Mathematica Bohemica

Gamaliel Cerda-Morales
On generalized bihyperbolic third-order Jacobsthal polynomials

Mathematica Bohemica, Vol. 150 (2025), No. 3, 393-403

Persistent URL: http://dml.cz/dmlcz/153083

Terms of use:

© Institute of Mathematics AS CR, 2025

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://dml.cz

ON GENERALIZED BIHYPERBOLIC THIRD-ORDER JACOBSTHAL POLYNOMIALS

Gamaliel Cerda-Morales

Received March 30, 2024. Published online December 6, 2024. Communicated by Clemens Fuchs

Cordially dedicated to daughter Julieta

Abstract. A new generalization of third-order Jacobsthal bihyperbolic polynomials is introduced. Some of the properties of presented polynomials are given. A general Vajda formula for the generalized bihyperbolic third-order Jacobsthal polynomials is obtained. This result implies the Catalan, Cassini and d'Ocagne identities. Moreover, generating function and matrix generators for these polynomials are presented.

Keywords: third-order Jacobsthal number; hyperbolic number; bihyperbolic number; recurrence relation

MSC 2020: 11B37, 11B39

1. Introduction

Let **h** be the unipotent element such that $\mathbf{h} \neq \pm 1$ and $\mathbf{h}^2 = 1$. A hyperbolic number H is defined as $\mathbf{H} = a + b\mathbf{h}$, where $a, b \in \mathbb{R}$. Denote by \mathcal{H} the set of hyperbolic numbers. The hyperbolic numbers were introduced by Cockle (see [8], [9]).

The addition and subtraction of hyperbolic numbers is done by adding and subtracting the appropriate terms and thus their coefficients. The hyperbolic numbers multiplication can be made analogously as multiplication of algebraic expressions using the rule $\mathbf{h}^2 = 1$. The real numbers a and b are called the real and unipotent parts of the hyperbolic number H, respectively. For other details concerning hyperbolic numbers see for example [12].

In [11], Olariu introduced commutative hypercomplex numbers in different dimensions. One of the 4-dimensional commutative hypercomplex numbers is called the hyperbolic four complex number. In [12], the authors used the name bihyperbolic

DOI: 10.21136/MB.2024.0037-24

numbers. Note that bihyperbolic numbers are a special case of generalized Segre's quaternions, being a 4-dimensional commutative number system, and they are named as canonical hyperbolic quaternions (see [3]).

In this paper, we use the name bihyperbolic numbers. Analogously as bicomplex numbers are an extension of complex numbers, bihyperbolic numbers are a natural extension of hyperbolic numbers to 4-dimension.

Let \mathcal{H}_2 be the set of bihyperbolic numbers ζ of the form

$$\zeta = a_0 + a_1 j_1 + a_2 j_2 + a_3 j_3,$$

where $a_i \in \mathbb{R}$ (i = 0, 1, 2, 3), and $j_1, j_2, j_3 \notin \mathbb{R}$ are operators such that

(1.1)
$$j_1^2 = j_2^2 = j_3^2 = 1,$$
$$j_1 j_2 = j_2 j_1 = j_3, \ j_1 j_3 = j_3 j_1 = j_2, \ j_2 j_3 = j_3 j_2 = j_1.$$

The addition and multiplication on \mathcal{H}_2 are commutative and associative. Moreover, $(\mathcal{H}_2, +, \cdot)$ is a commutative ring. For the algebraic properties of bihyperbolic numbers, review the work of Bilgin and Ersoy (see [2]).

In this paper, we study a generalization of bihyperbolic third-order Jacobsthal numbers. The third-order Jacobsthal sequence $\{\mathcal{J}_n^{(3)}\}_{n\geqslant 0}$ is defined by the recurrence

(1.2)
$$\mathcal{J}_{n+3}^{(3)} = \mathcal{J}_{n+2}^{(3)} + \mathcal{J}_{n+1}^{(3)} + 2\mathcal{J}_{n}^{(3)}, \quad \text{for } n \geqslant 0,$$

with $\mathcal{J}_0^{(3)}=0$ and $\mathcal{J}_1^{(3)}=\mathcal{J}_2^{(3)}=1$. The Binet formula for the third-order Jacobsthal numbers has the form

(1.3)
$$\mathcal{J}_n^{(3)} = \frac{2^{n+1}}{7} - \frac{\omega_1^{n+1}}{(2-\omega_1)(\omega_1 - \omega_2)} + \frac{\omega_2^{n+1}}{(2-\omega_2)(\omega_1 - \omega_2)},$$

where $\omega_1 + \omega_2 = -1$, and $\omega_1 \omega_2 = 1$.

Some interesting properties of the third-order Jacobsthal numbers can be found in [10]. In the literature there are some generalizations of the third-order Jacobsthal numbers, see [4], [5], [6]. In [7], a one parameter generalization of the third-order Jacobsthal numbers was investigated. We recall this generalization.

