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KYBERNETIKA — VOLUME 61 (2025), NUMBER 6, PAGES 762-788

ET-DMGING: EVENT-TRIGGERED DISTRIBUTED
MOMENTUM-GRADIENT TRACKING OPTIMIZATION
ALGORITHM FOR MULTI-AGENT SYSTEMS

A1juaN WANG, XINGMENG TAN AND HAT NAN

This paper proposes an event-triggered distributed momentum-gradient tracking optimiza-
tion algorithm (ET-DMGing) for the collaborative optimization problem of minimizing the
sum of all agents’ local objective functions in multi-agent systems. Firstly, gradient track-
ing is employed to precisely track the average momentum gradient for updating agent states,
which effectively reduces their dwell time in flat and oscillatory regions. The proposed ET-
DMGing exhibits enhanced directional consistency and dynamic stability during optimization
by leveraging momentum accumulation effects, achieving a linear convergence rate. Secondly,
a new event-triggered condition is proposed, which considers the dual metrics of state error
and momentum gradient error. This allows for a more comprehensive assessment of the agents’
triggering needs, avoiding instability caused by single-dimensional triggering, and improving
the triggering threshold. This event-triggered condition reduces the communication frequency
among agents. Thirdly, we rigorously proved that the proposed ET-DMGing converges to the
global optimum at a linear convergence rate by employing the small-gain theorem. Further-
more, explicit convergence conditions have been derived for parameter selection, including step
size parameters and event-triggered weighting coefficients. Finally, numerical simulations are
performed to verify the effectiveness and accuracy of the theoretical results.

Keywords: gradient tracking, event-triggered mechanism, multi-agent systems, dis-
tributed optimization

Classification: 68W15, 93D05, 93D21

1. INTRODUCTION

Traditional centralized algorithms face high computational burdens and limited adapt-
ability in multi-agent system optimization, primarily due to their inherent complexity,
large-scale nature, and solution complexity [17,31,[82]. In contrast, distributed optimiza-
tion algorithms decompose complex and large-scale problems into simpler subproblems.
These algorithms provide efficient and stable solutions for large-scale optimization chal-
lenges [25] such as cooperative control systems [I1], sensor-networks coordination [26],
and energy management [I2]. Numerous studies have been developed distributed algo-
rithms for multi-agent optimization [9, [18] 28] 29, [30, [34].
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Existing distributed optimization algorithms fall into two categories: diminishing-
step-size algorithms [3] [6l 10, 21] and fixed-step-size algorithms [4], 20} 27]. The primary
challenge for diminishing-step-size algorithms stems from the difficulty in designing effec-
tive decay strategies, resulting in slower convergence rates. Consequently, fixed-step-size
algorithms have attracted significant attention due to their structural simplicity and
rapid convergence rates. For example, the exact first-order algorithm (EXTRA) [27]
incorporates correction terms into decentralized gradient descent. By leveraging a dif-
ferential structure to eliminate steady-state errors, EXTRA achieved exact convergence
with fixed-step-sizes. The stochastic average gradient algorithm (SAGA) [4] integrates
stochastic gradient descent with averaged gradient techniques, achieving rapid linear
convergence. The predictability and stability of SAGA are enhanced by its fixed-step-
size design. Similarly, the algorithm in [20] addresses mixed equilibrium problems under
multiple constraints by integrating mirror descent, primal-dual methods, and consen-
sus protocols. This integration ensures asymptotic convergence under fixed-step-size.
Many classical distributed gradient tracking algorithms utilize fixed-step-sizes [22] [24].
By integrating consensus-based distributed gradient descent (DGD) with an innovative
gradient estimation scheme, these algorithms exploit historical data to achieve fast and
precise average gradient estimates. The study in [24] explored the convergence rate of
fixed-step-size gradient tracking algorithms under convexity and smoothness conditions,
eliminating the need for strong convexity assumptions. The distributed inexact gradient
tracking algorithm (DIGing) [22] examines strong convexity and smoothness conditions.
The results in [22] demonstrate linear convergence when the fixed-step-size lies within
upper bounds, effectively addressing engineering challenges in directed graphs. Build-
ing upon [22], the study in [I5] incorporates stochastic average gradient technique to
propose a fixed-step-size distributed stochastic gradient tracking algorithm (S-DIGing),
and provides a novel primal-dual interpretation to prove linear convergence to the global
optimum under specific conditions. The distributed gradient tracking algorithm with
variance reduction (GT-VR) [§] employs fixed-step-size gradient tracking and variance
reduction techniques, introducing Bernoulli distribution into stochastic variance reduced
gradient (SVRG) methods to address non-convex optimization. It achieves a convergence
rate of O(1/k) and operates without steady-state errors. Furthermore, the study in [16]
develops a unified algorithmic framework from a primal-space perspective, which is es-
sentially a generalized gradient tracking method and unifies most existing fixed-step-size
distributed optimization algorithms. However, existing studies lack explicit acceleration
mechanisms capable of circumventing local oscillations and preventing convergence to
shallow local optima. Momentum methods [23] are widely adopted accelerate the con-
vergence of first-order algorithms. The accumulation of historical gradient information
causes the agent’s state updates to exhibit inertia, helping the algorithm avoid shallow
local optima, reducing oscillations during convergence, and accelerating overall conver-
gence. Consequently, researchers have integrated momentum methods with gradient
tracking algorithms [I [7]. For instance, the distributed stochastic momentum track-
ing (DSMT) algorithm [7] is a single-loop framework that integrates momentum meth-
ods, gradient tracking techniques, and loopless Chebyshev acceleration. The gradient
tracking with adaptive momentum estimation (GTAdam) distributed algorithm [I] inte-
grates gradient tracking techniques with first- and second-order momentum estimations,
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and has demonstrated superior convergence rates. In summary, while the fixed-step-
size design simplifies the algorithmic structure, excessively large step sizes may induce
oscillations. In gradient-based optimization algorithms, the step size determines the
magnitude of updates in each iteration. If set too large, the optimization variable may
overshoot the optimal solution region, resulting in repeated oscillations around the opti-
mal point. This behavior undermines convergence stability, slows down the convergence
rate, and may even compromise the final optimization result.To address this issue, this
paper introduces a momentum gradient tracking methods leverages global historical
gradient information to suppress oscillations and enhance convergence rates. This mo-
tivates the proposal a momentum-gradient tracking distributed optimization algorithm
with fixed-step-sizes, which aims to achieve accelerated convergence while minimizing
communication-computation overhead.

