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KYBERNET IKA — VOLUME 6 1 ( 2 0 2 5 ) , NUMBER 6 , PAGES 7 5 2 – 7 6 1

A STOCHASTIC VERSION OF VIDYASAGAR THEOREM
ON THE STABILIZATION OF INTERCONNECTED
SYSTEMS

Patrick Florchinger

The purpose of this paper is to provide sufficient conditions for the feedback asymptotic
stabilization in probability for a class of affine in the control nonlinear stochastic differential
systems. In fact, under the assumptions stated in this paper we prove the existence of a control
Lyapunov function that according to the stochastic version of Artstein’s theorem guarantees
the asymptotic stability in probability by means of a state feedback law that is smooth except
eventually at the equilibrium. This result generalizes the well-known theorem of Vidyasagar
concerning the feedback stabilization problem for interconnected control systems.

Keywords: asymptotic stability in probability, control Lyapunov function, smooth state
feedback law

Classification: 60H10, 93C10, 93D05, 93D15, 93E15

1. INTRODUCTION

The asymptotic stabilization in probability of nonlinear stochastic differential systems by
means of state feedback laws is an important task in control theory. The stabilizability
of various types of nonlinear stochastic differential systems has been studied by many
authors in the past decades (see, for instance Gao and Ahmed [13], Florchinger [8] –
[11], Deng, Krstić and Williams [6], Daumail and Florchinger [5] or Abedi, Leong and
Chaharborj [2]) by making use of the stochastic version of the Lyapunov theorem proved
by Khasminskii in [15].

Necessary and sufficient Lyapunov type conditions for the asymptotic feedback sta-
bilization in probability of stochastic differential systems are given by Florchinger in
[8] – [10]. The stabilizers obtained in these papers are smooth except possibly at the
equilibrium and their design relies on the knowledge of an appropriate control Lyapunov
function.

The aim of this paper is to provide sufficient conditions for the existence of control
Lyapunov functions for a class of interconnected stochastic systems that according to the
stochastic version of Artstein’s theorem [7] (see also [9] or [10]) guarantees asymptotic
stabilization in probability by means of state feedback laws that are smooth except
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possibly at the equilibrium. In particular, recall the stochastic Artstein’s theorem [7] (see
also [9] or [10]) provides an explicit formula for the stabilizing state feedback law. The
result proved in this paper extends to the stochastic context Vidyasgar’s theorem [24] on
asymptotic stabilization for large–scale systems and relies on the proof of Vidyasagar’s
theorem given by Tsinias in [20]. In addition, this result can be applied in order to
design stochastic observers for interconnected stochastic systems with an output. This
fact is the object of an ongoing line of research on stochastic observers for stochastic
differential systems and will be discussed in a forthcoming paper. It is also fair to note
that a stochastic version of Vidyasagar’s theorem based on the work of Tsinias [22] has
been proved by Boulanger in [4] for a more restrictive class of stochastic differential
systems. Nevertheless it appears that the result established in [4] does not apply to
design stochastic observers. Other techniques in order to design stabilizers for stochastic
interconnected systems have been developed by different authors in the past years (see,
for instance Abedi and Leong [1], Oumoun [17] or Himmi and Oumoun [14]). Note
also that the stabilization of composite stochastic systems via stochastic Luenberger
observers has been investigated by Florchinger in [12] whereas input–to–state stability
of nonlinear interconnected systems has been studied by Silva, McFadyen and Ford
in [18].

This paper is divided into three sections and is organized as follows. In section one,
we recall some basic results on the Lyapunov asymptotic stability in probability of the
equilibrium solution of stochastic differential equations proved by Khasminskii in [15].
In section two, we introduce the class of stochastic differential systems affine in the con-
trol we are dealing with in this paper and we recall the stochastic version of Artstein’s
theorem proved in [7] which provides a universal formula for a state feedback stabi-
lizer for the asymptotic stabilization in probability of the equilibrium solution of such
stochastic differential systems when a control Lyapunov function is known. In section
three, we prove the main theorem of the paper which extends to the stochastic con-
text Vidyasagar’s theorem on local stabilization proved in [24] to the class of stochastic
differential systems we are dealing with in this paper. The main tools used in this pa-
per are the stochastic Lyapunov machinery developed by Khasminskii [15], the converse
Lyapunov theorem proved by Kushner in [16] and the stochastic version of Artstein’s
theorem proved in [7].