For any variable quantity x such that $x^3 \neq 1$, the third-order Jacobsthal polynomials by the recurrence relation for $n \geq 0$:

(1.4)
$$\mathcal{J}_{n+3}^{(3)}(x) = (x-1)\mathcal{J}_{n+2}^{(3)}(x) + (x-1)\mathcal{J}_{n+1}^{(3)}(x) + x\mathcal{J}_{n}^{(3)}(x)$$

with the initial conditions $\mathcal{J}_0^{(3)}(x)=0$, $\mathcal{J}_1^{(3)}(x)=1$ and $\mathcal{J}_2^{(3)}(x)=x-1$. It is easily seen that $\mathcal{J}_n^{(3)}(2)=\mathcal{J}_n^{(3)}$. Binet formula of third-order Jacobsthal polynomials $J_n^{(3)}(x)$ is given by

(1.5)
$$\mathcal{J}_n^{(3)}(x) = \frac{x^{n+1}}{x^2 + x + 1} - \frac{\omega_1^{n+1}}{(x - \omega_1)(\omega_1 - \omega_2)} + \frac{\omega_2^{n+1}}{(x - \omega_2)(\omega_1 - \omega_2)},$$

where x is any variable quantity such that $x^3 \neq 1$, ω_1 and ω_2 are the roots of the characteristic equation $\lambda^2 + \lambda + 1 = 0$.

In [1], the Unrestricted Fibonacci quaternion $\mathcal{F}_n^{(a,b,c)}$ was introduced. For an integer n and any integers a, b and c, the generalized Fibonacci quaternion is defined by

$$\mathcal{F}_{n}^{(a,b,c)} = F_{n} + F_{n+a}i + F_{n+b}j + F_{n+c}k,$$

where $\{i, j, k\}$ is the standard basis of quaternions and F_n is the *n*th Fibonacci number. Motivated by the mentioned concept, in this paper, we introduce and study generalized bihyperbolic third-order Jacobsthal numbers.

2. Generalized bihyperbolic third-order Jacobsthal polynomials

Let $a \ge 1$, $b \ge 1$, $c \ge 1$ and $n \ge 0$ be integers, the *n*th generalized bihyperbolic third-order Jacobsthal polynomial $\mathcal{BJ}_n^{(a,b,c)}(x)$ is defined as

(2.1)
$$\mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x) = \mathcal{J}_{n}^{(3)}(x) + \mathcal{J}_{n+a}^{(3)}(x)j_{1} + \mathcal{J}_{n+b}^{(3)}(x)j_{2} + \mathcal{J}_{n+c}^{(3)}(x)j_{3},$$

where $\mathcal{J}_n^{(3)}(x)$ is the *n*th third-order Jacobsthal polynomial and operators j_1, j_2, j_3 satisfy (1.1).

By (2.1) we obtain

(2.2)
$$\mathcal{B}\mathcal{J}_{0}^{(a,b,c)}(x) = \mathcal{J}_{0}^{(3)}(x) + \mathcal{J}_{a}^{(3)}(x)j_{1} + \mathcal{J}_{b}^{(3)}(x)j_{2} + \mathcal{J}_{c}^{(3)}(x)j_{3},$$

$$\mathcal{B}\mathcal{J}_{1}^{(a,b,c)}(x) = \mathcal{J}_{1}^{(3)}(x) + \mathcal{J}_{a+1}^{(3)}(x)j_{1} + \mathcal{J}_{b+1}^{(3)}(x)j_{2} + \mathcal{J}_{c+1}^{(3)}(x)j_{3},$$

$$\mathcal{B}\mathcal{J}_{2}^{(a,b,c)}(x) = \mathcal{J}_{2}^{(3)}(x) + \mathcal{J}_{a+2}^{(3)}(x)j_{1} + \mathcal{J}_{b+2}^{(3)}(x)j_{2} + \mathcal{J}_{c+2}^{(3)}(x)j_{3}.$$

For $a=1,\,b=2,\,c=3$, we obtain the definition of the *n*th bihyperbolic third-order Jacobsthal polynomial $\mathcal{BJ}_n^{(1,2,3)}(x)$, i.e., $\mathcal{BJ}_n^{(1,2,3)}(x)=\mathcal{BJ}_n(x)$.

By the definition of the generalized bihyperbolic third-order Jacobsthal polynomial we get the following recurrence relations.

Theorem 2.1. Let $n \ge 3$, $a \ge 1$, $b \ge 1$ and $c \ge 1$ be integers. Then

(2.3)
$$\mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x) = (x-1)\mathcal{B}\mathcal{J}_{n-1}^{(a,b,c)}(x) + (x-1)\mathcal{B}\mathcal{J}_{n-2}^{(a,b,c)}(x) + x\mathcal{B}\mathcal{J}_{n-3}^{(a,b,c)}(x),$$

where $\mathcal{B}\mathcal{J}_{0}^{(a,b,c)}(x)$, $\mathcal{B}\mathcal{J}_{1}^{(a,b,c)}(x)$ and $\mathcal{B}\mathcal{J}_{2}^{(a,b,c)}(x)$ are given by (2.2).

Proof. Using (2.1) and (1.4), we have

$$\begin{split} &(x-1)\mathcal{B}\mathcal{J}_{n-1}^{(a,b,c)}(x) + (x-1)\mathcal{B}\mathcal{J}_{n-2}^{(a,b,c)}(x) + x\mathcal{B}\mathcal{J}_{n-3}^{(a,b,c)}(x) \\ &= (x-1)(\mathcal{J}_{n-1}^{(3)}(x) + \mathcal{J}_{n+a-1}^{(3)}(x)j_1 + \mathcal{J}_{n+b-1}^{(3)}(x)j_2 + \mathcal{J}_{n+c-1}^{(3)}(x)j_3) \\ &\quad + (x-1)(\mathcal{J}_{n-2}^{(3)}(x) + \mathcal{J}_{n+a-2}^{(3)}(x)j_1 + \mathcal{J}_{n+b-2}^{(3)}(x)j_2 + \mathcal{J}_{n+c-2}^{(3)}(x)j_3) \\ &\quad + x(\mathcal{J}_{n-3}^{(3)}(x) + \mathcal{J}_{n+a-3}^{(3)}(x)j_1 + \mathcal{J}_{n+b-3}^{(3)}(x)j_2 + \mathcal{J}_{n+c-3}^{(3)}(x)j_3) \\ &= \mathcal{J}_n^{(3)}(x) + \mathcal{J}_{n+a}^{(3)}(x)j_1 + \mathcal{J}_{n+b}^{(3)}(x)j_2 + \mathcal{J}_{n+c}^{(3)}(x)j_3 = \mathcal{B}\mathcal{J}_n^{(a,b,c)}(x). \end{split}$$

The proof is completed.

