁTﬁ

According to , the following inequalities all hold
21+3/_\QTQ K1m —e€1 —€g) 1 _—+_
( ( ) (K1 11— €2) i

Cyoa

VeV < — , 65

a VkEVl = 61&2(625) 2 ( a)

ovev, < — ZA(M’)(%TJTT)L (65b)
o AQTQ) 1+

ovevs < - ( 5 )(gnTn)- (65¢)

Then, using Lemma it can drive (@, v,7) — (0,0,0) with Mittag—Leffler rate by
selecting the appropriate €1, €2 and ¢,11,, and the adaptive gains Bp-‘rl,ipap e In_1,
converge to some finite constant values.
Returning to the original coordinates of , (,9,2) > (T+ Iy QAL T+ 1IN ®
Ay, Z+ 1y @A) = (s, ys, %), where Ay, Ay, A, € R™ are some deviation vectors.
Next step is to proof that A, = A, = 0 holds. The steady-state dynamics of A, and
A, are formulated as follows,

1

1
SV%AI = N(IL ®In)aCVnga SVgAy =

N(l—l\r/ ®In)g gys- (66)

Substituting evaluated at (xs,ys,2s) into the above equations, and noting that
Oﬁ|( =0, it can be obtained that

Z,9,%)
K
CVEA: = — (1) @ L)(V(a:) — Vg(#)) — mA, =0, (67)
SVRA, = A, =0. (67b)

This implies that A, = A, = 0, i.e., (zs,¥s) = (&,7). Thus, every trajectory of
converges to an equilibrium of (45). By Theorem [3.3] it follows that (z,y) —
(Z*, Iy ® y*) O

In this case, the spanning-tree-based m-strongly convex condition holds with
any m < A(0) and for any DST. Immediately, it has the following corollary:

Corollary 3.5. Under Assumptions [2| and |3} the resource allocation problem can
be solved with the adaptive algorithm for any initial conditions (z(a),y(a), z(a) €
RN x RN™ x RV™ and any fi;(a) € R, i.e., (z,y) — (¢*,1y® y*). Moreover, the
adaptive gains Bp+1,ip, p € In_1, converge to some finite constant values.
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In this subsection, the fractional calculus and DST-based adapted frameworks are
applied to solve the distributed resource allocation problem and design a fractional
distributed resource allocation algorithm with DST. It is verified its Mittag—Leffler con-
vergence by Theorem and Theorem as the same as the last section.

The adaptive fractional distributed resource allocation algorithm proposed in this pa-
per demonstrates significant advantages in solving distributed resource allocation prob-

lems:

i)

ii)

iii)

The proposed fully distributed algorithm introduces a DST-based adaptive frame-
work, eliminating the need for global Laplacian matrix information. Moreover,
compared to the algorithm in [38], which requires strong convexity of local func-
tions, the algorithm only requires the global cost function to be convex,
thereby relaxing the restrictions on local functions and enhancing the algorithm’s
applicability and flexibility.

The proposed algorithm achieves Mittag—Leffler convergence, exhibiting faster con-
vergence rates in fractional systems. Notably, when the fractional order a@ = 1,
the algorithm reduces to an integer algorithm while maintaining exponential con-
vergence.

The introduction of fractional calculus enriches the algorithm’s dynamic charac-
teristics, allowing it to better capture memory and hereditary properties, thereby
improving convergence speed and optimization accuracy. By using the Nabla frac-
tional calculus, the algorithm extends from a continuous-time framework to a
discrete-time framework, and broadens its feasible parameter range.

4. NUMERICAL SIMULATIONS

4.1. Simulations of distributed consensus optimization algorithm with DST

The algorithm designed above is tested over a set of one-dimensional cost functions
which are defined over x € R as

fi(x) = 0.5e7%5% 4 0.4¢%37

fo(z) = 2% In(2 + 2?),
f3(z) = 0.522 In(1 + 2?) + 22,
fa(z) = a® + 17,

fs(x) = ln(e —O.1x+eO.3x)+0.1x2’
folw) = (1 +e")7!

Consider the following multi-agent network topology in Figure

To verify the Theorem 7 choose DST G which is red highlighted in Figure [t} and
the parameters in the algorithm are chosen as 71 = 72 = 0.5. Choose initial values z(a),
y(a) selected from the standard Gaussian distribution. The fractional order is chosen as
a=0.38.
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(a) The local estimates z;(k) (b) The parameters bp+1,4,
Fig. 2. The trajectories of the local estimates x;(k) in (a) and the
parameters b, 114, in (b).
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(a) Fractional discrete algorithm (b) Integer continuous algorithm

Fig. 3. Comparison of optimization value errors generated by integer
algorithm in [7] and fractional algorithm (23).
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Fig. 4. The trajectories of the global cost function F' with different
fractional order a.

