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FYZIKA

Energie vétru

Oldrich Lepil, Prirodovédeckd fakulta UP, Olomouc

Vétrné elektrarny jako alternativni zdroje elektrické energie jsou v sou-
¢asnosti ve stfedu pozornosti celé spole¢nosti. D¥ive to byly hlavné te-
pelné elektrarny, které pracuji na zakladé termodynamickych zékoni.
O nich vime, Ze cyklus takového tepelného stroje mé svoje omezeni,
kter& urcuji Géinnost pfemény tepla na mechanickou energii. V tomto
piispévku se podivame, zda existuji obdobna omezeni ti¢éinnosti premény
energie proudiciho vzduchu na mechanickou energii pro pohon elektrarny.

Uréime energii vétru a posoudime moznost jeji pfemény na energii
otacivého pohybu soustroji vétrné elektrarny. Budeme uvazovat vétr-
nou elektrarnu, jejiz rotor ma prumér d = 2r, takze ucinné plocha S
rotoru vétrné elektrarny, kterou proudi vzduch, bude S = nr? (obr. 1).
Vzduch ma hustotu p a vypocet provedeme pro rovnomérny pohyb vzdu-
chu stalou rychlosti v. Jestlize vzduch urazi za dobu At drdhu As, bude
hmotnost vzduchu, ktery projde t¢innou plochou rotoru, m = pSAs a
celkova kineticka energie vzduchu je

1 1
Ey = §mv2 = ipSASUQ.

Obr. 1
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Pokud by veskerou tuto energii bylo mozné vyuzit, ziskali bychom

vykon
P = % = 1pS E1}2 =
At 27 At

7 tohoto vztahu je zfejmé, ze pro vyuziti vétrné energie je rozhodujici
rychlost vétru. Kdybychom uvazovali napt. primérnou rychlost vétru
v Ceské republice ve vyice 10 m nad zemi, ktera je 4 m-s~', byl by
pii hustoté vzduchu p = 1,2 kg- m~3 vykon piipadajici na 1 m? aéinné
plochy rotoru P/S = 0,6v% ~ 38 W-m~2 (veli¢ina se oznacuje jako
hustota vykonu). Vétrné elektrarny se buduji v lokalitach, kde je pri-
mérn4 rychlost vétru alespoit 6 m-s—!, a tomu odpovida hustota vykonu
130 W-m™2, tedy témér 3,5krat vetsi.

Vykon vétrné elektrarny ovliviiuje také hustota vzduchu, ktera se
v misté elektrarny miize ménit v zavislosti na zménach tlaku a tep-
loty vzduchu. Pro urceni hustoty vzduchu vyjdeme ze stavové rovnice
idealniho plynu ve tvaru

1
5/)5113.

m
=" Rrr
PV = g BT

kde M, = 29-1073 kg-mol~! je efektivni molarni hmotnost vzduchu.
Pro hustotu vzduchu pak plati vztah

m My p 1 p
PZV T RT 287TT

kde p je tlak vzduchu v pascalech a T je termodynamicka teplota vzduchu
v kelvinech. V blizkosti povrchu Zemé lze pfi zjednoduSenych vypoctech
uvazovat jiz uvedenou piibliznou hodnotu hustoty vzduchu 1,2 kg-m—3.

V praxi je vSak moZné vyuzit jen podstatné mensi ¢ast energie vé-
tru. Timto problémem se ve 20. letech 20. stoleti zabyval rakousky in-
zenyr Albert Betz (1885-1968), ktery zkoumal moZnost vyuZiti energie
vétru k pohonu. Jestlize napf. plochou rotoru proudi vzduch rychlosti vy
(vstupni rychlost), pfedava mu ¢ast energie a rychlost vzduchu se zmensi
na rychlost vy (vystupni rychlost). MuZeme uvaZovat, Ze vzduch zafize-
nim proudi primeérnou rychlosti ¥ = (v; + v2)/2 a hmotnost vzduchu,
ktery projde rotorem za jednotku casu, ¢ili hmotnosti tok vzduchu je
m = pSv. Na vstupu elektrarny mé vzduch energii Ey; = %mvf a na
vystupu energii Eyo = %mvg . Je tedy mozné ziskat energii

I 9 2 1 1 2 2
AE =FEy — Exs = 3 (vf —v3) = 5,05- 5(111 + va) (vi —v3).
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Diilezité vsak je, jak tato energie zavisi na poméru obou rychlosti. Ozna-
¢ime x pomér rychlosti (x = vy/v1) a
1 1
Yy = 5(014—112) (U%—U%) = 51}% (1—3@24—3;—533),
Na obr. 2 je graf zavislosti y = f(z), z néhoz je patrné, Ze veli¢ina y
dosahuje maxima pfi hodnoté z = 0,33, tedy kdyz rychlost na vstupu
zafizeni je 3krat vétsi nez na vystupu (ve/vy = 1/3).
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Obr. 2

Provedeme vypocet veli¢iny y pro tento pomér rychlosti, pfi némz se
maximalni ¢ast energie vétru preméni na rota¢ni energii:
1 1 1Yy 16 4

1. 1
fvf(17x2+xfx3):fv§’ <1+) =7 U = 0,59 v5.