In the proof of the next theorem we use the following result (see [7]).

Lemma 2.2. For any variable quantity x such that $x^3 \neq 1$, we have

(2.4)
$$\mathcal{J}_{n+2}^{(3)}(x) = -\mathcal{J}_{n+1}^{(3)}(x) - \mathcal{J}_{n}^{(3)}(x) + x^{n+1}.$$

Theorem 2.3. Let $n \ge 0$, $a \ge 1$, $b \ge 1$, $c \ge 1$ be integers. Then

$$\mathcal{B}\mathcal{J}_{n+2}^{(a,b,c)}(x) + \mathcal{B}\mathcal{J}_{n+1}^{(a,b,c)}(x) + \mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x) = x^{n+1}(1+x^aj_1+x^bj_2+x^cj_3).$$

Proof. By equality (2.1) and Lemma 2.2, we have

$$\begin{split} &\mathcal{B}\mathcal{J}_{n+2}^{(a,b,c)}(x) + \mathcal{B}\mathcal{J}_{n+1}^{(a,b,c)}(x) + \mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x) \\ &= \mathcal{J}_{n+2}^{(3)}(x) + \mathcal{J}_{n+a+2}^{(3)}(x)j_1 + \mathcal{J}_{n+b+2}^{(3)}(x)j_2 + \mathcal{J}_{n+c+2}^{(3)}(x)j_3 + \mathcal{J}_{n+1}^{(3)}(x) + \mathcal{J}_{n+a+1}^{(3)}(x)j_1 \\ &+ \mathcal{J}_{n+b+1}^{(3)}(x)j_2 + \mathcal{J}_{n+c+1}^{(3)}(x)j_3 + \mathcal{J}_{n}^{(3)}(x) + \mathcal{J}_{n+a}^{(3)}(x)j_1 + \mathcal{J}_{n+b}^{(3)}(x)j_2 + \mathcal{J}_{n+c}^{(3)}(x)j_3 \\ &= \mathcal{J}_{n+2}^{(3)}(x) + \mathcal{J}_{n+1}^{(3)}(x) + \mathcal{J}_{n}^{(3)}(x) + (\mathcal{J}_{n+a+2}^{(3)}(x) + \mathcal{J}_{n+a+1}^{(3)}(x) + \mathcal{J}_{n+a}^{(3)}(x))j_1 \\ &+ (\mathcal{J}_{n+b+2}^{(3)}(x) + \mathcal{J}_{n+b+1}^{(3)}(x) + \mathcal{J}_{n+b}^{(3)}(x))j_2 \\ &+ (\mathcal{J}_{n+c+2}^{(3)}(x) + \mathcal{J}_{n+c+1}^{(3)}(x) + \mathcal{J}_{n+c}^{(3)}(x))j_3 \\ &= x^{n+1}(1 + x^a j_1 + x^b j_2 + x^c j_3). \end{split}$$

Now, we give the Binet formula for the generalized bihyperbolic third-order Jacobsthal polynomials.

Theorem 2.4 (Binet formula for the sequence $\mathcal{BJ}_n^{(a,b,c)}(x)$). Let $n \ge 0$, $a \ge 1$, $b \ge 1$, $c \ge 1$ be integers. Then

$$\mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x) = \frac{x^{n+1}\Theta}{x^{2}+x+1} - \frac{\omega_{1}^{n+1}\Phi_{1}}{(x-\omega_{1})(\omega_{1}-\omega_{2})} + \frac{\omega_{2}^{n+1}\Phi_{2}}{(x-\omega_{2})(\omega_{1}-\omega_{2})},$$

where $\Theta = 1 + x^a j_1 + x^b j_2 + x^c j_3$, $\Phi_1 = 1 + \omega_1^a j_1 + \omega_1^b j_2 + \omega_1^c j_3$ and $\Phi_2 = 1 + \omega_2^a j_1 + \omega_2^b j_2 + \omega_2^c j_3$.

Proof. By formulas (2.1) and (1.5) we get

$$\mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x) = \mathcal{J}_{n}^{(3)}(x) + \mathcal{J}_{n+a}^{(3)}(x)j_{1} + \mathcal{J}_{n+b}^{(3)}(x)j_{2} + \mathcal{J}_{n+c}^{(3)}(x)j_{3}$$

$$= \frac{x^{n+1}}{x^{2} + x + 1} - \frac{\omega_{1}^{n+1}}{(x - \omega_{1})(\omega_{1} - \omega_{2})} + \frac{\omega_{2}^{n+1}}{(x - \omega_{2})(\omega_{1} - \omega_{2})}$$

$$+ \frac{x^{n+a+1}j_{1}}{x^{2} + x + 1} - \frac{\omega_{1}^{n+a+1}j_{1}}{(x - \omega_{1})(\omega_{1} - \omega_{2})} + \frac{\omega_{2}^{n+a+1}j_{1}}{(x - \omega_{2})(\omega_{1} - \omega_{2})}$$