In summary, while the fixed-step-size design simplifies the algorithmic structure, ex-
cessively large step sizes may cause the variables to oscillate around the optimal point,
leading to degraded convergence speed and accuracy. To mitigate this issue, this pa-
per introduces a momentum gradient tracking methods leverages global historical gra-
dient information to suppress oscillations and enhance convergence rates. This moti-
vates the proposal a momentum-gradient tracking distributed optimization algorithm
with fixed-step-sizes, which aims to achieve accelerated convergence while minimizing
communication-computation overhead.

On the other hand, distributed optimization algorithms rely on inter-agent informa-
tion exchange to achieve convergence and obtain optimal solutions. However, real-time
continuous communication is impractical in real-world scenarios and entails excessive
communication overhead. Event-triggered strategies, as a non-real-time control frame-
work [13], demonstrate enhanced compatibility with practical application environments
while maintaining resource efficiency, which has attracted substantial research atten-
tion [2, Bl 14l [19] [33]. For instance, the event-triggered mechanism in [I9] minimizes
communication costs by designing dynamic quantizers and broadcast protocols adapted
to each agent’s bandwidth constraints. However, dynamic quantizers introduce archi-
tectural complexity, thereby increasing computational and communication overhead in
practical implementations. The event-triggered conditions in [14] are highly dependent
on time parameters and impose numerous constraints on other parameter settings. In
this regard, the Extended DIGing algorithm proposed in [5] employed an innovative
event-triggered condition that depends solely on the local state and sporadic neighbor
states. Although its key parameter selection is straightforward, single-dimensional mea-
surement errors can induce frequent false triggering. To address the high reliance on
time parameters, elevated complexity, and sensitivity to single error in existing event-
triggered conditions, it inspires us to propose an effective event-trigger function aimed
at reducing communication costs, minimizing the impact of single errors, and lowering
the complexity of event-triggered conditions.

Based on the above discussions, this paper proposes an event-triggered distributed
momentum-gradient tracking optimization algorithm for multi-agent systems. The pro-
posed algorithm achieves exact convergence to the global optimum at a linear rate while
reducing communication frequency. Compared to the algorithm in [5], the proposed ET-
DMGing algorithm exhibits a lower communication frequency and faster convergence.
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The main contributions of this paper are as follows:

(1) We propose a fixed-step-size momentum gradient tracking method that accurately
tracks the average momentum gradient, thereby accelerating the convergence rate. The
accumulation effect of momentum ensures consistent and stable state update directions,
reduces oscillations during the optimization process, and effectively prevents convergence
to shallow local optima. Experimental results demonstrate a 35.93% reduction in total
iteration time compared to the method in [5].

(2) We propose an effective event-triggered condition that relies only on neighbors’
sporadic states. This condition is defined as the sum of dual variations in state error and
momentum gradient error, taking into account both the magnitude of the agent’s own
state change and the joint advantages and disadvantages of the momentum gradient bias.
Theoretical analysis demonstrates that the proposed constraints are stricter than those
in [B]. By increasing the triggering threshold, this approach avoids frequent activations
caused by single-error satisfaction and reduces communication volume by 82.32%.

(3) Finally, we employ the small gain theorem to prove that the proposed ET-DMGing
algorithm can achieves exact convergence to the global optimal solution at a linear rate.
Additionally, convergence conditions about the associated parameters are derived. Sim-
ulation results including algorithm convergence analysis, event-triggered mechanism ef-
ficiency, and comparative performance validation with baseline methods further validate
the effectiveness and correctness of the theoretical results.

The remainder of this paper is organized as follows. Section 2 introduces fundamen-
tal preliminary concepts covering notations, graph theory, gradient tracking algorithms,
and momentum methods. Section 3 details the algorithm’s workflow and distributed
event-triggered mechanisms. Section 4 presents the main theorems and rigorous conver-
gence analysis. Section 5 demonstrates numerical simulations for empirical validation of
the main theorems. Section 6 provides the conclusions of the paper, summarizing key
contributions and future directions.

2. PRELIMINARIES AND PROBLEM FORMULATION
2.1. Notations description

Let R be the set of real numbers, R™ be the set of n-dimensional real column vectors, 1,
represent the n x 1 vector with all elements equal to 1, 0,, denote the n x 1 vector with all
elements equal to 0, I denotes the unit matrix of n x n, let J = %17112. For a vector v,
||| denotes the Euclidean norm of the vector, and v denotes the transpose of the vector
v. For a matrix A, omax (A) represents its maximum singular value. For a differentiable
function f (x), denote by Vf (z) its gradient at x. The subscript i denotes the ith
agent and z; (k) denotes the state variable of agent 7 at the kth iteration. (x,y) denotes
the inner product of x and y. for an infinite sequence s; = {s;(0),s;(1),s:(2),...},
where s;(k) € RN. Vk such that [|s;|™" = maxj—o1, rx l|si (K)], and [s;]* =
supkzo% IIs; (K)||, where A € (0,1).
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2.2. Network model

Let G = {v,e, A} be defined as an undirected graph composed of n agents, where v =
{v1,v2,...,v,} represents the set of agents, ¢ € v x v denotes the set of edges, and A =
(ai;) € R™™™ is the adjacency matrix of G. An edge e;; = (v;, v;) indicates bidirectional
communication between agents i to j. The adjacency matrix A is symmetric, implying
mutual accessibility between connected agents. If a bidirectional communication channel
exists between agent i and agent j, they are referred to as neighbors, corresponding to
a;; = aj; = 1, otherwise, they correspond to a;; = aj; = 0. The neighbor set of
agent i is denoted by N;. Let n represent the total number of agents in the network,
and |N;| represent the number of neighbors of agent i. The Laplacian matrix of A is
defined as L = (¢;;) € R™*™, where l;; = —aj;;, i # j, and {;; = Z?:Li;éj a;j. Lis a
symmetric positive semi-definite matrix. The matrix W = (w;;) € R™*" is a doubly
stochastic matrix, where all elements are non-negative real numbers, and the sum of
the elements in each row and each column is equal to 1, i.e., w;; > 0 for all 7, j, and

D Wij =35 wij = 1.