In the Figure it can see x converges to the global minimum point x*, while the
parameters 6p+17ip, p € Iny_1 converge to fixed constant values in the Figure m

Figure [3| is provided to compare the integer continuous algorithm [7] with the frac-
tional discrete algorithm presented in this paper, both using the digraph in the
Figure [1] and cost functions above. The optimal value error curves for the integer and
fractional algorithms are given respectively. This shows that the algorithm in this paper
can achieve the same convergence performance as the integer algorithm, and it also has
a performance advantage in the comparison that the errors’ trajectory of the fractional
algorithm is smoother, and convergence faster stabilizes at zero. Also, in Figure [4] it
provided a numerical simulation with different fractional order « € (0,1]. It can be
observed that convergence is still achieved.

4.2. Simulations of distributed resource allocation algorithm with DST

Consider N = 6 agents communicating over a new balanced digraph Figure|5| There
is a total resource d and each agent has its local resource d; equally divided by d, which
d; = d/N. The local cost function g;(x) = 0.12% + t;x is associated to each agent i,
and t;, for all ¢ is a random number selected in [1, 100]. Let the initial (xz(a)),y(a), z(a))
randomly chosen from a Gaussian distribution, and the initial 5(a) is chosen randomly
between [0, 1].

Consider the fractional order o = 0.8. Chose k; = k2 = 1 and d = 1.5 x 10%. The
local estimates x; of agents and the dynamic coupling gains # under and
are provided in Figure @ Only Bp41,;, updates in 3. To compare with the first case,
the states of agents and coupling gains on DST are provided in Figure [7| with x; = 10,
ko = 0.1. It shows that a lager x; leads to better transient performance of z; and a
small ko leads to smaller steady values of BpHﬂ'p-

Compare the a = 0.8 fractional discrete algorithm and the integer continuous algo-
rithm [38] with k1 = k2 = 1 and the result is provided in Figure 8] and Figure @ By
comparison, it is clear that the convergence curve of the fractional algorithm is more sta-



398 H. PENG, Y. WEI, S. ZHOU, AND D. YUE

200
) 160 ) Mg
—a— (k)
—o—us(k) 1% = ()
z4(k) 140 —o— Ban(k)
(k) —>— i (k)
—w— (k) 120 Bso(k)
§ 100, Be(k)
80 |
. f—-—----—-—-
40 j
20&6»
30 40 50 60 70 80 90 100 00 10 20 30 40 50 60 70 80 90 100
k k
(a) The local estimates z;(k) (b) The coupling gains Bp+1,ip

Fig. 6. The local estimates x;(k) and the coupling gains Bpﬂ,ip with
K1 = K2 = 1.

ble than that of the integer algorithm, so the fractional algorithm has better robustness
and anti-interference ability. The fractional algorithm also improves the convergence
rate of Berl’ip. In particular, within a certain simulation period k£ = t = 100, the integer
algorithm requires 1383 iteration points, whereas the fractional algorithm needs only 100
iteration points. This comparison highlights the discrete nature of the nabla fractional
algorithm, which demands fewer iteration points or updates while maintaining the same
level of accuracy.

To furnish additional examples, the article presents simulations under the fractional

order o = 0.9 in Figure demonstrating that convergence can likewise be achieved
under these conditions.

To furnish additional examples, the article presents simulations under the fractional
order = 0.9 in Figure demonstrating that convergence can likewise be achieved
under these conditions.
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Fig. 7. The local estimates z;(k) and the coupling gains Bp41,;, with
R1 = 10,&2 =0.1.
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Fig. 8. Comparison of the state ||z;(k) — || of agents generated by
fractional algorithm and integer algorithm in [38].

5. CONCLUSIONS

In this paper, two fully distributed fractional algorithms based on DST are pro-
posed to address optimization and resource allocation problems. The Mittag—Leffler
convergence of both algorithms is rigorously analyzed, and their performance is vali-
dated through extensive simulations. Fitst, the proposed DST-based fully distributed
algorithms eliminate the need for global Laplacian matrix information, and avoids the
requirement for sufficiently small step sizes. Secondly, by incorporating fractional cal-
culus, the algorithms achieve improved performance and reduced communication costs.
Moreover, both algorithms relax the convexity condition, requiring only the global cost
function to be convex while allowing local cost functions to be non-convex. Future re-
search will focus on extending the framework to unbalanced digraphs, further reducing
dependencies on directed spanning tree matrix information and exploring the effects of
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Fig. 9. Comparison of the gains Bp_HJ-p of agents generated by
fractional algorithm and integer algorithm in [3§].
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Fig. 10. The trajectories of the state ||z;(k) — || in (a) and the
gains Bp41,i, in (b) with o = 0.9.

introducing noise to create controlled interference in the algorithms.
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