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Abstract. A new generalization of third-order Jacobsthal bihyperbolic polynomials is
introduced. Some of the properties of presented polynomials are given. A general Vajda
formula for the generalized bihyperbolic third-order Jacobsthal polynomials is obtained.
This result implies the Catalan, Cassini and d’Ocagne identities. Moreover, generating
function and matrix generators for these polynomials are presented.
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1. Introduction

Let h be the unipotent element such that h 6= ±1 and h2 = 1. A hyperbolic

number H is defined as H = a+bh, where a, b ∈ R. Denote by H the set of hyperbolic

numbers. The hyperbolic numbers were introduced by Cockle (see [8], [9]).

The addition and subtraction of hyperbolic numbers is done by adding and sub-

tracting the appropriate terms and thus their coefficients. The hyperbolic numbers

multiplication can be made analogously as multiplication of algebraic expressions us-

ing the rule h2 = 1. The real numbers a and b are called the real and unipotent parts

of the hyperbolic number H, respectively. For other details concerning hyperbolic

numbers see for example [12].

In [11], Olariu introduced commutative hypercomplex numbers in different dimen-

sions. One of the 4-dimensional commutative hypercomplex numbers is called the

hyperbolic four complex number. In [12], the authors used the name bihyperbolic

c© The author(s) 2024. This is an open access article under the CC BY-NC-ND licence cbnd

DOI: 10.21136/MB.2024.0037-24 393

https://creativecommons.org/licenses/by-nc-nd/4.0
http://dx.doi.org/10.21136/MB.2024.0037-24


numbers. Note that bihyperbolic numbers are a special case of generalized Segre’s

quaternions, being a 4-dimensional commutative number system, and they are named

as canonical hyperbolic quaternions (see [3]).

In this paper, we use the name bihyperbolic numbers. Analogously as bicomplex

numbers are an extension of complex numbers, bihyperbolic numbers are a natural

extension of hyperbolic numbers to 4-dimension.

Let H2 be the set of bihyperbolic numbers ζ of the form

ζ = a0 + a1j1 + a2j2 + a3j3,

where ai ∈ R (i = 0, 1, 2, 3), and j1, j2, j3 /∈ R are operators such that

j21 = j22 = j23 = 1,(1.1)

j1j2 = j2j1 = j3, j1j3 = j3j1 = j2, j2j3 = j3j2 = j1.

The addition and multiplication on H2 are commutative and associative. More-

over, (H2,+, ·) is a commutative ring. For the algebraic properties of bihyperbolic

numbers, review the work of Bilgin and Ersoy (see [2]).

In this paper, we study a generalization of bihyperbolic third-order Jacobsthal

numbers. The third-order Jacobsthal sequence {J
(3)
n }n>0 is defined by the recurrence

(1.2) J
(3)
n+3 = J

(3)
n+2 + J

(3)
n+1 + 2J (3)

n , for n > 0,

with J
(3)
0 = 0 and J

(3)
1 = J

(3)
2 = 1. The Binet formula for the third-order Jacobsthal

numbers has the form

(1.3) J (3)
n =

2n+1

7
−

ωn+1
1

(2 − ω1)(ω1 − ω2)
+

ωn+1
2

(2− ω2)(ω1 − ω2)
,

where ω1 + ω2 = −1, and ω1ω2 = 1.

Some interesting properties of the third-order Jacobsthal numbers can be found

in [10]. In the literature there are some generalizations of the third-order Jacobsthal

numbers, see [4], [5], [6]. In [7], a one parameter generalization of the third-order

Jacobsthal numbers was investigated. We recall this generalization.