2.3. Distributed optimization

This paper addresses an unconstrained optimization problem, aiming to solve it collab-
oratively through a network of n agents.

min f(x) = %Zfz (z), (1)

ERSING

where f(x) : R® — R denotes the global differentiable convex objective function, and
fi () : R™ — R denotes the agent-specific localized convex objective function for agent i.
Each agent’s local objective function is unique to agent . The goal is to find the globally
optimal solution z* through local computations and information exchanges among the
agents. We make the following assumptions on objective functions in :

Assumption 2.1. (Connectivity) Assume that the undirected graph G is connected.

Assumption 2.2. (Doubly Stochasticity) Suppose Assumption 1 hold, let 0 < h <
-+, where & = max!", {d;} and d; = > j—1 @ij, such that the matrix W = I — hL is
doubly stochastic, and 6 = opax (W — J) < 1.

Assumption 2.3. (Smoothness) For each agent i, ¢ = 1,...n, the local objective
function f; is differentiable, and its gradient is Lipschitz continuous. For all z,y € R™,
we have:

IVfi(x) = Vi)l < billz =yl
where I; > 0 is partially defined, we will use L = max?_, {I;} and T = LS 1 in our
analysis.

Assumption 2.4. (Strong Convexity) For each agent i, i = 1,...n, the local objec-
tive function f; is strongly convex, meaning that for all x,y € R", we have:

fi(@) 2 fi () + (Vi ) (@ = ) + G lle = o,
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where p; > 0 is partially defined, we will use i = max} ; {p;} and i = %2?21 i in
our analysis.

2.4. DIGing algorithm

The DIGing algorithm Nedic et al. [22] is highly effective in solving distributed opti-
mization problems and achieves exact convergence to the optimal solution at a linear
rate. Given initial states z; (0) € R™ and y; (0) = Vf; (z; (0)) for each agent ¢, the
iterative update rules are:

21 (k1) = 2, () + s (K) — gy (8) 2)

yi (k+1) =y; (k) + hv; (k) + Vfi (2 (k + 1)) = V fi (2 (k)), (3)

wi () = 3 i (a5 (k) — i (), @)
JEN;

v; (k) = Z aij (y5 (k) =i (k) (5)
JEN;

where N; denotes the set of all neighboring agents of agent i. x; (k) € R™ denotes the
state estimate of agent i, y; (k) € R™ denotes the average gradient estimate of agent i, h
represents a positive control coefficient, and wu; (k), v; (k) are two auxiliary variables. In
the k+ 1th iteration, each agent updates its state estimate and average gradient estimate
using its own kth iteration values z; (k) and y; (k), the received values z; (k) and y; (k)
from neighboring agents, and the gradient difference term V f; (z; (k + 1)) =V f; (z; (k)).
Finally, each agent broadcasts its updated state estimate x; (k + 1) and average gradient
estimate y; (k + 1) to all neighboring agents and receives x; (k + 1) and average gradient
estimates y; (k + 1) from its neighbors.

2.5. Momentum method

The momentum method [23] substitutes the original gradient value with the exponen-
tially weighted moving average of historical gradients. This method integrates historical
gradient information using exponential weights. When the gradient exhibits rapid di-
rectional variations, the state update step size progressively increases in that direction;
otherwise, it decreases. By considering the influence of historical gradient trends, the
momentum method reduces the sensitivity of the optimization trajectory to the gra-
dient changes of a single iteration, thereby suppressing oscillations in the agent state
estimates. This approach facilitates escaping shallow local optima and accelerates the
convergence. The momentum update rule are

zi (k+1) =z (k) —ayi (k) ,yi (k+1) = By (k) + (1 = B)Vf (zi (k + 1)),
where 5 € (0,1) represents the momentum coefficient. With the aid of the 8, the

influence of historical gradient information on the algorithm’s update can be controlled
more effectively.
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3. ET-DMGING ALGORITHM DESIGN

Considering that the accumulated effect of historical gradients can accelerate conver-
gence, we introduce the momentum method into the distributed gradient tracking al-
gorithm. By employing gradient tracking techniques, the tracked entity shifts from the
average gradient to the average of the historically weighted gradients, termed the average
momentum gradient. This method reduces oscillations, resulting in enhanced stability
and speed throughout the iterative process.

Based on this, an event-triggered mechanism is introduced to reduce communication
costs, where each agent i follows a sequence of event-triggered times { 0=th,ti,th, .. }
Thus, the two auxiliary variables in ([4]) and ([5]) must be adjusted based on event-triggered

times.
ui (k) =Y ai (»”Cj (tij) — (ﬁw)) : (6)
JEN;
v; (k) = Z aij (yj (tij) =i ( Z)) ; (7)

JEN;

where k € [t} ,ti 1), @i (¢}, ) denote the state estimates of agent i at the time of
the most recent event trigger, while y; (t}cl) denotes the average momentum gradient
estimate of agent ¢ at the same moment. Here, j € N; and N; indicates a neighbor
of agent 7, where j is the neighbor set. Consequently, the update formula for the ET-
MDIGing algorithm can be expressed as follows:

xz; (k+1) =z; (k) + hu; (k) — ay; (k) (8)
9i(k+1)=(1-=8)gi (k) + BV fi (i (k+1)), 9)
yi (k+1) = yi (k) 4 hog (k) + gi (k + 1) — g; (k) (10)

where z; (k + 1) denotes the state estimate of agent ¢ at k+ 1th iterations, and g; (k + 1)
represents the momentum gradient of agent 7 at k 4+ 1th iterations. « is step size, h is a
positive control coefficient. 5 € (0, 1) is the momentum coefficient, h is a positive control
coefficient. The tracking of the average momentum gradient is effectively facilitated
by (0. | |

We define two measurement errors e? (k) = z; (t}%) —z; (k) and €} (k) = y; (t}ﬂ) -
yi (k). t;, denotes the most recent triggered time of agent 4, the ef (k) quantifies the
deviation of the state estimate at the most recent triggered time from that at the kth
iteration. The e! (k) quantifies the deviation of the average momentum gradient estimate
at the last triggered time from that at the kth iteration. Notably, both measurement
errors equal zero when an event is triggered.