2. ASYMPTOTIC STABILITY IN PROBABILITY

For this paper to be self contained, we summarize in this section basic results related
to the Lyapunov asymptotic stability in probability of the equilibrium solution of a
stochastic differential equation introduced by Khasminskii in [15].

On a complete filtered probability space
(
Ω,F , (Ft)t≥0 , P

)
, consider the stochastic

process solution xt ∈ IRn of the stochastic differential equation written in the sense of
Itô,

xt = x0 +

∫ t

0

f(xs) ds+

∫ t

0

g(xs) dws (1)

where
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1. x0 is given in IRn,

2. (wt)t≥0 is a standard Wiener process with values in IRm defined on the probability

space
(
Ω,F , (Ft)t≥0 , P

)
,

3. f and g are Lipschitz functions mapping IRn into IRn and IRn×m, respectively,
vanishing in the origin and with less than linear growth; i. e. there exists a positive
constant K such that for any x, y ∈ IRn,

|f(x)− f(y)|+ ||g(x)− g(y)|| ≤ K|x− y|

and

|f(x)|2 + ||g(x)||2 ≤ K(1 + |x|2).

If for any s ≥ 0 and x ∈ IRn, xs,x
t , s ≤ t, denotes the solution at time t of the stochastic

differential equation (1) starting from the state x at time s, the notion of asymptotic
stability in probability for the equilibrium solution of the stochastic differential equation
(1) is defined as follows.

Definition 2.1.

1) The equilibrium solution xt ≡ 0 of the stochastic differential equation (1) is stable in
probability if for any s ≥ 0 and ϵ > 0,

lim
x→0

P

(
sup
s≤t

|xs,x
t | > ϵ

)
= 0.

2) The equilibrium solution xt ≡ 0 of the stochastic differential equation (1) is locally
asymptotically stable in probability if it is stable in probability and for any s ≥ 0 and x
in a neighborhood of the origin in IRn,

P

(
lim

t→+∞
|xs,x

t | = 0

)
= 1.

Then, if L denotes the infinitesimal generator of the stochastic process solution of the
stochastic differential equation (1); that is the second order differential operator defined
for any function φ in C2(IRn; IR) by

Lφ(x) = ∇φ(x)f(x) +
1

2
Tr

(
g(x)g(x)τ∇2φ(x)

)
the following stochastic Lyapunov theorem has been proved by means of martingale
theory arguments (see theorem 5.4.4 in [15]).

Theorem 2.2. Assume that there exists a Lyapunov function V defined on a neigh-
borhood N of the origin in IRn (i. e. a positive definite function V in C2(N ; IR)) such
that
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LV (x) < 0

for any x ∈ N \ {0}. Then, the equilibrium solution xt ≡ 0 of the stochastic differential
equation (1) is locally asymptotically stable in probability.

3. PROBLEM SETTING

In this section, we introduce the class of stochastic differential systems affine in the
control we are dealing with in this paper.

On a complete filtered probability space
(
Ω,F , (Ft)t≥0 , P

)
, consider the stochastic

process (x1,t, x2,t)t≥0 with values in IRn1 × IRn2 solution of stochastic differential system
written in the sense of Itô,

x1,t = x1,0 +

∫ t

0

f1 (x1,s, x2,s) ds+

∫ t

0

g1 (x1,s, x2,s) dws (2)

x2,t = x2,0 +

∫ t

0

f2 (x1,s, x2,s) ds+

∫ t

0

h (x1,s, x2,s)uds

+

∫ t

0

g2 (x1,s, x2,s) dws) (3)

where

1. x1,0 and x2,0 are given in IRn1 and Rn2 , respectively,

2. (wt)t≥0 is a standard Wiener processes defined on the probability space(
Ω,F , (Ft)t≥0 , P

)
with values in IRd,

3. f1 and g1 are Lipschitz functions mapping IRn1 × IRn2 into IRn1 and IRn1×d, re-
spectively, vanishing in the origin and with less than linear growth,

4. f2, g2 and h are Lipschitz functions mapping IRn1 × IRn2 into IRn2 , IRn2×d and
IRn2×m, respectively, vanishing in the origin and with less than linear growth,

5. u is a measurable control law with values in IRm.