For any variable quantity x such that x3 6= 1, the third-order Jacobsthal polyno-

mials by the recurrence relation for n > 0:

(1.4) J
(3)
n+3(x) = (x− 1)J

(3)
n+2(x) + (x− 1)J

(3)
n+1(x) + xJ (3)

n (x)
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with the initial conditions J
(3)
0 (x) = 0, J

(3)
1 (x) = 1 and J

(3)
2 (x) = x − 1. It is

easily seen that J
(3)
n (2) = J

(3)
n . Binet formula of third-order Jacobsthal polynomi-

als J
(3)
n (x) is given by

(1.5) J (3)
n (x) =

xn+1

x2 + x+ 1
−

ωn+1
1

(x− ω1)(ω1 − ω2)
+

ωn+1
2

(x− ω2)(ω1 − ω2)
,

where x is any variable quantity such that x3 6= 1, ω1 and ω2 are the roots of the

characteristic equation λ2 + λ+ 1 = 0.

In [1], the Unrestricted Fibonacci quaternion F
(a,b,c)
n was introduced. For an inte-

ger n and any integers a, b and c, the generalized Fibonacci quaternion is defined by

F (a,b,c)
n = Fn + Fn+ai+ Fn+bj + Fn+ck,

where {i, j, k} is the standard basis of quaternions and Fn is the nth Fibonacci

number. Motivated by the mentioned concept, in this paper, we introduce and

study generalized bihyperbolic third-order Jacobsthal numbers.

2. Generalized bihyperbolic third-order Jacobsthal polynomials

Let a > 1, b > 1, c > 1 and n > 0 be integers, the nth generalized bihyperbolic

third-order Jacobsthal polynomial BJ (a,b,c)
n (x) is defined as

(2.1) BJ (a,b,c)
n (x) = J (3)

n (x) + J
(3)
n+a(x)j1 + J

(3)
n+b(x)j2 + J

(3)
n+c(x)j3,

where J
(3)
n (x) is the nth third-order Jacobsthal polynomial and operators j1, j2, j3

satisfy (1.1).

By (2.1) we obtain

(2.2) BJ
(a,b,c)
0 (x) = J

(3)
0 (x) + J (3)

a (x)j1 + J
(3)
b (x)j2 + J (3)

c (x)j3,

BJ
(a,b,c)
1 (x) = J

(3)
1 (x) + J

(3)
a+1(x)j1 + J

(3)
b+1(x)j2 + J

(3)
c+1(x)j3,

BJ
(a,b,c)
2 (x) = J

(3)
2 (x) + J

(3)
a+2(x)j1 + J

(3)
b+2(x)j2 + J

(3)
c+2(x)j3.

For a = 1, b = 2, c = 3, we obtain the definition of the nth bihyperbolic third-order

Jacobsthal polynomial BJ (1,2,3)
n (x), i.e., BJ (1,2,3)

n (x) = BJ n(x).

By the definition of the generalized bihyperbolic third-order Jacobsthal polynomial

we get the following recurrence relations.

Theorem 2.1. Let n > 3, a > 1, b > 1 and c > 1 be integers. Then

(2.3) BJ (a,b,c)
n (x) = (x− 1)BJ

(a,b,c)
n−1 (x) + (x − 1)BJ

(a,b,c)
n−2 (x) + xBJ

(a,b,c)
n−3 (x),

where BJ
(a,b,c)
0 (x), BJ

(a,b,c)
1 (x) and BJ

(a,b,c)
2 (x) are given by (2.2).
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P r o o f. Using (2.1) and (1.4), we have

(x− 1)BJ
(a,b,c)
n−1 (x) + (x − 1)BJ

(a,b,c)
n−2 (x) + xBJ

(a,b,c)
n−3 (x)

= (x− 1)(J
(3)
n−1(x) + J

(3)
n+a−1(x)j1 + J

(3)
n+b−1(x)j2 + J

(3)
n+c−1(x)j3)

+ (x − 1)(J
(3)
n−2(x) + J

(3)
n+a−2(x)j1 + J

(3)
n+b−2(x)j2 + J

(3)
n+c−2(x)j3)

+ x(J
(3)
n−3(x) + J

(3)
n+a−3(x)j1 + J

(3)
n+b−3(x)j2 + J

(3)
n+c−3(x)j3)

= J (3)
n (x) + J

(3)
n+a(x)j1 + J

(3)
n+b

(x)j2 + J
(3)
n+c(x)j3 = BJ (a,b,c)

n (x).