$$+ \frac{x^{n+b+1}j_{2}}{x^{2} + x + 1} - \frac{\omega_{1}^{n+b+1}j_{2}}{(x - \omega_{1})(\omega_{1} - \omega_{2})} + \frac{\omega_{2}^{n+b+1}j_{2}}{(x - \omega_{2})(\omega_{1} - \omega_{2})}$$

$$+ \frac{x^{n+c+1}j_{3}}{x^{2} + x + 1} - \frac{\omega_{1}^{n+c+1}j_{3}}{(x - \omega_{1})(\omega_{1} - \omega_{2})} + \frac{\omega_{2}^{n+c+1}j_{3}}{(x - \omega_{2})(\omega_{1} - \omega_{2})}$$

$$= \frac{x^{n+1}\Theta}{x^{2} + x + 1} - \frac{\omega_{1}^{n+1}\Phi_{1}}{(x - \omega_{1})(\omega_{1} - \omega_{2})} + \frac{\omega_{2}^{n+1}\Phi_{2}}{(x - \omega_{2})(\omega_{1} - \omega_{2})},$$

where $\Theta = 1 + x^a j_1 + x^b j_2 + x^c j_3$, $\Phi_1 = 1 + \omega_1^a j_1 + \omega_1^b j_2 + \omega_1^c j_3$ and $\Phi_2 = 1 + \omega_2^a j_1 + \omega_2^b j_2 + \omega_2^c j_3$.

By Theorem 2.4, we get the Binet formula for the bihyperbolic third-order Jacobsthal polynomials.

Corollary 2.5. Let $n \ge 0$ be an integer. Then

$$\mathcal{BJ}_n(x) = \frac{x^{n+1}(1+xj_1+x^2j_2+x^3j_3)}{x^2+x+1} - \frac{\omega_1^{n+1}(1+\omega_1j_1+\omega_2j_2+j_3)}{(x-\omega_1)(\omega_1-\omega_2)} + \frac{\omega_2^{n+1}(1+\omega_2j_1+\omega_1j_2+j_3)}{(x-\omega_2)(\omega_1-\omega_2)}.$$

For simplicity of notation, let

(2.5)
$$\mathcal{Z}_n(x) = \frac{1}{\omega_1 - \omega_2} ((\omega_1 x - 1)\omega_1^n \Phi_1 - (\omega_2 x - 1)\omega_2^n \Phi_2).$$

Then the Binet formula of the generalized bihyperbolic third-order Jacobsthal polynomials is given by

(2.6)
$$\mathcal{B}\mathcal{J}_n^{(a,b,c)}(x) = \frac{1}{x^2 + x + 1} (x^{n+1}\Theta - \mathcal{Z}_n(x)).$$

Note that $\mathcal{Z}_n(x) + \mathcal{Z}_{n+1}(x) + \mathcal{Z}_{n+2}(x) = 0$.

Assume that $a \ge 1$, $b \ge 1$, $c \ge 1$ are integers. The Vajda's identity for the sequence $\mathcal{Z}_n(x)$ and generalized bihyperbolic third-order Jacobsthal polynomials is given in the next theorem.

Theorem 2.6. Let $n \ge 0$, $p \ge 0$, $q \ge 0$ be integers. Then we have

$$(2.7) \quad \mathcal{Z}_{n+p}(x)\mathcal{Z}_{n+q}(x) - \mathcal{Z}_n(x)\mathcal{Z}_{n+p+q}(x) = (x^2 + x + 1)\mathcal{A}_p\mathcal{A}_q\Phi_1\Phi_2,$$

(2.8)
$$\mathcal{B}\mathcal{J}_{n+p}^{(a,b,c)}(x)\mathcal{B}\mathcal{J}_{n+q}^{(a,b,c)}(x) - \mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x)\mathcal{B}\mathcal{J}_{n+p+q}^{(a,b,c)}(x)$$

$$= \frac{1}{(x^2+x+1)^2} \{ (x^2+x+1)\mathcal{A}_p \mathcal{A}_q \Phi_1 \Phi_2 + x^{n+1} \Theta(\mathcal{B}_{n+q}(p) - x^q \mathcal{B}_n(p)) \},$$

where
$$\mathcal{A}_n = (\omega_1^n - \omega_2^n)/(\omega_1 - \omega_2)$$
 and $\mathcal{B}_n(p) = \mathcal{Z}_{n+p}(x) - x^p \mathcal{Z}_n(x)$.

Proof. (2.7): Using (2.5), $A = \omega_1 x - 1$ and $B = \omega_2 x - 1$, we have

$$(\omega_{1} - \omega_{2})^{2} [\mathcal{Z}_{n+p}(x)\mathcal{Z}_{n+q}(x) - \mathcal{Z}_{n}(x)\mathcal{Z}_{n+p+q}(x)]$$

$$= (A\omega_{1}^{n+p}\Phi_{1} - B\omega_{2}^{n+p}\Phi_{2})(A\omega_{1}^{n+q}\Phi_{1} - B\omega_{2}^{n+q}\Phi_{2})$$

$$- (A\omega_{1}^{n}\Phi_{1} - B\omega_{2}^{n}\Phi_{2})(A\omega_{1}^{n+p+q}\Phi_{1} - B\omega_{2}^{n+p+q}\Phi_{2})$$

$$= AB(\omega_{1}^{p} - \omega_{2}^{p})(\omega_{1}^{q}\Phi_{2}\Phi_{1} - \omega_{2}^{q}\Phi_{1}\Phi_{2})$$

$$= (\omega_{1} - \omega_{2})^{2}(x^{2} + x + 1)\mathcal{A}_{n}\mathcal{A}_{q}\Phi_{1}\Phi_{2},$$

where $A_n = (\omega_1^n - \omega_2^n)/(\omega_1 - \omega_2)$.