Then, one can introduce the notion of stabilizing state feedback law for the stochastic
differential system (2) – (3) as follows.

Definition 3.1. A measurable function u mapping IRn1 × IRn2 into IRm, vanishing in
the origin, is said to be a stabilizing state feedback law for the stochastic differential
system (2) – (3) if the equilibrium solution of the closed–loop system

x1,t = x1,0 +

∫ t

0

f1 (x1,s, x2,s) ds+

∫ t

0

g1 (x1,s, x2,s) dws
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x2,t = x2,0 +

∫ t

0

f2 (x1,s, x2,s) ds+

∫ t

0

h (x1,s, x2,s)u (x1,s, x2,s) ds

+

∫ t

0

g2 (x1,s, x2,s) dws

is locally asymptotically stable in probability.

Denoting by L the infinitesimal generator of the stochastic process solution of the
unforced stochastic differential system (2) – (3); that is the second order differential
operator defined for any function φ in C2 (IRn1 × IRn2 ; IR) by

Lφ (x1, x2) = ∇φ (x1, x2)F (x1, x2) +
1

2
Tr

(
G (x1, x2)G (x1, x2)

τ ∇2φ (x1, x2)
)

where F (x1, x2) =

(
f1 (x1, x2)
f2 (x1, x2)

)
and G (x1, x2) =

(
g1 (x1, x2)
g2 (x1, x2)

)
, one can introduce

the concept of control Lyapunov function as follows.

Definition 3.2. A Lyapunov function V defined on a neighborhood N of the origin in
IRn1 × IRn2 is called a control Lyapunov function for the stochastic differential system
(2) – (3) if for any x ∈ N \ {0} the following condition holds

(∇x2
V (x)h (x) = 0) ⇒ (LV (x) < 0) .

Then, the following extension of Artstein’s theorem [3] (see also Sontag [19]) for the
feedback asymptotic stabilization of stochastic differential systems affine in the control
has been established in [7] and [10].

Theorem 3.3. Assume that V is a smooth control Lyapunov function defined on a
neighborhood N of the origin in IRn1 × IRn2 for the stochastic differential system (2) –
(3). Then, the state feedback law u defined on IRn1 × IRn2 by

u(x) = ρ
(
a(x), ||B(x)||2

)
B(x)τ (4)

where a(x) = LV (x), B(x) = ∇x2
V (x)h(x) and

ρ(a, b) =


− a+

√
a2 + b2

b
(
1 +

√
1 + b

) if b > 0

0 if b = 0

(5)

renders the stochastic differential system (2) – (3) locally asymptotically stable in prob-
ability.
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4. THE MAIN THEOREM

In this section, we prove an extension of Vidyasagar’s theorem on local stabilization
stated in [24] (see also Tsinias [20] – [22]). This result also improves a previous work
published in [9].

With this aim in view, assume there exist neighborhoods of the origin N1 ⊂ IRn1 and
N2 ⊂ IRn2 , a continuous function ϕ mapping N1 into IRn2 , vanishing in the origin, and
a function W in C2,2 (N1 ×N2; IR+) satisfying the following assumptions:

(A1) The equilibrium solution x1,t ≡ 0 of the stochastic differential system

x1,t = x1,0 +

∫ t

0

f1 (x1,s, ϕ (x1,s)) ds+

∫ t

0

g1 (x1,s, ϕ (x1,s)) dws (6)

is asymptotically stable in probability.

(A2) The function W is such that W (x) = 0 if, and only if,
x ∈ Mϕ = {x = (x1, x2) ∈ N1 ×N2 / x2 = ϕ (x1)}.

