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Abstract. A new generalization of third-order Jacobsthal bihyperbolic polynomials is
introduced. Some of the properties of presented polynomials are given. A general Vajda
formula for the generalized bihyperbolic third-order Jacobsthal polynomials is obtained.
This result implies the Catalan, Cassini and d’Ocagne identities. Moreover, generating
function and matrix generators for these polynomials are presented.
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1. INTRODUCTION

Let h be the unipotent element such that h # +1 and h? = 1. A hyperbolic
number H is defined as H = a+0bh, where a,b € R. Denote by H the set of hyperbolic
numbers. The hyperbolic numbers were introduced by Cockle (see [8], [9]).

The addition and subtraction of hyperbolic numbers is done by adding and sub-
tracting the appropriate terms and thus their coefficients. The hyperbolic numbers
multiplication can be made analogously as multiplication of algebraic expressions us-
ing the rule h? = 1. The real numbers a and b are called the real and unipotent parts
of the hyperbolic number H, respectively. For other details concerning hyperbolic
numbers see for example [12].

In [11], Olariu introduced commutative hypercomplex numbers in different dimen-
sions. One of the 4-dimensional commutative hypercomplex numbers is called the
hyperbolic four complex number. In [12], the authors used the name bihyperbolic
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numbers. Note that bihyperbolic numbers are a special case of generalized Segre’s
quaternions, being a 4-dimensional commutative number system, and they are named
as canonical hyperbolic quaternions (see [3]).

In this paper, we use the name bihyperbolic numbers. Analogously as bicomplex
numbers are an extension of complex numbers, bihyperbolic numbers are a natural
extension of hyperbolic numbers to 4-dimension.

Let Ho be the set of bihyperbolic numbers ¢ of the form

¢ =ao + a1j1 + azje + asjs,

where a; € R (i =0,1,2,3), and j1, j2,js ¢ R are operators such that

(1.1) Ji=di =73 =1
Jije = ja2J1 = J3, J1Js = Jsj1 = J2, j2J3 = J3j2 = J1-

The addition and multiplication on Hs are commutative and associative. More-
over, (Ha,+,-) is a commutative ring. For the algebraic properties of bihyperbolic
numbers, review the work of Bilgin and Ersoy (see [2]).

In this paper, we study a generalization of bihyperbolic third-order Jacobsthal
numbers. The third-order Jacobsthal sequence {7753) }n>o0 is defined by the recurrence

(1.2) \775?3 = ‘7,51)2 + j(g) +27%3) forn >0,

with J, () _ =0and J; G _ =T, 3) _ = 1. The Binet formula for the third-order Jacobsthal
numbers has the form

n+1 +1 +1
(1.3) g =2 wi + w5 ,
7 (2—w)(wr —w2)  (2—wa)(wr —wa)
where wy + ws = —1, and wiws = 1.

Some interesting properties of the third-order Jacobsthal numbers can be found
in [10]. In the literature there are some generalizations of the third-order Jacobsthal
numbers, see [4], [5], [6]. In [7], a one parameter generalization of the third-order
Jacobsthal numbers was investigated. We recall this generalization.

For any variable quantity = such that x> # 1, the third-order Jacobsthal polyno-
mials by the recurrence relation for n > 0:

(1.4) Ts(@) = (& = DTG, (@) + (& = DI, (@) + 2T (@)
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with the initial condltlons j(g)( ) =0, j(g)( ) =1 and j(g)( )=ao—1. Itis
easily seen that Jn ( ) = Jn . Binet formula of third-order Jacobsthal polynomi-
als Jr({s)(x) is given by

1 1
1 w{H' w;H'

(15) T =

22+r+1  (z—w)(w —ws) + (x — wo) (w1 —ws)’

where z is any variable quantity such that z® # 1, w; and wy are the roots of the
characteristic equation A2 + X\ 41 = 0.

In [1], the Unrestricted Fibonacci quaternion F{*P) was introduced. For an inte-
ger n and any integers a, b and ¢, the generalized Fibonacci quaternion is defined by

}-}(La,b,c) = Fn + Fn+ai + Fn+bj + Fn-i—ck;

where {i,7,k} is the standard basis of quaternions and F, is the nth Fibonacci
number. Motivated by the mentioned concept, in this paper, we introduce and
study generalized bihyperbolic third-order Jacobsthal numbers.