¥=3 2 93 27

Odtud vyplyva, ze maximalni vykon zafizeni vyuzivajiciho energii vétru
je

1
Prax = 0,59 - 5psvi’.

Tento vztah se oznacuje také jako Betzovo pravidlo. Maximalni dosa-
zitelnd hustota vykonu pfi rychlosti vétru v je s ohledem na Betzovo

pravidlo dana vztahem

Prax
T‘“‘ ~ 0,350°.
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Teoretickd nejvétsi ucinnost zafizeni vyuzivajicich energii proudiciho
vzduchu je tedy necelych 60 % celkové kinetické energie vzduchu. Ani nej-
modernéjsi systémy soucasnych vétrnych elektraren v8ak této uéinnosti
nedosahuji, ponévadz dochézi k dal$im ztratdm energie. Jsou to jednak
ztraty v mechanickém soustroji elektrarny, jednak ztraty v elektrickych
obvodech generatoru a pii transformaci vystupniho napéti elektrarny.
To zptusobuje, Ze vétrné elektrarny vyuZivaji pfiblizné jen 30 % az 45 %
energie vétru.

Napitklad vétrna elektrarna v CR u obce Pchery mé rotor o praméru
100 m a jeho osa je ve vysce 88 m. Startovni rychlost vétru je 4 m-s~?!,
jmenovita rychlost 12,5 m-s~! a vypinaci rychlost 22 m-s~!. Jmenovity
vykon elektrarny je 3032 kW. Energie vétru pii jmenovité rychlosti a

hustoté vzduchu p = 1,2 kg-m~3 je

1
P= 5p5v3 ~ 9400 kW.

Vzhledem k jmenovitému vykonu elektrarny je vyuZito p¥iblizné jen 32 %
energie vétru, coz je 56 % maximalné vyuzitelné energie uréené Betzovym
pravidlem.

Dosud jsme si vsimali jen zmén rychlosti proudéni vzduchu pted vrtu-
lemi rotoru elektrarny a za rotorem, pficemz vy < v1. Soucasné budeme
predpokladat, ze vzduch proudi plochou rotoru primeérnou rychlosti @.
To znamené, Ze podle zadkona zachovani energie, vyjadfeného Bernoulli-
ovou rovnici, dochézi v misté rotoru k poklesu tlaku vzduchu Ap. Tomu
odpovidé vznik tahové sily T rotoru, které je dana rozdilem tlaka tésné
pred rotorem a za nim. M4 velikost T' = ApS, kde S je plocha rotoru.
Tahovou silu lze soucasné vyjadrit na zakladé 2. Newtonova pohybového
zékona jako zménu hybnosti vzduchu, ktery prosel rotorem za jednotku
Casu, ¢ili T = m(vy +v2), kde T je hmotnostn{ tok vzduchu. Nejvice nas
vSak zajima vykon P, ktery lze proudénim vzduchu rotorem ziskat:

2 2

P = m(vl—UQ).

N |

Pro posouzeni vlivu rychlosti vétru na tahovou silu rotoru a vykon
elektrarny se zavadi bezrozmérova veli¢ina, azidlni indukéni faktor a. Je
definovan vztahem

v — U
- b

U1
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takze 7 = v1(1—a) a va = v1(1—2a). S pouzitim soudinitele a vyjadiime
velikost tahové sily
T = 2mvia(l — a)

a vykon
P = 2mv?a(l — a)?.

Porovname tahovou silu s maximalni hodnotou danou dynamickym
tlakem vzduchu proudiciho rychlosti vy

1 1
Thax = §pSUf = imvl.

a definujeme velic¢inu tahovy soucinitel C

T 2m 1-—
CT = = mvli( a) = 40/(1 — a).
Tinax 5Mv1

Graf soucinitele tahu C'r = f(a) je na obr. 3.
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Obr. 3

Optimalni rychlosti v proudéni vzduchu rotorem odpovidéd maximum
této funkce, kterou uréime anulovanim jeji derivace

dCr d
e 4 1— = 4 — = = .
P P [4a(l — a)] 8a=0=0a=05
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7Z vysledku vyplyvé, ze maximélni tahové sily lze dosdhnout v pripadé, ze
rotorem protékd vzduch poloviéni rychlosti, nez je rychlost volné prou-
dictho vzduchu (T = 0,5v1). Pfi této hodnoté soucinitele ¢ ma pomér
rychlosti vy /v; nulovou hodnotu (viz zelené na obr. 3) a p¥i vétsich hod-
notach a je pomér rychlosti zaporny, coz postrada fyzikalni smysl. Proto
hodnotou a = 0,5 také koné&i platnost Betzova pravidla (tzv. Betziv li-
mit).

Obdobnou tvahou porovname celkovy vykon volné proudiciho vzdu-

chu

1 1
Prax = 5/)51} 2 = imvz

s vykonem P a ur¢ime vgkonovy soucinitel Cp

P
Pmax

Zavislost Cp = f(a) je rovnéz na obr. 3. Vidime, Ze maximum dosahuje
pii mensi hodnoté a a tedy pfi mensi rychlosti. To opét zjistime uréenim
maxima:

d d
% ~ da [4(1(1*“)2] =1-4a+3a>=0=ac{1,1/3}.
Pro a = 1/3 plati

4 1 16
Cp,.. 3 < 3> o7 0,593

Vysledek odpovida Betzovu pravidlu, odvozenému v prvni ¢asti pii-
spévku.

Dospéli jsme k zavéru, ze tahova sila rotoru vétrné elektrarny zavisi
na druhé mocniné rychlosti vétru a priameéru rotoru a na souciniteli tahu.
Snahou je minimalizovat tah rotoru pro danou rychlost vétru a primér
motoru, tzn. pro co nejmensi hodnoty Cr. Vykon elektrarny zavisi na
tfeti mocniné rychlosti vétru, na druhé mocniné primeéru rotoru a na
souciniteli Cp.

Cp = = 4a(1 — a)?.
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