(A3) There exists a closed subset S of (N1 ×N2) \Mϕ such that

(S ∪Mϕ) \ {0} = {x = (x1, x2) ∈ (N1 ×N2) \ {0} / ∇x2
W (x)h (x) = 0}

and
(x ∈ S \ {0}) ⇒ (LW (x) < 0) .

Then, we can prove the following result on the asymptotic stabilization in probability
for the class of stochastic differential systems considered in this paper which extends
Vidyasagar’s theorem [24] (see also Tsinias [20]) to the stochastic context.

Theorem 4.1. Assume that assumptions (A1) to (A3) are satisfied. Then, there
exists a control Lyapunov function Φ for the stochastic differential system (2) – (3) and
therefore this stochastic differential system is locally asymptotically stabilizable in prob-
ability.

P r o o f . The equilibrium solution x1,t ≡ 0 of the stochastic differential system (6)
being, according to assumption (A1), asymptotically stable in probability, the converse
Lyapunov theorem proved by Kushner [16] asserts that there exists a Lyapunov function
V1 defined on N1 such that for any x1 ∈ N1 \ {0},

∇x1V1 (x1) f1 (x1, ϕ (x1)) +
1

2
Tr

(
g1 (x1, ϕ (x1)) g1 (x1, ϕ (x1))

τ ∇2
x1
V1 (x1)

)
< 0.

Since the sets {0} × N2 and Mϕ \ {0} are disjoint there exists a closed subset S1 of
N1 × N2 so that its interior contains the set {0} × N2 \ {0} and (S1 ∩Mϕ) \ {0} = ∅.
Then, by making use of partition of unity arguments similar to those employed in [3] or
[23] for example, one can deduce from assumption (A3), as in [20], that there exists a
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continuous function p mapping N1 into IR+, vanishing in the origin, which is positive
definite and such that

(S1 ∪ S) \ {0} ∩ {x = (x1, x2) ∈ N1 ×N2 / W (x) < p (x1)} = ∅. (7)

Now, let b be a strictly increasing continuous function mapping IR+ into IR+, vanishing
in the origin, such that for any x1 ∈ N1,

b (|x1|) ≤ p (x1)

and let also a be a strictly increasing continuous function mapping IR+ into IR+ such
that for any x1 ∈ N1,

V1 (x1) ≤ a (|x1|) .

Then, the function V mapping N1 into IR+ defined for any x1 ∈ N1 by

V (x1) =

∫ V1(x1)

0

∫ s

0

b
(
a−1 (v)

)
dvdvs

is obviously twice continuously differentiable on N1 and such that for any x1 ∈ N1,

V (x1) ≤ V1 (x1)

∫ V1(x1)

0

b
(
a−1 (v)

)
dv ≤ (V1 (x1))

2
b (|x1|) . (8)

Furthermore, consider a smooth function θ mapping IR into [0, 1] such that θ(v) = 1 if
|v| < 1

2 and θ(v) = 0 if |v| ≥ 1 and denote by Ψ the function mapping N1 × N2 into
[0, 1] defined for any x ∈ N1 ×N2 by

Ψ(x) =


θ
(
σ W (x)

V (x1)

)
si x1 ̸= 0

0 si x1 = 0

where σ = max
{
(V1 (x1))

2
, x1 ∈ N1

}
.

Then, with the above definition, one can prove that for any x ∈ Mϕ \ {0}, one has
Ψ(x) = 1, ∇Ψ(x) = 0 and ∇2Ψ(x) = 0. Indeed, if x ∈ Mϕ \ {0}, one has according with
assumption (A2), W (x) = 0 which implies that Ψ(x) = θ(0) = 1, the last two assertions
being obtained by means of the same arguments.

Moreover, for any x = (x1, x2) ∈ S1∪S, one has Ψ(x) = 0, ∇Ψ(x) = 0 and ∇2Ψ(x) =
0. Indeed, if x1 = 0 the result is a direct consequence of the definition of the function Ψ
and if x1 ̸= 0, according with (7), one has p (x1) ≤ W (x) which implies that b (|x1|) ≤

W (x) and according with (8), since x1 ̸= 0, one gets σ
W (x)

V (x1)
≥ 1 and consequently,

Ψ(x) = 0, the last two assertions being obtained by means of the same arguments.