2. GENERALIZED BIHYPERBOLIC THIRD-ORDER JACOBSTHAL POLYNOMIALS

Let a > 1,0 >1,¢c>1and n > 0 be integers, the nth generalized bihyperbolic
third-order Jacobsthal polynomial BJ**) (z) is defined as

2.1) BTt (2) = 7O (2) + T, (@) + T @)z + T, (@) s,

where j,$3) (z) is the nth third-order Jacobsthal polynomial and operators ji, jo, Jjs
satisfy (1.1).
By (2.1) we obtain
22)  BI"@) =5 @) + I @i + 57 @)jz2 + I (@),
BT (@) = I (@) + T @i+ F @) + T (@),
BT (@) = 5,7 (@) + T ()i + T + Ty (@)is

For a =1, b =2, ¢ = 3, we obtain the definition of the nth bihyperbolic third-order
Jacobsthal polynomial BT %% (z), i.e., BT (23 (2) = BT (x).

By the definition of the generalized bihyperbolic third-order Jacobsthal polynomial
we get the following recurrence relations.

Theorem 2.1. Let n > 3,a>1,b> 1 and c > 1 be integers. Then
(23)  BIWPa) = (x - VBTSN (@) + (2 = VBTG (2) + 2BI 5 (w),
where Bjéa’b’c)(x), nga’b’c)(x) and Bjéa’b’c)(x) are given by (2.2).
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Proof. Using (2.1) and (1.4), we have
(z — )BT @) (2) + (x — DBIT Y () + BT %9 ()
= (z = )T (@) + TP @)s + T, @)+ T (2)s)
+ (@ = DTy (@) + T @iy + TD,_o(@)je + Ty (x)s)
+ 2T @) + IO @i+ T, @)is + T _s(@)s)
= I (@) + T, @)1 + T @) + T (2)gs = BT (@),
The proof is completed. O

In the proof of the next theorem we use the following result (see [7]).

Lemma 2.2. For any variable quantity x such that x> # 1, we have

(2.4) T\ (@) = =T (x) = TP (@) + 2"

Theorem 2.3. Letn>0,a>1,b>1, c> 1 be integers. Then

BT @) + BT (@) + BJ&W (2) = 2™ (1 21 + "o + 2°s).
Proof. By equality (2.1) and Lemma 2.2, we have

BT @) + BT (@) + BT ()
= T @) + T ura @iy + T a @2+ T ero@is + T (@) + T @)
+ T (@ e+ T e @iz + TP @) + Ta @i + T2, @) + T2 )i
= T (@) + T @) + T (@) + (T2 2(0) + T () + T
+ (D 22@) + T (0) + T2 ()i
+ (TFera(@) + T2 (2) + T (@)
"1+ 2% + 2% + 23).
U
Now, we give the Binet formula for the generalized bihyperbolic third-order Ja-
cobsthal polynomials.
Theorem 2.4 (Binet formula for the sequence BJ %" (z)). Let n > 0, a > 1,
b>1, c>1 be integers. Then

"o Wit e, Wit d,
224+zr+1  (z—w)(w —w)  (z—w)(wr —wa)’

Bj(abc)( )

where © = 1+ x%j; —l—a:bjg—i—xcjg, P =1+wii —l—w’l’jg +wfjs and P9 = 14+ w§j1 +
whjs + wsjs.
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Proof. By formulas (2.1) and (1.5) we get

BT (z) = 7O (2) + T, (2)jr + T (@) + T ()

_ J)"+1 B w;ﬂrl N w;ﬂrl
224+r4+1 (r-wi)(w —w2) (2—w2)(w —ws)
x"+“+1j1 B w;eraJrljl N w;eraJrljl
24+r4+1 (r—w)(w —w2) (2 —w2)(wr —wa)
N x"+b+1j2 B w{b+b+1j2 N w;b+b+1j2
24+zr4+1 (z—w)(w —w2) (2 —w2)(w —ws)
L Wi gy Wit
24+r4+1 (z—w)(w —w2) (2 —w2)(w —wa)
"o Wit Wit d,

T2 4r+1 (—w)(w —wy)  (#—w)(wr —wa)’

where © =1+ x%j; —|—a:bj2 + 23, &1 =14+ wijii —l—wlsz +wijs and @2 = 14+ wsj1 +
whj2 + Whja. g

By Theorem 2.4, we get the Binet formula for the bihyperbolic third-order Jacob-
sthal polynomials.

Corollary 2.5. Let n > 0 be an integer. Then

a1 U+ ag + 2% +2%3) w4 wigi + waja + J3)
BT n(z) = 5 —
| (r — wy)(wy —ws)
wngl(l + wajt +wij2 + J3)

(z — w2) (w1 — w2)

For simplicity of notation, let

(2.5) Za(a) = — im (w12 — 1)l Dy — (waz — D) Dy).