Considering that the state error of agents reflects their consensus level, while the av-
erage momentum gradient error indicates the accuracy of achieving the optimal solution,
relying solely on the state error may lead the algorithm to primarily focus on synchroniza-
tion among agents, thereby neglecting the precision of the global optimum. Conversely,
exclusive reliance on the average momentum gradient error may lead frequent triggers if
consensus among agents is not fully established. By incorporating both errors, a more
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comprehensive representation of the algorithm’s operational status is achieved, mitigat-
ing the biases associated with relying solely on either error. This approach enhances the
event-triggered threshold, ensuring performance while simultaneously reducing commu-
nication overhead. Therefore, the following event-triggered condition is proposed:

thpr = inf {t|t > t; , flagy (e]) + flagz (e!) > 0}, (11)

2

b

flags (¢¢) = llet WI? =i 3 [l (th,) — i ()]

JEN;

flaga (e!) = Jle? thHyj(j) i (t,)

JEN;

2
; (12)

where flag, ( ) denotes the error of two measurement errors, h represents a positive
control coefﬁc1ent, r1 and 7y are event-triggered weighting coefficients, which adjust the
weighting ratio between local error and neighboring state discrepancies in the triggering
conditions [5] . The first term representing the square of the measurement error of the
agent’s state estimate, and the second term indicating the sum of the squares of the dif-
ferences between the state estimate at the agent’s most recent triggered time and those of
all neighboring agents. This term reflects the consensus level among agents. The differ-
ence between the two terms can determine whether the agent is experiencing the fastest
state change. A similar logic applies to flags (¢Y). Utilizing flagy (e¥) + flags (¢?) >0
allows for determining whether the agent exhlblts the fastest comblned change in state
information and average gradient information, while balancing the influences of state
information and average momentum gradient information on event triggered. This con-
dition raises the event-triggered threshold, further reducing communication frequency
among agents. Notably, ti and tj represent the most recent triggered times of agents
j and i, respectively, and these tlmes are typically different. Therefore, when assessing
the event-triggered conditions, only the state estimate and average momentum gradi-
ent estimate at the agent’s most recent triggered time for all neighboring agents are
required, along with the agent’s current iteration state estimate and average momentum
gradient estimate. This approach eliminates the need for real-time acquisition of neigh-
boring agents’ state information, significantly reducing communication costs and saving
network bandwidth.

Remark 3.1. The event-triggered condition

thyy = inf{t|t > ¢, ,max(flag(e?), flaga(e})) > 0}

in reference [f] is determined by the maximum values of flag; (¢¥) and flags (¢?). Since
flagi (eF) and flags (e!) can be negative, this may lead to the followmg situation. Dur-
ing the kth iteration. flagl( ) >0 > flags (€!) occurs, and | flags (¢?)| > | flagy (e¥)]
holds, which means that flagl( %) + flags (e ?j) < 0. This indicates that the advan-
tage brought by the change in agent i’s state estimate might not be sufficient to offset
the negative impact caused by the change in agent i’s average momentum gradient es-
timate. This design implies that even when the overall system is approaching steady



770 A. WANG, X. TAN AND H. NAN

convergence, a temporary and minor fluctuation in just one direction may still trigger
an event, thereby increasing the communication frequency. Since the triggering condi-
tion is evaluated independently on a single error metric, it becomes overly sensitive to
local disturbances, resulting in frequent and unnecessary communication. In contrast,
by jointly considering the variations in both the state estimate and the average mo-
mentum gradient estimate, such false triggers can be effectively avoided. The proposed
two-dimensional event-triggered mechanism does not rely on the isolated behavior of a
single error component; instead, it makes decisions based on the overall error dynam-
ics. This integrated strategy increases the triggering threshold, enables more rational
selection of triggering moments, and significantly reduces the number of communication
events. Consequently, it enhances communication efficiency while maintaining conver-
gence stability and algorithmic performance.

By substituting @ into and into , a compact form is obtained:

x(k+1) =Wz (k) —hLe" (k) — ay (k), (13)
gk+1)=0—=p)g(k)+pVf(x(k+1)), (14)
y(k+1)=Wy(k) —hLeY (k)+g(k+1)—g(k), (15)

where W =1—-hL, g € (0,1),

it (k)
ety=| - |,
Zn (k)
—111 (k)-
yk)y=1 -1,
_yn(k)_
Vi (21 (k)
Vf(z (k)= ;
V fo (@ (k)
g1 (k)
gy=|" |,
gn(k)
et (k)
= |
e (k)
el (k)]
(k)= -
Len (k)]

The specific algorithm process is outlined as follows Alogrithm 1:
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Algorithm 1 ET-DMGing Algorithm
1: Initialize: z;, x;(t}), y;(t))
2: Broadcast x;(t}), y;(t}) to all neighboring agents
3: while exit condition not met do

4: for j € N; do > Detect if state estimates are received from neighboring agents
5 if «] (tij) # :Cj(tij) then

6: Update state estimate and average momentum gradient:

T i (ty,) < xi(t,), vi(ty,) < vilty,)

8 Update auxiliary variables u;(k) and v;(k) according to @,

9 end if

10: end for

11: Update local agent’s state estimate x;(k 4+ 1) according to
12: Update local agent’s auxiliary gradient g;(k + 1) according to @[)

13: Update local agent’s average momentum gradient estimate y;(k + 1) according
to

14: if flag:(ef) + flaga(e!) > 0 then > Check if an event is triggered

15: Update event time: tj, =k + 1

16: xi(ﬂg,») — J)l(ki + 1), yz(t;ﬁ) — yl(ki + 1)

17: Update auxiliary variables u;(t) and v;(t)

18: Broadcast x;(t, ), i(t},) to neighboring agents

19: end if

20: k< k+1
21: end while

Remark 3.2. The ET-DMGing algorithm does not exhibit Zeno behavior. In the con-
text of event triggered, Zeno behavior refers to the occurrence of infinitely many triggers
within a finite time frame. Since the ET-DMGing algorithm runs on discrete iterations,
the triggered times correspond to specific iterations that meet the event-triggered condi-
tions. As the algorithm progresses, the total number of iterations is finite, thus, infinite
triggers cannot occur.