By formula (2.6) and (2.7), we get

$$(x^{2} + x + 1)^{2} [\mathcal{B}\mathcal{J}_{n+p}^{(a,b,c)}(x)\mathcal{B}\mathcal{J}_{n+q}^{(a,b,c)}(x) - \mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x)\mathcal{B}\mathcal{J}_{n+p+q}^{(a,b,c)}(x)]$$

$$= (x^{n+p+1}\Theta - \mathcal{Z}_{n+p}(x))(x^{n+q+1}\Theta - \mathcal{Z}_{n+q}(x))$$

$$- (x^{n+1}\Theta - \mathcal{Z}_{n}(x))(x^{n+p+q+1}\Theta - \mathcal{Z}_{n+p+q}(x))$$

$$= \mathcal{Z}_{n+p}(x)\mathcal{Z}_{n+q}(x) - \mathcal{Z}_{n}(x)\mathcal{Z}_{n+p+q}(x) + x^{n+1}\Theta(\mathcal{B}_{n+q}(p) - x^{q}\mathcal{B}_{n}(p))$$

$$= (x^{2} + x + 1)\mathcal{A}_{n}\mathcal{A}_{q}\Phi_{1}\Phi_{2} + x^{n+1}\Theta(\mathcal{B}_{n+q}(p) - x^{q}\mathcal{B}_{n}(p)),$$

where
$$\mathcal{B}_n(p) = \mathcal{Z}_{n+p}(x) - x^p \mathcal{Z}_n(x)$$
.

It is easily seen that for special values of p and q by Theorem 2.6, we get new identities for generalized bihyperbolic third-order Jacobsthal polynomials:

Catalan's identity: q = -p.

Cassini's identity: p = 1, q = -1.

d'Ocagne's identity: p = 1, q = m - n with $m \ge n$.

Corollary 2.7. Catalan identity for generalized bihyperbolic third-order Jacobsthal polynomials. Let $n \ge 0$, $p \ge 0$ be integers such that $n \ge p$. Then

$$(2.9) \quad \mathcal{B}\mathcal{J}_{n+p}^{(a,b,c)}(x)\mathcal{B}\mathcal{J}_{n-p}^{(a,b,c)}(x) - (\mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x))^{2}$$

$$= \frac{1}{(x^{2}+x+1)^{2}} \{-(x^{2}+x+1)\mathcal{A}_{p}^{2}\Phi_{1}\Phi_{2} + x^{n+1}\Theta(\mathcal{B}_{n-p}(p) - x^{-p}\mathcal{B}_{n}(p))\}$$

Corollary 2.8. Cassini identity for generalized bihyperbolic third-order Jacobsthal polynomials. Let $n \ge 1$ be an integer. Then

$$(2.10) \quad \mathcal{B}\mathcal{J}_{n+1}^{(a,b,c)}(x)\mathcal{B}\mathcal{J}_{n-1}^{(a,b,c)}(x) - (\mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x))^{2}$$

$$= \frac{1}{(x^{2}+x+1)^{2}} \{-(x^{2}+x+1)\Phi_{1}\Phi_{2} + x^{n+1}\Theta(\mathcal{B}_{n-1}(1)-x^{-1}\mathcal{B}_{n}(1))\}$$

Corollary 2.9. d'Ocagne identity for generalized bihyperbolic third-order Jacobsthal polynomials. Let $n \ge 0$, $m \ge 0$ be integers such that $m \ge n$. Then (2.11)

$$\mathcal{B}\mathcal{J}_{n+1}^{(a,b,c)}(x)\mathcal{B}\mathcal{J}_{m}^{(a,b,c)}(x) - \mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x)\mathcal{B}\mathcal{J}_{m+1}^{(a,b,c)}(x)$$

$$= \frac{1}{(x^{2} + x + 1)^{2}} \{ (x^{2} + x + 1)\mathcal{A}_{m-n}\Phi_{1}\Phi_{2} + x^{n+1}\Theta(\mathcal{B}_{m}(1) - x^{m-n}\mathcal{B}_{n}(1)) \}$$

Now, we give the ordinary generating function for the generalized bihyperbolic third-order Jacobsthal polynomials.

Theorem 2.10. The generating function for the generalized bihyperbolic third-order Jacobsthal polynomial sequence $\mathcal{B}\mathcal{J}_n^{(a,b,c)}(x)$ is

$$g_{\mathcal{B}\mathcal{J}}(t;x) = \frac{\left\{ \mathcal{B}\mathcal{J}_{0}^{(a,b,c)}(x) + (\mathcal{B}\mathcal{J}_{1}^{(a,b,c)}(x) - (x-1)\mathcal{B}\mathcal{J}_{0}^{(a,b,c)}(x))t + (\mathcal{B}\mathcal{J}_{2}^{(a,b,c)}(x) - (x-1)\mathcal{B}\mathcal{J}_{1}^{(a,b,c)}(x) - (x-1)\mathcal{B}\mathcal{J}_{0}^{(a,b,c)}(x))t^{2} \right\}}{1 - (x-1)t - (x-1)t^{3} - xt^{3}}.$$