Then the Binet formula of the generalized bihyperbolic third-order Jacobsthal poly-
nomials is given by

1
(a,b,c) _ n+lg
(2.6) BJ,, (x) PR ("0 — Z,(x)).
Note that Z,(x) + Zp41(z) + Zp42(x) = 0.
Assume that a > 1,0 > 1, ¢ > 1 are integers. The Vajda’s identity for the sequence
Z,(x) and generalized bihyperbolic third-order Jacobsthal polynomials is given in
the next theorem.
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Theorem 2.6. Letn > 0, p > 0, ¢ > 0 be integers. Then we have

(2.7) Znip(@) Znsq() — Zn(2) Zniprq(a) = (z® +x + 1)Ap Ay @19,

(2.8) BT (@)BT S (2) — BT ()BT, (@)
1
= Fra T e DAARI R+ OBy (p) — 2"Bu(p))},
where A,, = (w] —w¥)/(w1 —w2) and B, (p) = Zyyp(x) — 2P Z,(x).

Proof. (2.7): Using (2.5), A=wiz — 1 and B = wyz — 1, we have

(w1 — w2)2[zn+p($)zn+q(m) — Z0(2) Zntptq(2)]
= (Awl D) — Bul™Pdy)(Aw]T®; — Bwlt1®,)
— (Awl'®) — Bwj®o) (AW PHd, — BwitPte,)
= AB(w) — wh)(wiPe®) — wi®Ps)
= (w1 —wo)?(2? + 2+ 1) A, A, D1 Do,

where A,, = (W] — w¥) /(w1 — w2).
By formula (2.6) and (2.7), we get

(2% + 2+ 1) (BTG (@0)BI L () = BT ()BT 52 ()]
= (xn+p+1@ - Zn+p( ) (@ ntatle — Zn+q( ))
- (37"4_19 = Z,(2))(z mrptatle — Zniptq(T))
= Zy1p(T) Zn14(T) = Z0(2) Zntprqe(T) + anrl@(BnJrq(p) — 29B,(p))
- (12 +x+ 1)ApAqq)1(I)2 + anrl@(BnJrq(p) - qun(p))v

where B, (p) = Zp4p(z) — 2P 2, (). O

It is easily seen that for special values of p and ¢ by Theorem 2.6, we get new
identities for generalized bihyperbolic third-order Jacobsthal polynomials:
Catalan’s identity: ¢ = —p.
Cassini’s identity: p=1, ¢ = —1.
d’Ocagne’s identity: p =1, ¢ = m — n with m > n.

Corollary 2.7. Catalan identity for generalized bihyperbolic third-order Jacob-
sthal polynomials. Let n > 0, p > 0 be integers such that n > p. Then

(2.9) BT ()BT (@) — (BT (@9 (x))?
1

N m{_(xQ T 1)"412?(1)1(1)2 + anrl@(Bn—p(p) — 2 "By(p))}
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Corollary 2.8. Cassini identity for generalized bihyperbolic third-order Jacob-
sthal polynomials. Let n > 1 be an integer. Then

(2.10) BT (2)BT 5 (@) — (BT (2))?
B m{_(xz + 24+ 1)®1Ps + 2" O(B,1(1) — 27 ' By(1))}

Corollary 2.9. d’Ocagne identity for generalized bihyperbolic third-order Jacob-
sthal polynomials. Let n > 0, m > 0 be integers such that m > n. Then
(2.11)
BT @BI G (@) = BT (@) BT (x)
1

= m{(ﬁ + 2+ 1) Ann @12 + 2" O(Bn (1) — 2™ "By (1))}

Now, we give the ordinary generating function for the generalized bihyperbolic
third-order Jacobsthal polynomials.

Theorem 2.10. The generating function for the generalized bihyperbolic third-
order Jacobsthal polynomial sequence Bj a.b, C)( ) is

BT (@) + (BT (@) — (x = DBI"" (x)t
(t:0) = L BI@) = (@ = DBI O a) — (@ = VBTG @)
I = 1—(z—1)t—(z— )3 — at3
Proof. Let

g7 (t:x) = BT (2) + BT ()t + BIYP) (a)82 + ...+ BF@P) ()" + ...

be the generating function of the generalized bihyperbolic third-order Jacobsthal
polynomials. Hence, we have

(z — Dtges(t;z) = (x — VBT (@)t + (x — )BT (2)¢
+ (x — BT (@) + ..
(z — D2gps(t:z) = (z — VBT (@) + (x — )BT (2)8
+ (z— )BT (@)t + ..
397 (t;2) = xBjéa’b’c)(x)t?’ + xBj(la’b’C) (z)t* + xngL’b’c)(x)ts +...
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Using recurrence (2.3), we get

g8 ()1 — (x — 1)t — (x — )* — at?)
Bj(a ,b,c) ( ) + (nga,b,c) (J?) _ (l‘ o 1)Bj(ga,b,c) (l‘))t
+ (BIS") (@) — (& = DBT") (@) — (x — DBIS" (2))?