The proof is completed. �

In the proof of the next theorem we use the following result (see [7]).

Lemma 2.2. For any variable quantity x such that x3 6= 1, we have

(2.4) J
(3)
n+2(x) = −J

(3)
n+1(x) − J (3)

n (x) + xn+1.

Theorem 2.3. Let n > 0, a > 1, b > 1, c > 1 be integers. Then

BJ
(a,b,c)
n+2 (x) + BJ

(a,b,c)
n+1 (x) + BJ (a,b,c)

n (x) = xn+1(1 + xaj1 + xbj2 + xcj3).

P r o o f. By equality (2.1) and Lemma 2.2, we have

BJ
(a,b,c)
n+2 (x) + BJ

(a,b,c)
n+1 (x) + BJ (a,b,c)

n (x)

= J
(3)
n+2(x) + J

(3)
n+a+2(x)j1 + J

(3)
n+b+2(x)j2 + J

(3)
n+c+2(x)j3 + J

(3)
n+1(x) + J

(3)
n+a+1(x)j1

+ J
(3)
n+b+1(x)j2 + J

(3)
n+c+1(x)j3 + J (3)

n (x) + J
(3)
n+a(x)j1 + J

(3)
n+b

(x)j2 + J
(3)
n+c(x)j3

= J
(3)
n+2(x) + J

(3)
n+1(x) + J (3)

n (x) + (J
(3)
n+a+2(x) + J

(3)
n+a+1(x) + J

(3)
n+a(x))j1

+ (J
(3)
n+b+2(x) + J

(3)
n+b+1(x) + J

(3)
n+b(x))j2

+ (J
(3)
n+c+2(x) + J

(3)
n+c+1(x) + J

(3)
n+c(x))j3

= xn+1(1 + xaj1 + xbj2 + xcj3).

�

Now, we give the Binet formula for the generalized bihyperbolic third-order Ja-

cobsthal polynomials.

Theorem 2.4 (Binet formula for the sequence BJ (a,b,c)
n (x)). Let n > 0, a > 1,

b > 1, c > 1 be integers. Then

BJ (a,b,c)
n (x) =

xn+1Θ

x2 + x+ 1
−

ωn+1
1 Φ1

(x − ω1)(ω1 − ω2)
+

ωn+1
2 Φ2

(x− ω2)(ω1 − ω2)
,

where Θ = 1+ xaj1 + xbj2 + xcj3, Φ1 = 1+ωa
1j1 +ωb

1j2 +ωc
1j3 and Φ2 = 1+ωa

2j1 +

ωb
2j2 + ωc

2j3.

396



P r o o f. By formulas (2.1) and (1.5) we get

BJ (a,b,c)
n (x) = J (3)

n (x) + J
(3)
n+a(x)j1 + J

(3)
n+b(x)j2 + J

(3)
n+c(x)j3

=
xn+1

x2 + x+ 1
−

ωn+1
1

(x− ω1)(ω1 − ω2)
+

ωn+1
2

(x− ω2)(ω1 − ω2)

+
xn+a+1j1
x2 + x+ 1

−
ωn+a+1
1 j1

(x− ω1)(ω1 − ω2)
+

ωn+a+1
2 j1

(x − ω2)(ω1 − ω2)

+
xn+b+1j2
x2 + x+ 1

−
ωn+b+1
1 j2

(x− ω1)(ω1 − ω2)
+

ωn+b+1
2 j2

(x − ω2)(ω1 − ω2)

+
xn+c+1j3
x2 + x+ 1

−
ωn+c+1
1 j3

(x− ω1)(ω1 − ω2)
+

ωn+c+1
2 j3

(x − ω2)(ω1 − ω2)

=
xn+1Θ

x2 + x+ 1
−

ωn+1
1 Φ1

(x− ω1)(ω1 − ω2)
+

ωn+1
2 Φ2

(x− ω2)(ω1 − ω2)
,

where Θ = 1+ xaj1 + xbj2 + xcj3, Φ1 = 1+ωa
1j1 +ωb

1j2 +ωc
1j3 and Φ2 = 1+ωa

2j1 +

ωb
2j2 + ωc

2j3. �

By Theorem 2.4, we get the Binet formula for the bihyperbolic third-order Jacob-

sthal polynomials.

