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FYZIKA

Energie větru

Oldřich Lepil, Přírodovědecká fakulta UP, Olomouc

Větrné elektrárny jako alternativní zdroje elektrické energie jsou v sou-
časnosti ve středu pozornosti celé společnosti. Dříve to byly hlavně te-
pelné elektrárny, které pracují na základě termodynamických zákonů.
O nich víme, že cyklus takového tepelného stroje má svoje omezení,
která určují účinnost přeměny tepla na mechanickou energii. V tomto
příspěvku se podíváme, zda existují obdobná omezení účinnosti přeměny
energie proudícího vzduchu na mechanickou energii pro pohon elektrárny.

Určíme energii větru a posoudíme možnost její přeměny na energii
otáčivého pohybu soustrojí větrné elektrárny. Budeme uvažovat větr-
nou elektrárnu, jejíž rotor má průměr d = 2r, takže účinná plocha S
rotoru větrné elektrárny, kterou proudí vzduch, bude S = pr2 (obr. 1).
Vzduch má hustotu ρ a výpočet provedeme pro rovnoměrný pohyb vzdu-
chu stálou rychlostí v. Jestliže vzduch urazí za dobu ∆t dráhu ∆s, bude
hmotnost vzduchu, který projde účinnou plochou rotoru, m = ρS∆s a
celková kinetická energie vzduchu je

Ek =
1

2
mv2 =

1

2
ρS∆sv2.

d = 2r

S = pr2

Obr. 1
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Pokud by veškerou tuto energii bylo možné využít, získali bychom
výkon

P =
Ek

∆t
=

1

2
ρS

∆s

∆t
v2 =

1

2
ρSv3.

Z tohoto vztahu je zřejmé, že pro využití větrné energie je rozhodující
rychlost větru. Kdybychom uvažovali např. průměrnou rychlost větru
v České republice ve výšce 10 m nad zemí, která je 4 m · s−1, byl by
při hustotě vzduchu ρ = 1,2 kg ·m−3 výkon připadající na 1 m2 účinné
plochy rotoru P/S = 0,6 v3 ≈ 38 W · m−2 (veličina se označuje jako
hustota výkonu). Větrné elektrárny se budují v lokalitách, kde je prů-
měrná rychlost větru alespoň 6 m·s−1, a tomu odpovídá hustota výkonu
130 W ·m−2, tedy téměř 3,5krát větší.

Výkon větrné elektrárny ovlivňuje také hustota vzduchu, která se
v místě elektrárny může měnit v závislosti na změnách tlaku a tep-
loty vzduchu. Pro určení hustoty vzduchu vyjdeme ze stavové rovnice
ideálního plynu ve tvaru

pV =
m

Mm
RT,

kde Mm = 29 · 10−3 kg ·mol−1 je efektivní molární hmotnost vzduchu.
Pro hustotu vzduchu pak platí vztah

ρ =
m

V
=

Mm

R

p

T
=

1

287

p

T
,

kde p je tlak vzduchu v pascalech a T je termodynamická teplota vzduchu
v kelvinech. V blízkosti povrchu Země lze při zjednodušených výpočtech
uvažovat již uvedenou přibližnou hodnotu hustoty vzduchu 1,2 kg ·m−3.

V praxi je však možné využít jen podstatně menší část energie vě-
tru. Tímto problémem se ve 20. letech 20. století zabýval rakouský in-
ženýr Albert Betz (1885–1968), který zkoumal možnost využití energie
větru k pohonu. Jestliže např. plochou rotoru proudí vzduch rychlostí v1
(vstupní rychlost), předává mu část energie a rychlost vzduchu se zmenší
na rychlost v2 (výstupní rychlost). Můžeme uvažovat, že vzduch zaříze-
ním proudí průměrnou rychlostí v = (v1 + v2)/2 a hmotnost vzduchu,
který projde rotorem za jednotku času, čili hmotností tok vzduchu je
m = ρSv. Na vstupu elektrárny má vzduch energii Ek1 = 1

2mv21 a na
výstupu energii Ek2 = 1

2mv22 . Je tedy možné získat energii

∆E = Ek1 − Ek2 =
1

2
m

(
v21 − v22

)
=

1

2
ρS · 1

2
(v1 + v2)

(
v21 − v22

)
.
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Důležité však je, jak tato energie závisí na poměru obou rychlostí. Ozna-
číme x poměr rychlostí (x = v2/v1) a

y =
1

2
(v1 + v2)

(
v21 − v22

)
=

1

2
v31

(
1− x2 + x− x3

)
.

Na obr. 2 je graf závislosti y = f(x), z něhož je patrné, že veličina y
dosahuje maxima při hodnotě x = 0,33, tedy když rychlost na vstupu
zařízení je 3krát větší než na výstupu (v2/v1 = 1/3).

Obr. 2

Provedeme výpočet veličiny y pro tento poměr rychlostí, při němž se
maximální část energie větru přemění na rotační energii:

y =
1

2
v31

(
1− x2 + x− x3

)
=

1

2
v31

(
1− 1

9
+

1

3
− 1

27

)
=

16

27
v31

.
= 0,59 v31 .

Odtud vyplývá, že maximální výkon zařízení využívajícího energii větru
je

Pmax
.
= 0,59 · 1

2
ρSv31 .