Thus
{ BT (@) + (BT (@) — (& — )BT ()t }
+ (BT (@) — (x = DBI" (@) — (¢ — )BT (2))1?
9B (t;x) =

1—(z—1)t— (z — )83 —at3
(]

In the next theorem we give a summation formula for the generalized bihyperbolic
third-order Jacobsthal polynomials. In the proof we use the following result.

Lemma 2.11 (Proposition 5, [7]). If j(3)( ) is the nth term of the third-order
Jacobsthal polynomial sequence, then

(2.12) ixs%) (T (@) — (x - 2)T7, (@) + 2T (x) - 1).

s=0 3(1[,’ )

Theorem 2.12. Letn >0,a>1,b>1, c > 1 be integers. Then

(22 — 3BT (2) + (¢ — 2)BT ") (x)
BT (@) + BT ()
— (x = 2)BT 5 (@) + BT (@09 ()

(2.13) Y BIP(z) =

pore 3(x—1)

Proof. We use induction on n. If n = 0, we obtain

2z — 3)BIS") (2) + (z — 2)BT ") (2)
~ BT (x) + BTG ()

— (x = 2)BT ") (@) + aBT ") (x)
=3(x — )BT (),

1

Bjabc)( )_m
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then the result is obvious. Assuming formula (2.13) holds for n > 0, we shall prove
it for n 4 1. Using the induction’s hypothesis and formula (2.3), we have

n+1

ZBJ(abC) ZBJ(abC) +nga+blc( )

(22— 3)BI " () + (z — 2)BI ") ()
1 - BT (2) + BT 57 (@)
=D - @-9BI @) + BT (@)
+ (32 = 3)BI Y ()
(22 — 3) BT (z) + (x — 2)BT ") (2)
= — BT (z) + BT (@) :
— (2= 2)BIWE) (@) + BT (2)

which ends the proof. O

At the end, we give matrix representations of the polynomials 5.7 %a’b’c) (z). By
equality (2.3) we get the following result.

Theorem 2.13. Let n > 1 be an integer. Then

J&T’; () BT (x)
a,b,c a,b,c
(2.14) BT (@) | = Qo | BT Z (2) |,
Bj%a ,b,c) (J?) j(a ,C) (:L‘)
where
r—1 z—-1 =
Qs = 1 0 0
0 1 0

Theorem 2.14. Let n > 0 be an integer. Then

(2.15)
Bjna_i_gc) 7;(115’5) Bjna-i-ZC) Bj:(sa,b,c) E(a,b,c) xBj(Qa,b,c)
a,b,c a,b,c a,b,c a,b,c a,b,c a,b,c
Bjn-i-bz ) 7;(""% ) BJ”'H : - Bj%a b cz 7—3§a b c; xBjéa b c; . Qz,
BjnaJrlc) 7;51’2’6) BT (@) B7i T aBIg

where ﬁa’b’c) = Bj%aﬁb«r) —(z— )Bj(a X0
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Proof.

Bj(abc
j(abc
Bj(abc

) T(a b,c)

) 7;)((1 :b,¢)

T(a b,c)
- Bj(a b,c)
B an b,c)
B j a,b,c)
-7 e:be)
n+3
BJ5
LB
BT
BJ5
LBg 5
BT,
BT 5"

LB

which ends the proof.

Bj(a b,c)
xnga bie) | QZH
xBjéa’b’c)

E(a,b,c) xBj(Qa’b’C) -

7_3(a,b,c) xnga,b,c) QL
T(a,b,c) xBj(()a’b’c) |

TR USRI
Ty eBIGY |
7—7512%) aBJ (b | 0
(z — 1)Bj§za+%c + 2B\ 150
(z-1)B jgza+b26 + ngza+b16
(z = VBT, + 2B
Tais® aBT0

Taw BT

Togs aBT

3. CONCLUSIONS

We use induction on n. If n = 0, then the result is obvious. Assuming
formula (2.15) holds for n >
hypothesis and formula (2.3), we have

0, we shall prove it for n + 1. Using the induction’s

r—1 z—-1 «
1 0 0
0 1 0

r—1 z
0 0
1 0
eBI )
eBI 5
eBIH

In this study, we defined the generalized bihyperbolic third-order Jacobsthal poly-

nomials, which is an extension of the third-order Jacobsthal polynomials.

For the

generalized bihyperbolic third-order Jacobsthal polynomials, we provided a range of

identities, including the Catalan and Cassini identity. For future research, additional

identities and generalizations of the third-order modified Jacobsthal polynomials can

be studied.
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