4. THEORETICAL ANALYSIS

In this section, we construction a framework for the algorithm’s proof based on relevant
lemmas and definition of related symbols. Subsequently, we populate this framework
with key inferences, ultimately demonstrating that the algorithm converges to the opti-
mal solution at a linear rate.

Lemma 4.1. (Small Gain Theorem) (Nedic et al. [22]) Assume s,,s,,...s  is a
sequence, for all positive integers K and any ¢ = 1,2,...m, we have:

||)\,K

[ moa mys1 || < @illsal M+ wi,

where 1, @9, ...y and wy, ws, . . . wy, are non-negative constants satisfying 0 < H:’;l ©i

< 1, then [|s¢]* < (%) iy wi [T72, @i Since the Small Gain Theorem
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employs a cyclic structure for s; — $(; mod m)+1, We can derive the bounds for each
I|s;]|* as i =1,2,...m based on the aforementioned.

Based on Lemma 4.1 and (13), (14), (15), we define the sequence s,,s,,...s,, as
follows q, Z, 4, m, z, with the cyclic structure composed of:

A,

MK K
2177 < @llg)™™ +wn,

K K
gl < @allZf| 7" + w2,

W ¢ NW e
12177 < esllgl™" + ws,
W ¢ NK

9177 < @allm[|™ + wa,

ALK K
7 < sz 4+ ws,

lizd

where 7 (K) = £ S0 i (), 5.(k) = 2 30, 43 (), 9 (k) = 2 30, gi (k). (k) = 2 (k) —
1,a%, & (k) =2 (k) — 1a7, §(K) =y (&) — 1og, 2 (k) = G (2 (k) — Vf (2 (k — 1)),
m (k) = g (k) — g (k — 1). Let 2* denote the global optimal solution to problem (T). By
proving 0 < H?Zl ©; < 1, we can establish the bounds for each ||52H>‘7 1=1,...,5, which
demonstrates that the algorithm can converge to the global optimal solution at a linear
rate, wy, wsg, w3, wy, ws > 0.

The following are the necessary inferences for the convergence of the algorithm.

Lemma 4.2. (Nedic et al. [22], Lemma 5) Suppose Assumption 2.2 hold, we have for
any K >0 and A € (0,1) such that:

- 1
A < £ (14 ) o™, (16)

Proof. The detailed proof can be found in in [22], so we omit its proof. O

Corollary 4.1. Suppose Assumption 2.4 hold, let W be a doubly stochastic matrix.
Define y (0) = g (0) = SV f (2 (0)), we introduce a new auxiliary variable

(17)

For any k£ > 0, we have:

Similar approaches have also been explored in the literature [7].

Proof. Since Assumption 2.4, W is doubly stochastic. Therefore, multiplying both
sides of by 117 yields. §(k + 1) =5 (k)+g (k + 1)—7 (k), which implies 5 (k + 1) —
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g(k+1)=7(k)—g (k). Since y (0) = g (0) = BV f (x (0)), we have for any k > 0, such
that 7 (k+ 1) = g (k+ 1). Multiplying both sides of and by 117 yields:
T(k+1) =7 (k) —ay(k),
glk+1)= (1= A)F(H) + 5, 10VF (2 (k+1))
= (1= B)g () + 52 > fi (i (k4 1),

i=1

Let o (k) = 230 1Vf1( l( ), thus proving d (k + 1) = d (k) — a® (k), and we have

gk+1)= (1 — B)g (k) + v (k). When k = 0, we have:
31—30:%@ lgﬂl‘o—foz%(fo—&?o)—%foz—aﬂo.
When k > 1, we have:
d(k+1) —d(k) Z%(f(k%l) —A=-pzk)-z(k)+ A -pT(k-1))
— 5 (=g (k) + (1= B)ag (k= 1)
= —av (k)
In summary, for any k >0, d (k+ 1) = d (k) — a2 3", Vf; (z; (k)) hold true. O

Corollary 4.2. Based on the event-triggered conditions and , we have for any
Y1,72 € (0, 17 ) such that:

A hyi
x < =9 [ 1
e ()1 < b 2 () by = 20| = (19)
le¥ (k)[| < bz |9 (k)| , b2 = 2n S (20)
- ’ 1 —4n2hy,

Proof. flag, (ef) and flags (¢!) are abbreviated as flag, and flags. From event-

triggered conditions and , we derive flag = flags + flage and flag > O.
Analysis shows that when the event is triggered, at least one of flag, or flags exceeds
zero. Furthermore, when the event occurs, €7 (k) = z; (t}%) —x; (k) =0 and €/ (k) =
Yi (t}c) —y; (k) = 0 hold. Thus, the following inequalities are obtained:

le? (k)[* < mh Z ij ( j) L (1) ’2, (21)
¥ @2 < 2eh 3 (o (1) = (6] (22)

JEN;
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Based on , it follows that:

le? (k)] < 71h ; | (k — 2 (k) — e (B)|?
-~ fylhjg &5 (F) — & (k) + ¢¥ (k) — eF (k)|
<2m§ (2 (125 I+l (1) + 2 (Jles ) + et ()11
< 4Ny [z () + e (R)) - (23)

Similarly, based on , we can conclude that:
2 N 2 2
le? ()1 < aNazh (119 B + e ()7) - (24)

By substituting [e” (k)||*and ||e¥ (k)||® for Hef (k)H2 and ||eY k)| in ([23) and ([24), we
obtain:

le® () < ANyl (112 (0)1 + le (k)1?) (25)
e ()1 < 4Nk (113 (R + le? (1)) (26)
This is identical to and . (|