Proof. Let

$$g_{\mathcal{B}\mathcal{J}}(t;x) = \mathcal{B}\mathcal{J}_0^{(a,b,c)}(x) + \mathcal{B}\mathcal{J}_1^{(a,b,c)}(x)t + \mathcal{B}\mathcal{J}_2^{(a,b,c)}(x)t^2 + \ldots + \mathcal{B}\mathcal{J}_n^{(a,b,c)}(x)t^n + \ldots$$

be the generating function of the generalized bihyperbolic third-order Jacobsthal polynomials. Hence, we have

$$(x-1)tg_{\mathcal{B}\mathcal{J}}(t;x) = (x-1)\mathcal{B}\mathcal{J}_{0}^{(a,b,c)}(x)t + (x-1)\mathcal{B}\mathcal{J}_{1}^{(a,b,c)}(x)t^{2}$$

$$+ (x-1)\mathcal{B}\mathcal{J}_{2}^{(a,b,c)}(x)t^{3} + \dots$$

$$(x-1)t^{2}g_{\mathcal{B}\mathcal{J}}(t;x) = (x-1)\mathcal{B}\mathcal{J}_{0}^{(a,b,c)}(x)t^{2} + (x-1)\mathcal{B}\mathcal{J}_{1}^{(a,b,c)}(x)t^{3}$$

$$+ (x-1)\mathcal{B}\mathcal{J}_{2}^{(a,b,c)}(x)t^{4} + \dots$$

$$xt^{3}g_{\mathcal{B}\mathcal{J}}(t;x) = x\mathcal{B}\mathcal{J}_{0}^{(a,b,c)}(x)t^{3} + x\mathcal{B}\mathcal{J}_{1}^{(a,b,c)}(x)t^{4} + x\mathcal{B}\mathcal{J}_{2}^{(a,b,c)}(x)t^{5} + \dots$$

Using recurrence (2.3), we get

$$g_{\mathcal{B}\mathcal{J}}(t;x)(1-(x-1)t-(x-1)t^3-xt^3) = \begin{cases} \mathcal{B}\mathcal{J}_0^{(a,b,c)}(x) + (\mathcal{B}\mathcal{J}_1^{(a,b,c)}(x) - (x-1)\mathcal{B}\mathcal{J}_0^{(a,b,c)}(x))t \\ + (\mathcal{B}\mathcal{J}_2^{(a,b,c)}(x) - (x-1)\mathcal{B}\mathcal{J}_1^{(a,b,c)}(x) - (x-1)\mathcal{B}\mathcal{J}_0^{(a,b,c)}(x))t^2 \end{cases}$$

Thus

$$g_{\mathcal{B}\mathcal{J}}(t;x) = \frac{\left\{ \mathcal{B}\mathcal{J}_0^{(a,b,c)}(x) + (\mathcal{B}\mathcal{J}_1^{(a,b,c)}(x) - (x-1)\mathcal{B}\mathcal{J}_0^{(a,b,c)}(x))t + (\mathcal{B}\mathcal{J}_2^{(a,b,c)}(x) - (x-1)\mathcal{B}\mathcal{J}_1^{(a,b,c)}(x) - (x-1)\mathcal{B}\mathcal{J}_0^{(a,b,c)}(x))t^2 \right\}}{1 - (x-1)t - (x-1)t^3 - xt^3}.$$

In the next theorem we give a summation formula for the generalized bihyperbolic third-order Jacobsthal polynomials. In the proof we use the following result.

Lemma 2.11 (Proposition 5, [7]). If $\mathcal{J}_n^{(3)}(x)$ is the *n*th term of the third-order Jacobsthal polynomial sequence, then

(2.12)
$$\sum_{n=0}^{n} \mathcal{J}_{n}^{(3)}(x) = \frac{1}{3(x-1)} (\mathcal{J}_{n+2}^{(3)}(x) - (x-2)\mathcal{J}_{n+1}^{(3)}(x) + x\mathcal{J}_{n}^{(3)}(x) - 1).$$

Theorem 2.12. Let $n \ge 0$, $a \ge 1$, $b \ge 1$, $c \ge 1$ be integers. Then

$$(2.13) \sum_{s=0}^{n} \mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x) = \frac{1}{3(x-1)} \left\{ (2x-3)\mathcal{B}\mathcal{J}_{0}^{(a,b,c)}(x) + (x-2)\mathcal{B}\mathcal{J}_{1}^{(a,b,c)}(x) \\ -\mathcal{B}\mathcal{J}_{2}^{(a,b,c)}(x) + \mathcal{B}\mathcal{J}_{n+2}^{(a,b,c)}(x) \\ -(x-2)\mathcal{B}\mathcal{J}_{n+1}^{(a,b,c)}(x) + x\mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x) \right\}.$$