Corollary 2.5. Let n > 0 be an integer. Then

BJ n(x) =
xn+1(1 + xj1 + x2j2 + x3j3)

x2 + x+ 1
−

ωn+1
1 (1 + ω1j1 + ω2j2 + j3)

(x− ω1)(ω1 − ω2)

+
ωn+1
2 (1 + ω2j1 + ω1j2 + j3)

(x− ω2)(ω1 − ω2)
.

For simplicity of notation, let

(2.5) Zn(x) =
1

ω1 − ω2
((ω1x− 1)ωn

1Φ1 − (ω2x− 1)ωn
2Φ2).

Then the Binet formula of the generalized bihyperbolic third-order Jacobsthal poly-

nomials is given by

(2.6) BJ (a,b,c)
n (x) =

1

x2 + x+ 1
(xn+1Θ−Zn(x)).

Note that Zn(x) + Zn+1(x) + Zn+2(x) = 0.

Assume that a > 1, b > 1, c > 1 are integers. The Vajda’s identity for the sequence

Zn(x) and generalized bihyperbolic third-order Jacobsthal polynomials is given in

the next theorem.
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Theorem 2.6. Let n > 0, p > 0, q > 0 be integers. Then we have

Zn+p(x)Zn+q(x) −Zn(x)Zn+p+q(x) = (x2 + x+ 1)ApAqΦ1Φ2,(2.7)

BJ
(a,b,c)
n+p (x)BJ

(a,b,c)
n+q (x) − BJ (a,b,c)

n (x)BJ
(a,b,c)
n+p+q(x)(2.8)

=
1

(x2 + x+ 1)2
{(x2 + x+ 1)ApAqΦ1Φ2 + xn+1Θ(Bn+q(p)− xqBn(p))},

where An = (ωn
1 − ωn

2 )/(ω1 − ω2) and Bn(p) = Zn+p(x)− xpZn(x).

P r o o f. (2.7): Using (2.5), A = ω1x− 1 and B = ω2x− 1, we have

(ω1 − ω2)
2[Zn+p(x)Zn+q(x) −Zn(x)Zn+p+q(x)]

= (Aωn+p
1 Φ1 −Bωn+p

2 Φ2)(Aω
n+q
1 Φ1 −Bωn+q

2 Φ2)

− (Aωn
1Φ1 −Bωn

2Φ2)(Aω
n+p+q
1 Φ1 −Bωn+p+q

2 Φ2)

= AB(ωp
1 − ωp

2)(ω
q
1Φ2Φ1 − ωq

2Φ1Φ2)

= (ω1 − ω2)
2(x2 + x+ 1)ApAqΦ1Φ2,

where An = (ωn
1 − ωn

2 )/(ω1 − ω2).

By formula (2.6) and (2.7), we get

(x2 + x+ 1)2[BJ
(a,b,c)
n+p (x)BJ

(a,b,c)
n+q (x)− BJ (a,b,c)

n (x)BJ
(a,b,c)
n+p+q(x)]

= (xn+p+1Θ−Zn+p(x))(x
n+q+1Θ−Zn+q(x))

− (xn+1Θ−Zn(x))(x
n+p+q+1Θ−Zn+p+q(x))

= Zn+p(x)Zn+q(x) −Zn(x)Zn+p+q(x) + xn+1Θ(Bn+q(p)− xqBn(p))

= (x2 + x+ 1)ApAqΦ1Φ2 + xn+1Θ(Bn+q(p)− xqBn(p)),

where Bn(p) = Zn+p(x) − xpZn(x). �

It is easily seen that for special values of p and q by Theorem 2.6, we get new

identities for generalized bihyperbolic third-order Jacobsthal polynomials:

Catalan’s identity: q = −p.

