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76 THE IMPOSSIBLE IN GEOMETRY. [APP. 

APPENDIX I. 

On the Impossible in Geometry. 

S E E Art . 6.i. , 10. viii., 17. vi., 47 . vi. The 
following is a revision of a no te originally 
appended to t h e piivate reprint of the Ab
stract of m y second Memoir on P lane 
Stigmatics. 

AXIOM. It is Unpossible for Uvo points to 
be, at the same time, separate and coincident. 

Al though most of the following pro
positions are employed without hesitation 
b y eminent mathematicians, t h o y appa
rently involve this impossibility. 

1. An infi)}itesimal distance is no distance; 
[i.e.-, infinitesimal separation is coincidence ; 
i. e., as finite length is an aggregate of 
infinitesimal, lengths, each of which is, on 
this theory, a coincidence or single point, 
every finite l ength is a single po int , i. e. a 
point, having no dimensions, may bo re
garded as a circle, having two dimensions, 
or a sphere, having three dimensions ; as
sumptions constantly made]. 

2. When the ratio of the distances of Uvo 
points from a third, which is not midway 
between them, is one of equality, the third 
point is at an infinite distance from the other 
two, and conversely ; [i. e. the separation of 
the two first points is equivalent to a co
incidence, or else lengths differing b y a 
finite length may have a ratio of equali ty] . 
Chasles, Geometr ic Supcrieuro, 15, ctpassim. 
Ibicnsend, Modern Geometry, ar t . 15. 

3. Varatted straight lines meet at one single 
point at infi nit?/; [i. e., two points, connected 
b y an invar iable straight line, and moving 
each upon a straight line, and hence never 
approaching, meet.] Toncelet, Proj . Persp. 
p . 52, art. 103. Chasles, G. S. passim. 
Townsend, M. G. art . 16. [ T h e inter
section of two concentric circles is liable 
to a similar objection.] 

4. A straight tine has a single point at 
infinity ; [i. e., if two points move in oppo
site directions upon a straigh t line, t hey 
will meet at one point at inf ini ty ; i. c., a 
continually increasing separation promotes 
coincidence, or else a straight line is an 
enclosed curve, e. g. a circle w i t h an in
finite radius; hence diametrically opposite 
directions are the same]. Stciner, Geo-
mctrische Gcstalten, p. 2, no te . Chasles, 
G. S. 20. Townsend, M. G. art. 17. 
[Similar objections apply to the single, 
point at infinity of a parabola, and the two 
(and no more) points at infinity of the 
hyperbola, Chasles, Sections Coniqucs, 13, 
where he says that the ellipse " n ' a aucun 

po int a Tinfini," whereas in G. S. 719 h e 
speaks of the " double contact imaginaire 
a Vinfim " of two concentric circles, which 
are particular cases of concentric ellipses, 
so t ha t circles which, according to the first 
citation, have no point at infinity, have also 
two such points, according to the second.] 

5. " The product of nothing by infinity 
may be finite;" Salmon, Conies, 4th edit, 
art. 67 ; [i. e., perpetual doing of no th ing 
may produce something; or, an infinite 
aggregation of points, each having no 
length, may produce some length ; or, non
entity infinitely repeated may produce an 
ent i ty ] . Totvnsend, M. G. art. 13. 

6. Infinity is a single straight line hav
ing an indeterminate direction. [Sa lmon's 
equation to this line, 0 . # + 0 . y + C = 0, 
shews tha t its existence assumes tha t C is 
both = and not = 0, unless proposition 
5 holds. Townsend's proof of the equiva
lent proposition involves a threefold appli
cation of proposition 2.] Toncelet, Pro 
jections Perspectives, p. 53, art. 107. 
Chasles, G. S. 503, 651, &c. Salmon, 
Conies, 4 t h edit. art. 67. Townsend, 
M . G. art. 136, 150. 

7. Relations of moving points ^vhich hold 
as they approach a limit, hold also at the 
limit. [The limit is a condition no t 
reached: henco this asserts tha t what is 
no t reached is reached (i. e., that separation 
is coincidence), or t h a t relations of exist
ence hold for non-oxistencc, under which 
last form the proposition is continually 
applied, as when four points reduce to 
three, or two points to one.] Chasles, G. S. 
15. Townsend, M. G. art . 19, and examples. 

8. Variable relations of moving points 
which approach a fixed relation as the 
points approach a fixed limit, assume that 
fixed relation when the points reach the 
limit. [This is liable to the same 
objection of reaching a limit. T h e pro
position is, however, almost universally 
applied in the theory of limits, except as 
laid down b y Carnot. See Tract I I . 
above. I t generally assumes tha t wha t is 
true for separation is true for coincidence.] 

These contradictions are avoided in t h e 
above Tracts. The operation of annih i la
tion (o) has been distinguished from those 
of change (a, b, c, Sec). Incommensurables 
are treated independently of limits. T h e 
essence of a limit is held to consist in i t s 
joint approachability and unattainabil i ty . 
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