Proof. We use induction on n. If n = 0, we obtain

$$\mathcal{B}\mathcal{J}_{0}^{(a,b,c)}(x) = \frac{1}{3(x-1)} \left\{ (2x-3)\mathcal{B}\mathcal{J}_{0}^{(a,b,c)}(x) + (x-2)\mathcal{B}\mathcal{J}_{1}^{(a,b,c)}(x) \\ -\mathcal{B}\mathcal{J}_{2}^{(a,b,c)}(x) + \mathcal{B}\mathcal{J}_{2}^{(a,b,c)}(x) \\ -(x-2)\mathcal{B}\mathcal{J}_{1}^{(a,b,c)}(x) + x\mathcal{B}\mathcal{J}_{0}^{(a,b,c)}(x) \right\}$$

$$= 3(x-1)\mathcal{B}\mathcal{J}_{0}^{(a,b,c)}(x),$$

then the result is obvious. Assuming formula (2.13) holds for $n \ge 0$, we shall prove it for n + 1. Using the induction's hypothesis and formula (2.3), we have

$$\begin{split} \sum_{s=0}^{n+1} \mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x) &= \sum_{s=0}^{n} \mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x) + \mathcal{B}\mathcal{J}_{n+1}^{(a,b,c)}(x) \\ &= \frac{1}{3(x-1)} \left\{ \begin{aligned} &(2x-3)\mathcal{B}\mathcal{J}_{0}^{(a,b,c)}(x) + (x-2)\mathcal{B}\mathcal{J}_{1}^{(a,b,c)}(x) \\ &- \mathcal{B}\mathcal{J}_{2}^{(a,b,c)}(x) + \mathcal{B}\mathcal{J}_{n+2}^{(a,b,c)}(x) \\ &- (x-2)\mathcal{B}\mathcal{J}_{n+1}^{(a,b,c)}(x) + x\mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x) \\ &+ (3x-3)\mathcal{B}\mathcal{J}_{n+1}^{(a,b,c)}(x) \end{aligned} \right. \\ &= \frac{1}{3(x-1)} \left\{ \begin{aligned} &(2x-3)\mathcal{B}\mathcal{J}_{0}^{(a,b,c)}(x) + (x-2)\mathcal{B}\mathcal{J}_{1}^{(a,b,c)}(x) \\ &- \mathcal{B}\mathcal{J}_{2}^{(a,b,c)}(x) + \mathcal{B}\mathcal{J}_{n+3}^{(a,b,c)}(x) \\ &- (x-2)\mathcal{B}\mathcal{J}_{n+2}^{(a,b,c)}(x) + x\mathcal{B}\mathcal{J}_{n+1}^{(a,b,c)}(x) \end{aligned} \right\}, \end{split}$$

which ends the proof.

At the end, we give matrix representations of the polynomials $\mathcal{BJ}_n^{(a,b,c)}(x)$. By equality (2.3) we get the following result.

Theorem 2.13. Let $n \ge 1$ be an integer. Then

(2.14)
$$\begin{bmatrix} \mathcal{B}\mathcal{J}_{n+2}^{(a,b,c)}(x) \\ \mathcal{B}\mathcal{J}_{n+1}^{(a,b,c)}(x) \\ \mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x) \end{bmatrix} = \mathbf{Q}_{\mathcal{J}} \cdot \begin{bmatrix} \mathcal{B}\mathcal{J}_{n+1}^{(a,b,c)}(x) \\ \mathcal{B}\mathcal{J}_{n}^{(a,b,c)}(x) \\ \mathcal{B}\mathcal{J}_{n-1}^{(a,b,c)}(x) \end{bmatrix},$$

where

$$\mathbf{Q}_{\mathcal{J}} = \begin{bmatrix} x - 1 & x - 1 & x \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

Theorem 2.14. Let $n \ge 0$ be an integer. Then

$$\begin{bmatrix} \mathcal{B}\mathcal{J}_{n+3}^{(a,b,c)} & \mathcal{T}_{n+4}^{(a,b,c)} & x\mathcal{B}\mathcal{J}_{n+2}^{(a,b,c)} \\ \mathcal{B}\mathcal{J}_{n+2}^{(a,b,c)} & \mathcal{T}_{n+3}^{(a,b,c)} & x\mathcal{B}\mathcal{J}_{n+1}^{(a,b,c)} \end{bmatrix} = \begin{bmatrix} \mathcal{B}\mathcal{J}_{3}^{(a,b,c)} & \mathcal{T}_{4}^{(a,b,c)} & x\mathcal{B}\mathcal{J}_{2}^{(a,b,c)} \\ \mathcal{B}\mathcal{J}_{n+1}^{(a,b,c)} & \mathcal{T}_{n+2}^{(a,b,c)} & x\mathcal{B}\mathcal{J}_{n}^{(a,b,c)} \end{bmatrix} \cdot \mathbf{Q}_{\mathcal{J}}^{n},$$

where
$$\mathcal{T}_n^{(a,b,c)} = \mathcal{B}\mathcal{J}_n^{(a,b,c)} - (x-1)\mathcal{B}\mathcal{J}_{n-1}^{(a,b,c)}$$
.

Proof. We use induction on n. If n = 0, then the result is obvious. Assuming formula (2.15) holds for $n \ge 0$, we shall prove it for n + 1. Using the induction's hypothesis and formula (2.3), we have