Cassini’s identity: p = 1, q = −1.

d’Ocagne’s identity: p = 1, q = m− n with m > n.

Corollary 2.7. Catalan identity for generalized bihyperbolic third-order Jacob-

sthal polynomials. Let n > 0, p > 0 be integers such that n > p. Then

(2.9) BJ
(a,b,c)
n+p (x)BJ

(a,b,c)
n−p (x) − (BJ (a,b,c)

n (x))2

=
1

(x2 + x+ 1)2
{−(x2 + x+ 1)A2

pΦ1Φ2 + xn+1Θ(Bn−p(p)− x−pBn(p))}
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Corollary 2.8. Cassini identity for generalized bihyperbolic third-order Jacob-

sthal polynomials. Let n > 1 be an integer. Then

(2.10) BJ
(a,b,c)
n+1 (x)BJ

(a,b,c)
n−1 (x)− (BJ (a,b,c)

n (x))2

=
1

(x2 + x+ 1)2
{−(x2 + x+ 1)Φ1Φ2 + xn+1Θ(Bn−1(1)− x−1Bn(1))}

Corollary 2.9. d’Ocagne identity for generalized bihyperbolic third-order Jacob-

sthal polynomials. Let n > 0, m > 0 be integers such that m > n. Then

(2.11)

BJ
(a,b,c)
n+1 (x)BJ (a,b,c)

m (x) − BJ (a,b,c)
n (x)BJ

(a,b,c)
m+1 (x)

=
1

(x2 + x+ 1)2
{(x2 + x+ 1)Am−nΦ1Φ2 + xn+1Θ(Bm(1)− xm−nBn(1))}

Now, we give the ordinary generating function for the generalized bihyperbolic

third-order Jacobsthal polynomials.

Theorem 2.10. The generating function for the generalized bihyperbolic third-

order Jacobsthal polynomial sequence BJ (a,b,c)
n (x) is

gBJ (t;x) =

{

BJ
(a,b,c)
0 (x) + (BJ

(a,b,c)
1 (x)− (x− 1)BJ

(a,b,c)
0 (x))t

+ (BJ
(a,b,c)
2 (x)− (x − 1)BJ

(a,b,c)
1 (x) − (x− 1)BJ

(a,b,c)
0 (x))t2

}

1− (x− 1)t− (x − 1)t3 − xt3
.

P r o o f. Let

gBJ (t;x) = BJ
(a,b,c)
0 (x) + BJ

(a,b,c)
1 (x)t + BJ

(a,b,c)
2 (x)t2 + . . .+ BJ (a,b,c)

n (x)tn + . . .

be the generating function of the generalized bihyperbolic third-order Jacobsthal

polynomials. Hence, we have

(x− 1)tgBJ (t;x) = (x − 1)BJ
(a,b,c)
0 (x)t + (x− 1)BJ

(a,b,c)
1 (x)t2

+ (x− 1)BJ
(a,b,c)
2 (x)t3 + . . .