Tento vztah se označuje také jako Betzovo pravidlo. Maximální dosa-
žitelná hustota výkonu při rychlosti větru v je s ohledem na Betzovo
pravidlo dána vztahem

Pmax

S
≈ 0,35v3.
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Teoretická největší účinnost zařízení využívajících energii proudícího
vzduchu je tedy necelých 60 % celkové kinetické energie vzduchu. Ani nej-
modernější systémy současných větrných elektráren však této účinnosti
nedosahují, poněvadž dochází k dalším ztrátám energie. Jsou to jednak
ztráty v mechanickém soustrojí elektrárny, jednak ztráty v elektrických
obvodech generátoru a při transformaci výstupního napětí elektrárny.
To způsobuje, že větrné elektrárny využívají přibližně jen 30 % až 45 %
energie větru.

Například větrná elektrárna v ČR u obce Pchery má rotor o průměru
100 m a jeho osa je ve výšce 88 m. Startovní rychlost větru je 4 m · s−1,
jmenovitá rychlost 12,5 m ·s−1 a vypínací rychlost 22 m ·s−1. Jmenovitý
výkon elektrárny je 3 032 kW. Energie větru při jmenovité rychlosti a
hustotě vzduchu ρ = 1,2 kg ·m−3 je

P =
1

2
ρSv3 ≈ 9 400 kW.

Vzhledem k jmenovitému výkonu elektrárny je využito přibližně jen 32 %
energie větru, což je 56 % maximálně využitelné energie určené Betzovým
pravidlem.

Dosud jsme si všímali jen změn rychlosti proudění vzduchu před vrtu-
lemi rotoru elektrárny a za rotorem, přičemž v2 < v1. Současně budeme
předpokládat, že vzduch proudí plochou rotoru průměrnou rychlostí v.
To znamená, že podle zákona zachování energie, vyjádřeného Bernoulli-
ovou rovnicí, dochází v místě rotoru k poklesu tlaku vzduchu ∆p. Tomu
odpovídá vznik tahové síly T rotoru, která je dána rozdílem tlaků těsně
před rotorem a za ním. Má velikost T = ∆pS, kde S je plocha rotoru.
Tahovou sílu lze současně vyjádřit na základě 2. Newtonova pohybového
zákona jako změnu hybnosti vzduchu, který prošel rotorem za jednotku
času, čili T = m(v1+v2), kde m je hmotnostní tok vzduchu. Nejvíce nás
však zajímá výkon P , který lze prouděním vzduchu rotorem získat:

P =
1

2
m

(
v21 − v22

)
.

Pro posouzení vlivu rychlosti větru na tahovou sílu rotoru a výkon
elektrárny se zavádí bezrozměrová veličina, axiální indukční faktor a. Je
definován vztahem

a =
v1 − v

v1
,
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takže v = v1(1−a) a v2 = v1(1−2a). S použitím součinitele a vyjádříme
velikost tahové síly

T = 2mv1a(1− a)

a výkon
P = 2mv21a(1− a)2.

Porovnáme tahovou sílu s maximální hodnotou danou dynamickým
tlakem vzduchu proudícího rychlostí v1

Tmax =
1

2
ρSv21 =

1

2
mv1.

a definujeme veličinu tahový součinitel CT

CT =
T

Tmax
=

2mv1a(1− a)
1
2mv1

= 4a(1− a).

Graf součinitele tahu CT = f(a) je na obr. 3.

Obr. 3

Optimální rychlosti v proudění vzduchu rotorem odpovídá maximum
této funkce, kterou určíme anulováním její derivace

dCT

da
=

d

da
[4a(1− a)] = 4− 8a = 0 =⇒ a = 0,5.
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Z výsledku vyplývá, že maximální tahové síly lze dosáhnout v případě, že
rotorem protéká vzduch poloviční rychlostí, než je rychlost volně prou-
dícího vzduchu (v = 0,5v1). Při této hodnotě součinitele a má poměr
rychlostí v2/v1 nulovou hodnotu (viz zeleně na obr. 3) a při větších hod-
notách a je poměr rychlostí záporný, což postrádá fyzikální smysl. Proto
hodnotou a = 0,5 také končí platnost Betzova pravidla (tzv. Betzův li-
mit).

Obdobnou úvahou porovnáme celkový výkon volně proudícího vzdu-
chu

Pmax =
1

2
ρSv · v2 =

1

2
mv2

s výkonem P a určíme výkonový součinitel CP

CP =
P

Pmax
= 4a(1− a)2.

Závislost CP = f(a) je rovněž na obr. 3. Vidíme, že maximum dosahuje
při menší hodnotě a a tedy při menší rychlosti. To opět zjistíme určením
maxima:

dCP

da
=

d

da

[
4a(1− a)2

]
= 1− 4a+ 3a2 = 0 =⇒ a ∈ {1, 1/3}.

Pro a = 1/3 platí

CPmax
=

4

3

(
1− 1

3

)
=

16

27

.
= 0,593.

Výsledek odpovídá Betzovu pravidlu, odvozenému v první části pří-
spěvku.

Dospěli jsme k závěru, že tahová síla rotoru větrné elektrárny závisí
na druhé mocnině rychlosti větru a průměru rotoru a na součiniteli tahu.
Snahou je minimalizovat tah rotoru pro danou rychlost větru a průměr
motoru, tzn. pro co nejmenší hodnoty CT. Výkon elektrárny závisí na
třetí mocnině rychlosti větru, na druhé mocnině průměru rotoru a na
součiniteli CP.
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