$$\begin{bmatrix} \mathcal{B}\mathcal{J}_{3}^{(a,b,c)} & \mathcal{T}_{4}^{(a,b,c)} & x\mathcal{B}\mathcal{J}_{2}^{(a,b,c)} \\ \mathcal{B}\mathcal{J}_{2}^{(a,b,c)} & \mathcal{T}_{3}^{(a,b,c)} & x\mathcal{B}\mathcal{J}_{1}^{(a,b,c)} \\ \mathcal{B}\mathcal{J}_{1}^{(a,b,c)} & \mathcal{T}_{3}^{(a,b,c)} & x\mathcal{B}\mathcal{J}_{1}^{(a,b,c)} \\ \mathcal{B}\mathcal{J}_{1}^{(a,b,c)} & \mathcal{T}_{2}^{(a,b,c)} & x\mathcal{B}\mathcal{J}_{1}^{(a,b,c)} \\ \mathcal{B}\mathcal{J}_{3}^{(a,b,c)} & \mathcal{T}_{4}^{(a,b,c)} & x\mathcal{B}\mathcal{J}_{2}^{(a,b,c)} \\ \mathcal{B}\mathcal{J}_{2}^{(a,b,c)} & \mathcal{T}_{3}^{(a,b,c)} & x\mathcal{B}\mathcal{J}_{1}^{(a,b,c)} \\ \mathcal{B}\mathcal{J}_{1}^{(a,b,c)} & \mathcal{T}_{2}^{(a,b,c)} & x\mathcal{B}\mathcal{J}_{1}^{(a,b,c)} \\ \mathcal{B}\mathcal{J}_{1}^{(a,b,c)} & \mathcal{T}_{2}^{(a,b,c)} & x\mathcal{B}\mathcal{J}_{1}^{(a,b,c)} \\ \mathcal{B}\mathcal{J}_{1}^{(a,b,c)} & \mathcal{T}_{2}^{(a,b,c)} & x\mathcal{B}\mathcal{J}_{1}^{(a,b,c)} \\ \mathcal{B}\mathcal{J}_{1}^{(a,b,c)} & \mathcal{T}_{1}^{(a,b,c)} & x\mathcal{B}\mathcal{J}_{1}^{(a,b,c)} \\ \mathcal{B}\mathcal{J}_{1}^{(a,b,c)} & (x-1)\mathcal{B}\mathcal{J}_{1}^{(a,b,c)} & + x\mathcal{B}\mathcal{J}_{1}^{(a,b,c)} & x\mathcal{B}\mathcal{J}_{1}^{(a,b,c)} \\ \mathcal{B}\mathcal{J}_{1}^{(a,b,c)} & (x-1)\mathcal{B}\mathcal{J}_{1}^{(a,b,c)} & + x\mathcal{B}\mathcal{J}_{1}^{(a,b,c)} & x\mathcal{B}\mathcal{J}_{1}^{(a,b,c)} \\ \mathcal{B}\mathcal{J}_{1}^{(a,b,c)} & \mathcal{T}_{1}^{(a,b,c)} & x\mathcal{B}\mathcal{J}_{1}^{(a,b,c)} \\ \mathcal{B}\mathcal{J}_{1}^{(a,b,c)}$$

which ends the proof.

3. Conclusions

In this study, we defined the generalized bihyperbolic third-order Jacobsthal polynomials, which is an extension of the third-order Jacobsthal polynomials. For the generalized bihyperbolic third-order Jacobsthal polynomials, we provided a range of identities, including the Catalan and Cassini identity. For future research, additional identities and generalizations of the third-order modified Jacobsthal polynomials can be studied.

Acknowledgement. The author would like to thank the anonymous referee for their valuable comments and suggestions.

References

[1]	G. Bilgici, A. Daşdemir: Some unrestricted Fibonacci and Lucas hyper-complex num-		
	bers. Acta Comment. Univ. Tartu. Math. 24 (2020), 37–48.	zbl	$ m MR \ doi$
[2]	M. Bilgin, S. Ersoy: Algebraic properties of bihyperbolic numbers. Adv. Appl. Clifford		
	Algebr. 30 (2020), Article ID 13, 17 pages.	zbl	MR doi
[3]	F. Catoni, D. Boccaletti, R. Cannata, V. Catoni, E. Nichelatti, P. Zampetti: The Mathe-		
	matics of Minkowski Space-Time: With an Introduction to Commutative Hypercomplex		
	Numbers. Frontiers in Mathematics. Birkhäuser, Basel, 2008.	zbl	MR doi
[4]	G. Cerda-Morales: Identities for third order Jacobsthal quaternions. Adv. Appl. Clifford		
	Algebr. 27 (2017), 1043–1053.	zbl	MR doi
[5]	G. Cerda-Morales: On a generalization of Tribonacci quaternions. Mediterr. J. Math. 14		
	(2017), Article ID 239, 12 pages.	zbl	$ m MR \ doi$
[6]	G. Cerda-Morales: Dual third-order Jacobsthal quaternions. Proyecciones 37 (2018),		
	731–747.	zbl	$ m MR \ doi$
[7]	G. Cerda-Morales: On third-order Jacobsthal polynomials and their properties. Miskolc		
	Math. Notes 22 (2021), 123–132.	zbl	$ m MR \ doi$
[8]	J. Cockle: On certain functions resembling quaternions, and on a new imaginary in		
	algebra. Phil. Mag. (3) 33 (1848), 435–439.	doi	
[9]	J. Cockle: On a new imaginary in algebra. Phil. Mag. (3) 34 (1849), 37–47.	doi	
10]	C. K. Cook, M. R. Bacon: Some identities for Jacobsthal and Jacobsthal-Lucas numbers		
	satisfying higher order recurrence relations. Ann. Math. Inform. 41 (2013), 27–39.	zbl	MR
11]	S. Olariu: Commutative complex numbers in four dimensions. Complex Numbers in		
	n Dimensions. North-Holland Mathematics Studies 190. Elsevier, Amsterdam, 2002,		
	pp. 51–147.	doi	
12]	A. A. Pogorui, R. M. Rodríguez-Dagnino, R. D. Rodríguez-Said: On the set of zeros of		
	bihyperbolic polynomials. Complex Var. Elliptic Equ. 53 (2008), 685–690.	zbl	m MR doi

Author's address: Gamaliel Cerda-Morales, Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Blanco Viel 596, Valparaíso, Chile, e-mail: gamaliel.cerda.m@mail.pucv.cl.