(x − 1)t2gBJ (t;x) = (x − 1)BJ
(a,b,c)
0 (x)t2 + (x− 1)BJ

(a,b,c)
1 (x)t3

+ (x− 1)BJ
(a,b,c)
2 (x)t4 + . . .

xt3gBJ (t;x) = xBJ
(a,b,c)
0 (x)t3 + xBJ

(a,b,c)
1 (x)t4 + xBJ

(a,b,c)
2 (x)t5 + . . .
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Using recurrence (2.3), we get

gBJ (t;x)(1 − (x− 1)t− (x− 1)t3 − xt3)

=







BJ
(a,b,c)
0 (x) + (BJ

(a,b,c)
1 (x)− (x− 1)BJ

(a,b,c)
0 (x))t

+ (BJ
(a,b,c)
2 (x)− (x− 1)BJ

(a,b,c)
1 (x)− (x− 1)BJ

(a,b,c)
0 (x))t2







Thus

gBJ (t;x) =

{

BJ
(a,b,c)
0 (x) + (BJ

(a,b,c)
1 (x)− (x− 1)BJ

(a,b,c)
0 (x))t

+ (BJ
(a,b,c)
2 (x)− (x − 1)BJ

(a,b,c)
1 (x) − (x− 1)BJ

(a,b,c)
0 (x))t2

}

1− (x− 1)t− (x − 1)t3 − xt3
.

�

In the next theorem we give a summation formula for the generalized bihyperbolic

third-order Jacobsthal polynomials. In the proof we use the following result.

Lemma 2.11 (Proposition 5, [7]). If J
(3)
n (x) is the nth term of the third-order

Jacobsthal polynomial sequence, then

(2.12)
n
∑

s=0

J (3)
n (x) =

1

3(x− 1)
(J

(3)
n+2(x)− (x − 2)J

(3)
n+1(x) + xJ (3)

n (x)− 1).

Theorem 2.12. Let n > 0, a > 1, b > 1, c > 1 be integers. Then

(2.13)
n
∑

s=0

BJ (a,b,c)
n (x) =

1

3(x− 1)















(2x− 3)BJ
(a,b,c)
0 (x) + (x− 2)BJ

(a,b,c)
1 (x)

− BJ
(a,b,c)
2 (x) + BJ

(a,b,c)
n+2 (x)

− (x − 2)BJ
(a,b,c)
n+1 (x) + xBJ (a,b,c)

n (x)















.

P r o o f. We use induction on n. If n = 0, we obtain

BJ
(a,b,c)
0 (x) =

1

3(x− 1)



















(2x− 3)BJ
(a,b,c)
0 (x) + (x − 2)BJ

(a,b,c)
1 (x)

− BJ
(a,b,c)
2 (x) + BJ

(a,b,c)
2 (x)

− (x− 2)BJ
(a,b,c)
1 (x) + xBJ

(a,b,c)
0 (x)



















= 3(x− 1)BJ
(a,b,c)
0 (x),
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then the result is obvious. Assuming formula (2.13) holds for n > 0, we shall prove

it for n+ 1. Using the induction’s hypothesis and formula (2.3), we have

n+1
∑

s=0

BJ (a,b,c)
n (x) =

n
∑

s=0

BJ (a,b,c)
n (x) + BJ

(a,b,c)
n+1 (x)

=
1

3(x− 1)































(2x− 3)BJ
(a,b,c)
0 (x) + (x − 2)BJ

(a,b,c)
1 (x)

− BJ
(a,b,c)
2 (x) + BJ

(a,b,c)
n+2 (x)

− (x− 2)BJ
(a,b,c)
n+1 (x) + xBJ (a,b,c)

n (x)

+ (3x− 3)BJ
(a,b,c)
n+1 (x)































=
1

3(x− 1)



















(2x− 3)BJ
(a,b,c)
0 (x) + (x − 2)BJ

(a,b,c)
1 (x)

− BJ
(a,b,c)
2 (x) + BJ

(a,b,c)
n+3 (x)

− (x− 2)BJ
(a,b,c)
n+2 (x) + xBJ

(a,b,c)
n+1 (x)



















,

which ends the proof. �

At the end, we give matrix representations of the polynomials BJ (a,b,c)
n (x). By

equality (2.3) we get the following result.