Corollary 4.3. When 8 € (0,1) and A € (0,1)hold true, and A — 1+ 3 > 0 is satisfied.
we have for any K > 0 such that:

L By L

S3N"117 z mllm(o)ll- (27)

A
([l

Proof. From (14), g(k+1) = (1—-08)g (k) + SV S (z(k+1)) follows, leading to
g(k)=(1-5)
g(k—1)+ BV f(x(k)). Subtracting the two gives:

lg(k+1) =g B =1 =P)(gk) —g(k=1)+B(Vf(z(k+1)) - Vf(z (k‘)))gég)

Since m (k) = g(k) —g(k—1) and z(k) = Vf(z(k)) — Vf(z(k—-1)), can be

rewritten as:
[m(k+ D < [(1=B)m k)| + B8z (k+1)]. (29)

Multiplying both sides of by A=+ yields:

A 1)) < S o )+ A0 k) (30)
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Let A — 14 8 >0, and taking maxz—¢,1,.. x—1 {.} on both sides of yields:

XK AB XK A
T — ’ _— 0)]| .
[[ml —,\—1+ﬁ”2” +/\_1+,8||m()||
O
Corollary 4.4. Suppose Assumption 2.4 hold for v, € (O,W)7 where ¥ =
}glﬁgf; is true. Whend + hbs ||L|| < A < 1 is satisfied, any K > 0 such that:

NIDW ¢ A K A .
T ’ _ 0)] . 31
1™ < s+ s 19O (31)

Proof. Suppose Assumption 2.4 hold, let W be a doubly stochastic matrix, and W =
I—hL . Given J =T — J, JW = Wj, JJ = 0, and HjH = 1, according to and
Corollary 4.2, we have:
19 (k+ DI =T =)y (k+ 1)
- HjWy (k) — hLe? (k) — Jm (k + 1)H
< [ Wy ®)|| + m 1L lle? R+ lim G+ D)

= [|W =) g (Rl + RILI - [le? (R + [[m (k + 1)]]
< (8 +hbz (L)) 1§ (R)| + [ (k + D] (32)

Multiplying both sides of by A=+ yields:

5+ hby || L

AR g (1)) < S

A+ A" Im (k+ DI (33)

Let A — 1+ 8> 0, and taking maxg—o.1, r—1{.} on both sides of yields:

NIDW ¢ A ALK A .
Tl — ’ — |7 (0)|| .
191 < s s O
|
Corollary 4.5. Suppose Assumption 2.4 hold for v; € (O,W), where ¢ =
ﬁﬂiﬁ; is true. When ¢ + hby ||L|| < A < 1 is satisfied, for any K > 0, such that:
LINE o NPW e A .
Tl ’ _— 0) - 34
e e T L I 0)] (34)

N—6—hb ||Z]

Proof. The proof of Corollary 4.5 is omitted as it closely resembles that of Corollary
4.4. O
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Corollary 4.6. Suppose Assumption 2.1,2.2,2.3 and 2.4 hold, and the step size o and

A satisfy conditions
afif 1
(f1-—— <A< 0<a< ———.
1+6 — “(14n)L

Then, for any K > 0 hold, that:

[P )‘Q—nﬁ _ ot
R P CRE) 6— i (1—B)

where 1 = / %;" B9, ¢ =Av/n(A—1+48) = (1—B8)v >0, ¢ — Angp (1 — B) > 0.

Proof. From Corollary 4.1 and of Lemma 8 in [22], it follows that:
ATl (K + 1) — d||

[z (0) — 2™ + Iz — 2™, (35)

<l ) -

c v (R > maxeco..i (N7 |06) ]}
(36)

where @ and 7 are positive free variables. Let 1) = 1/ % + %9 , substituting

into yields:

—(k+1) _1-p_ 1., 1-p *>H
A ‘6 (k+1) ﬁ z (k) — (Bx 5 x

<7 (0) = [l + (\Wn) 'y

S i[5 2r0-0- (5152

T
=
+
=
I
8
_*

- A‘“ﬂ*”% I (k) —*|

S wle

Zn:maxt_o,...k {/\‘t (B |z () — || + % |z(t—1)— x§||> }

- 1 1-8
maxy—g._ )\_t< T (t) — —|— T(t—1)—a*| + ¥ —at )}
; { g lle @ —aill+— Pz -1 o 7| I
Taking maxp—o1, .x—11{.} on both sides of the above expression yields:

lHj_
g

N 1=6 A K—1
vl (A
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< (|1 (0) — 2*|| + (\Wn)

Z 1”1:_ ||)\K 1 1_ﬁ||j—x*||A’K_2+ 1_5 ‘—.'L'*||)\7K_1
25 v

ﬁ ||xl

n

< [12(0) — 2" + (Am) HMJ > (e =) (i) ol - o

O S e

< [l#(0) - a*|| + <A>-1w;nx —al M (W) e a1
F O e

Rearranging and combining terms yields:

MWnA-1+p)-(1-B)¢

_ | A, K
)\2\/ﬁﬂ ||‘T7:]C ||
. 1, L
<[z (0) — || + W) yllE — 2|

1, 1-p ALK
+ (A Lpy—F z* — ||V,
5 (A) o 5 l I
Lot AVAQ-148)-(1-5)

AL > 0, then Ay (A — 14 6)
—(1-08)y>0.Let p=X/n(A—1+p5)—(1

— B) ¢ > 0, thus:
* |\ K
[z —2*|%
A2V oy AAVnp _ NMynB, 1 1-8
< 20 2 0) = o+ 2L L)y — a4 2 )t L e e,
¢ o} B
(37)
Note that the following equation holds.
q (k) =z (k) —1,2"
=z (k) -1,z (k)+ 1,z (k) — 12"
=z(k)+ 1, (T (k) —z").
It can be concluded that:
g™ < & + vallz — oM. (38)

> 0 follows, we have:

Combining and , and letting %‘1_5) > 0, since¢ > 0 hold, ¢ — Anyp (1 — 53)