In addition, the same discussion shows that the function Ψ is twice continuously
differentiable on (N1 ×N2) \ {0} and uniformly bounded on N1 ×N2.
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Now, let k be a positive constant such that

k > σmax {|θ′(s)|, s ∈ IR}

and denote by Φ the function mapping N1 ×N2 into IR+ defined for any x = (x1, x2) ∈
N1 ×N2, by

Φ(x) = Ψ(x)V (x1) + kW (x). (9)

Then, the function Φ defined above is positive definite, twice continuously differentiable
on (N1 ×N2) \ {0} and continuous at the origin.

Indeed, obviously, Φ(0) = 0 and conversely, if Φ(x) = 0 one has W (x) = 0 and
Ψ(x)V (x1) = 0 and hence, taking assumption (A2) into account, one gets x ∈ Mϕ and
Ψ(x)V (x1) = 0 which imply that x = 0. In fact, assuming that x1 ̸= 0 one gets from the
above analysis that Ψ(x) = 1 and consequently that V (x1) = 0 and it yields, according
with the definition of the function V , that V1(x1) = 0 which contradicts the fact that
V1 is a Lyapunov function.

Therefore, the function Φ is positive definite and further, the function Φ is clearly
twice continuously differentiable on (N1 ×N2)\{0} and since the function Ψ is bounded
and

lim
x→0

W (x) = lim
x1→0

V (x1) = 0

it is obvious that the function Φ is continuous at the origin.

In the sequel, we prove that the function Φ defined above is a control Lyapunov
function for the stochastic differential system (2) – (3).

With this aim, first note that for any x = (x1, x2) ∈ N1 ×N2 \ {0}, one has

∇x2
Φ(x)h (x) =

(
σθ′

(
σ
W (x)

V (x1)

)
∇x2

W (x) + k∇x2
W (x)

)
h(x)

and hence, taking into account the definition of constant k, it yields that∇x2
Φ(x)h (x) =

0 if, and only if, ∇x2
W (x)h(x) = 0 and by assumption (A3) one has

(S ∪Mϕ) \ {0} = {x = (x1, x2) ∈ (N1 ×N2) \ {0}, ∇x2Φ(x)h (x) = 0} .

Now, we prove that for any x ∈ S ∪Mϕ \ {0}, on has LΦ(x) < 0.

If x ∈ Mϕ \ {0}, as discussed above, one has Ψ(x) = 1, ∇Ψ(x) = 0 and ∇2Ψ(x) = 0 and
according with assumption (A2), ∇W (x) = 0 and ∇2W (x) = 0, which implies, since
x2 = ϕ(x1), that

LΦ(x)|x∈Mϕ\{0} = ∇x1
V1 (x1) f1 (x1, ϕ (x1))

+
1

2
Tr

(
g1 (x1, ϕ (x1)) g1 (x1, ϕ (x1))

τ ∇2
x1
V1 (x1)

)
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and, taking into account the definition of the Lyapunov function V1, it yields

LΦ(x)|x∈Mϕ\{0} < 0.

If x ∈ S \ {0}, as discussed above, one has Ψ(x) = 0, ∇Ψ(x) = 0 and ∇2Ψ(x) = 0 and
consequently,

LΦ(x)|x∈S\{0} = kLW (x)

and, taking into account assumption (A3), it yields

LΦ(x)|x∈S\{0} < 0.

Therefore, the function Φ given by (9) is a control Lyapunov function for the stochastic
differential system (2) – (3) and by applying the stochastic version of Artstein’s theorem
(theorem 3.3), the stochastic differential system (2) – (3) si asymptotically stabilizable
in probability by means of the state feedback u defined for any x ∈ IRn1 × IRn2 by

u(x) = ρ
(
a(x), ||B(x)||2

)
B(x)τ

where the function ρ is defined in (5) with a(x) = LΦ(x), B(x) = ∇x2
V (x)h(x).

□

(Received July 1, 2025)
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