Theorem 2.13. Let n > 1 be an integer. Then

(2.14)





BJ
(a,b,c)
n+2 (x)

BJ
(a,b,c)
n+1 (x)

BJ (a,b,c)
n (x)



 = QJ ·





BJ
(a,b,c)
n+1 (x)

BJ (a,b,c)
n (x)

BJ
(a,b,c)
n−1 (x)



 ,

where

QJ =





x− 1 x− 1 x

1 0 0

0 1 0



 .

Theorem 2.14. Let n > 0 be an integer. Then

(2.15)




BJ
(a,b,c)
n+3 T

(a,b,c)
n+4 xBJ

(a,b,c)
n+2

BJ
(a,b,c)
n+2 T

(a,b,c)
n+3 xBJ

(a,b,c)
n+1

BJ
(a,b,c)
n+1 T

(a,b,c)
n+2 xBJ (a,b,c)

n



 =





BJ
(a,b,c)
3 T

(a,b,c)
4 xBJ

(a,b,c)
2

BJ
(a,b,c)
2 T

(a,b,c)
3 xBJ

(a,b,c)
1

BJ
(a,b,c)
1 T

(a,b,c)
2 xBJ

(a,b,c)
0



 ·Qn
J ,

where T
(a,b,c)
n = BJ (a,b,c)

n − (x− 1)BJ
(a,b,c)
n−1 .
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P r o o f. We use induction on n. If n = 0, then the result is obvious. Assuming

formula (2.15) holds for n > 0, we shall prove it for n + 1. Using the induction’s

hypothesis and formula (2.3), we have





BJ
(a,b,c)
3 T

(a,b,c)
4 xBJ

(a,b,c)
2

BJ
(a,b,c)
2 T

(a,b,c)
3 xBJ

(a,b,c)
1

BJ
(a,b,c)
1 T

(a,b,c)
2 xBJ

(a,b,c)
0



 ·Qn+1
J

=





BJ
(a,b,c)
3 T

(a,b,c)
4 xBJ

(a,b,c)
2

BJ
(a,b,c)
2 T

(a,b,c)
3 xBJ

(a,b,c)
1

BJ
(a,b,c)
1 T

(a,b,c)
2 xBJ

(a,b,c)
0



 ·Qn
J ·





x− 1 x− 1 x

1 0 0

0 1 0





=





BJ
(a,b,c)
n+3 T

(a,b,c)
n+4 xBJ

(a,b,c)
n+2

BJ
(a,b,c)
n+2 T

(a,b,c)
n+3 xBJ

(a,b,c)
n+1

BJ
(a,b,c)
n+1 T

(a,b,c)
n+2 xBJ (a,b,c)

n









x− 1 x− 1 x

1 0 0

0 1 0





=





BJ
(a,b,c)
n+4 (x− 1)BJ

(a,b,c)
n+3 + xBJ

(a,b,c)
n+2 xBJ

(a,b,c)
n+3

BJ
(a,b,c)
n+3 (x− 1)BJ

(a,b,c)
n+2 + xBJ

(a,b,c)
n+1 xBJ

(a,b,c)
n+2

BJ
(a,b,c)
n+2 (x− 1)BJ

(a,b,c)
n+1 + xBJ (a,b,c)

n xBJ
(a,b,c)
n+1





=





BJ
(a,b,c)
n+4 T

(a,b,c)
n+5 xBJ

(a,b,c)
n+3

BJ
(a,b,c)
n+3 T

(a,b,c)
n+4 xBJ

(a,b,c)
n+2

BJ
(a,b,c)
n+2 T

(a,b,c)
n+3 xBJ

(a,b,c)
n+1



 ,

which ends the proof. �

3. Conclusions

In this study, we defined the generalized bihyperbolic third-order Jacobsthal poly-

nomials, which is an extension of the third-order Jacobsthal polynomials. For the

generalized bihyperbolic third-order Jacobsthal polynomials, we provided a range of

identities, including the Catalan and Cassini identity. For future research, additional

identities and generalizations of the third-order modified Jacobsthal polynomials can

be studied.

A c k n ow l e d g em e n t. The author would like to thank the anonymous referee
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