A2ng
g™

oy 6+ Ay
sl LIORES B

— |z — 2™
¢ —Anyp (1—P)
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Theorem 4.3. Based on Lemma 4.1 (The Small Gain Theorem), Lemma 4.2 and Corol-
laries 4.2—-4.6, it can be concluded that when the parameters a, 71, 72 satisfy the
following constraints, the sequence generated {x (k)} by 7 @[) and under the
event-triggered condition ([11)) will converge to the globally consistent optimal solution
1,z* at a linear rate of O&)

9 Ci(1—106)°
V1,72 € (0,4712“1‘“9)> € <O’M ) (39)
where 0 < C; < 1, k = %, 9 = fgﬁ\)lz’ L = max? {l;}, i = LS My 6 =

Omax (W —=J) <10 < h < %, d = max?_| {d;}, d; = > j—1 aij. Besides, the rate A is

given by
apl Kol
= 1—— \/— . 4
A max{ 50\ o +5} (40)

Proof. According to Lemma 4.2 and Corollaries 4.2—4.6, we have:

A 1
1P < g™ +wion = £ (1 + ) it =0,

A
5 < ot + g, = A, A
< T (-5 T e (1-B)’
ALK K @ A
5 < ’ - T < T =N _ s _Frr T
12177 < @sllgll ™" +ws, ¢3 X—0— b LI T N=6 — hby L]’
W ¢ ALK A A
) < ’ = =
191 < eallmll™ +wa 04 = S5 T 4 = X5 = b I
A A
Il < sl + s, 95 = 0

118 T A1+ 5

According to Lemma 4.1, when 0 < p1¢2030405 < 1 hold, ||q||>‘ is bounded. Thus:

- 1 «o A A8 ¢+ Any
L1+ = <1, (41
( + A) A=0—hby L] X =6 = hby |[LI| A =1+ B¢ — Anyp (1 - B) (41)
where the parameters must satisfy the following constraints:
ajif

O+ hby |IL|| < A< 1,6+ hbo || L] < A< 1, 1—m§/\<1,
Dca<—t  (A—148)>0,6>06—Angs(1—B)>0 (42)

« —, (A — , L0 — An — .

T (4L

Considering the constraint 4/1 — ?_‘Zg <A<lin , let 1+ % < 1.5, then

15 (1—A?)
—

(%
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Additionally, from , we have:

A=0)2 A=1+8¢ - np(1-p)
“L+n A8 b+

It is clear that 2=20%0U=0) 1 Tt 0 = 2=2n0=0) 1, then from (42] , C > 0 follows.

P+AnY P+Anyp
Thus, 0 < C' < 1 leads to
a<C E ) S ﬁ.
Lu+A) AB

In summary, it follows that:

L5(1-X%)  (A=8)>A-1+48
ae[ TR TR TR

To conveniently obtain the range of A through «, the range of « is rewritten. Let
K= 2%6, then

W [1.5 (1_— )\2),0()\—6)2 A —1+5)
[ ik

Since 0 < C < 1land 0 < (A—143) < 1, it follows that 0 < C (A —1+ ) < 1. Let
the constant C; = C (A — 1+ ), then 0 < Cy < 1 is obtained. Therefore

(43)

9

1.5 (1 —\2 — 52
o e 5@_A) (A f)a
f fik

Let b = max {by,by}. As X increases from & + hb IL|| to 1, the left bound of o decreases
monotonically, while the right bound increases monotonically. Let A* ensure that the
left and right bounds of « are equal to A.

5+\/(15ﬁ)2+(1—5)21(.j51ﬁ 15<\/( Cf)2+(152)1'c5f51.051n>2

A =
1—&-15K — (1_’_15m)

When ) increases fromé + hb [IL|| to A*, the bounds of « are as follows:

sa-w) | 1;;(1-(54—h6HLH)2> 0oy cl(hz}nLn)2

- ; — ) — — ’

[ [ [k [k
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It is clear that the minimum value of the left bound of a equals the maximum value of
its right bound, thus « is an empty set. As X increases from A* to 1, the bounds of a

are as fOHOW S:
1 2
7 Cl( — (5) > -

1.5(1_— N 0.4, (A —_5)201 . -

fi fits

It is evident that « is not an empty set.

This implies that when A € [A\*,1) hold, the interval of « is valid, corresponding to
2
the interval o € (O, 6‘1(;7;6)) Considering the relationship between a and A in (43)),
once the step size « is given, the A can be determined as follows:

_ _oziﬂ KoL
)\—max{ 1 1.5,1/701 —|—5}.

5. SIMULATION EXPERIMENTS

To validate the convergence and effectiveness of the proposed algorithm, a typical de-
centralized parameter estimation problem based on an undirected graph was employed.
We considered an undirected network consisting of n=20 agents. The goal of all agents
is to find an optimal value z* to achieve the objective minger» f(z) = £ 31 | f; (2),

with f; (z) = a; + bi(z — ¢;)® + In (1 + exp (—d;z)).

18-

Fig. 1. The network topology consists of 20 agents.

As shown in Figure [1] the network topology consists of 20 agents, where i = 1,...20
represents the 20 agents. The parameters in each objective function a; € (0.5,2), b; =1,
¢i € (0,1), and d; € (—1,1) were randomly generated within specified ranges using
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random functions, while the initial values of each agent were randomly assigned within
the range of (—1,1). We set h = 0.05, step size o = 0.35, 71 = 2 = 1, and momentum
coefficient g = 0.9.

Based on the above parameters and initial settings, the following results were ob-
tained. As shown in Figure |2 the state estimates of all agents gradually converge to
the global optimal solution of 0.498, denoted as * = 0.498. Figure [3| (a) illustrates the
changes in the objective function, revealing that the value of f stabilizes at 36.258 during
iterations. Figure (b) shows the changes in the squared average gradient (V f (z (k:)))27
indicating that it gradually approaches 0. This indicates that our algorithm can achieve
precise convergence. Figure [4 shows the event-triggered times for all agents through-
out the iteration process, with trigger counts of [30, 33, 40, 35, 59, 38, 44, 23, 46,
33, 34, 34, 103, 46, 40, 56, 95, 33, 54, 38] for each agent. The average trigger count
is 45.7, indicating an average communication frequency of 45.7 times among agents,
corresponding to an average communication rate of 9.14%, significantly reducing com-
munication costs compared to real-time communication. Figure |5/ shows that the event
triggered is discrete rather than continuous, with multiple sampling moments included
within each event trigger interval, representing multiple iterations. Figure [6] indicates
that the auxiliary variables 4 and v remain unchanged during the non-trigger sampling
moments, only changing at the event-triggered sampling times, further confirming the
discreteness of the event-triggered. Additionally, the impact of different momentum
coefficients 8 on algorithm performance was considered, with the same stopping con-
dition [le (k)| = ||z (k) — 1,2*|| < 0.001 set, where h = 0.05, step size a = 0.35, and
v1 = 72 = 1 are fixed. The effects of varying on performance are shown in Table
which shows that as the momentum coefficient increases, the average communication
count reaches its minimum at 5 = 0.9.

— x0
1.0 —x
— x2
— x3
— x4
— x5
0.54 X6
g} — X7
© x8
-% — x9
O 00+ — x10
% — xN
] — x12
— x13
— x14
-0.54 - x15
x16
— x17
100 115 130 145 160 175 190 205 220 235 250 x18
1.04 — x19

0 100 200 300 400 500

Iterations

Fig. 2. The state estimates of all agents vary with iterations.
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Fig. 3. Iterative optimization characteristics: (a) Trajectory of
objective function values, (b) Evolution of average gradient
magnitudes.
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Fig. 4. Event-triggered times of each agent.
15} 0.01 0.1 0.3 0.5 0.7 0.9 0.9999
Iterations 1088 429 436 407 424 416 472

Avg. Communication

977.65 92 69.75 49.8 42.7 39.95 181.45

Tab. 1. Impact of momentum coefficients 8 on performance.
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Fig. 5. Event trigger intervals for agent 0-4 with line height
representing sampling time intervals per event step.
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Fig. 6. The trajectories of auxiliary variables u; in figure (a) and v;
in figure (b) for ¢ =0,...,19.
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Algorithm Tterations Total Iteration Average Time per

Time Iteration

ET-DMGing (Ours) 415 2.71 0.006541
Extended DIGing [5] 550 4.23 0.007697
ET-DMGing without Momentum 430 3.21 0.007463

Tab. 2. Performance comparison of different algorithms.

Algorithm Avg. Communication
ET-DMGing-2D (Ours) 39.95
ET-DMGing-1D 52.40
Extended DIGing-2D 160.80
Extended DIGing-1D [5] 226.05

Tab. 3. Average number of communications under different
algorithms.

To demonstrate the performance differences between our algorithm and the Extended
DIGing algorithm [5], we set identical stopping conditions|le (k)| = ||z (k) — 1 2*| <
0.001, momentum coefficient 8 = 0.9, and equal values for the following parameters:
step size « = 0.35, h = 0.05, and 3 = 79 = 1. As shown in Table 2| the ET-DMGing
algorithm reduces the number of iterations by 24.55% and the total iteration time is
reduced by 35.93%. compared to the Extended DIGing algorithm [5]. When compared
to ET-DMGing without momentum, the iteration count is reduced by 3.49% and the
total iteration time is reduced by 15.58%. These results indicate that the momentum
mechanism can effectively mitigate oscillations caused by large step sizes and accelerate
the convergence speed.

To validate the effectiveness of the proposed two-dimensional event-triggered mech-
anism, we conduct a comparative experiment under the same parameter settings and
termination conditions as described above. Specifically, we adopt the same update rule
of the ET-DMGing algorithm and compare the communication frequency under the two
mechanisms: the two-dimensional event-triggered mechanism (ET-DMGing-2D) and the
single-dimensional event-triggered mechanism (ET-DMGing-1D). Similarly, we employ
the update rule of the Extended DIGing algorithm [5] to compare the communica-
tion frequency under the two-dimensional (Extended DIGing-2D) and single-dimensional
(Extended DIGing-1D) mechanisms. The average number of communications under the
four settings is summarized in Table[3} Compared to ET-DMGing-1D, ET-DMGing (our
method) reduces the average number of communications from 52.40 to 39.95, achieving a
reduction of 23.76%. Likewise, Extended DIGing-2D reduces the communication count
from 226.05 to 160.80 compared to Extended DIGing-1D [5], representing a 28.88% re-
duction. These results demonstrate that the proposed two-dimensional event-triggered
mechanism can effectively reduce communication frequency and improve communication
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efficiency across different algorithmic frameworks, showing good generality and adapt-
ability.

Figure E (a) provides a more intuitive comparison of the average communication
frequency between the ET-MDIGing algorithm and the Extended DIGing algorithm [5].

Figure a(b) shows the changes in w, illustrating that the ET-DMGing algorithm
effectively reduces oscillations during the convergence process compared to the Extended

DIGing algorithm [5], while also achieving faster convergence.

—— Our proposed ET-DMGing 04 —— Our proposed ET-DMGing
150 o Extended DIGing [30] Extended DIGing [30]
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Fig. 7. ET-DMGing vs. Extended DIGing [5]: (a) Average
communication count. (b) Exponential evolution curve of normalized
|| =(k) =" |
lz(0)—z*]| *

o
M

solution error

6. CONCLUSION

This paper proposes an event-triggered distributed momentum-gradient tracking opti-
mization algorithm (ET-DMGing) for multi-agent systems.The algorithm simplifies its
structure through the use of a fixed step size and employs gradient tracking techniques
to accurately track the average momentum gradient, effectively reducing oscillations
during the optimization process and enhancing convergence speed. The design of the
event-triggered conditions adequately considers both agent state information and aver-
age momentum gradient information, balancing the impact of both on event triggered
while ensuring agent consistency and convergence accuracy. This approach significantly
reduces the frequency of real-time communications between agents. Numerical simu-
lation results demonstrate that, compared to the Extended DIGing algorithm [5], the
ET-DMGing algorithm exhibits lower communication frequency and faster convergence
speed. Moreover, a rigorous convergence analysis proves that the ET-DMGing algo-
rithm can converge to the optimal solution with linear precision. Future research will
focus on extending event-triggered distributed optimization algorithms to address op-
timization problems in time-varying multi-agent systems within dynamic and complex
environments.
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