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Chapter 6

Kurzweil and McShane product integrals

The introduction of Lebesgue integration signified a revolution in mathematical
analysis: Every Riemann integrable function is also Lebesgue integrable, but the
class of functions having Lebesgue integral is considerably larger.

However, there exist functions f which are Newton integrable and

(N)
∫ b

a

f(t) dt = F (b)− F (a),

where F is an antiderivative of f , but the Lebesgue integral (L)
∫ b
a
f(t) dt does not

exist. Consider for example the function

F (x) =

{
x2 sin(1/x2) if x ∈ (0, 1],
0 if x = 0.

This function has a derivative F ′(x) = f(x) for every x ∈ [0, 1] and

f(x) =

{
2x sin(1/x2)− (2/x) cos(1/x2) if x ∈ (0, 1],
0 if x = 0.

The function f is therefore Newton integrable and

(N)
∫ 1

0
f(t) dt = F (1)− F (0).

If we denote

ak =
1√

(k + 1/2)π
, bk =

1√
kπ

for every k ∈ N, then

∫ bk

ak

|f(t)|dt ≥
∣∣∣∣∣

∫ bk

ak

f(t) dt

∣∣∣∣∣ = |F (bk)− F (ak)| = 1
(k + 1/2)π

,

which implies that ∫ 1

0
|f(t)|dt ≥

∞∑

k=1

1
(k + 1/2)π

=∞.

The Lebesgue integral (L)
∫ 1

0 f(t) dt therefore does not exist.

Jaroslav Kurzweil (and later independently Ralph Henstock) introduced a new def-
inition of integral which avoids the above mentioned drawback of the Lebesgue
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integral. The Kurzweil integral (also known as the gauge integral or the Henstock-
Kurzweil integral) encompasses the Newton and Lebesgue (and consequently also
Riemann) integrals. Another benefit is that the definition of Kurzweil integral is ob-
tained by a gentle modification of Riemann’s definition and is considerably simpler
than Lebesgue’s definition.

Jaroslav Kurzweil1 Edward J. McShane2

The definition of integral due to E. J. McShane is similar to Kurzweil’s definition
and in fact represents an equivalent definition of Lebesgue integral.

In this chapter we first summarize the definitions of Kurzweil and McShane in-
tegrals; in the second part we turn our attention to product analogies of these
integrals. The proofs in this chapter are often omitted and may be found in the
original papers (the references are included).

6.1 Kurzweil and McShane integrals

A finite collection of point-interval pairs D = {([ti−1, ti], ξi)}mi=1 is called an M -
partition of interval [a, b] if

a = t0 < t1 < · · · < tm = b,

ξi ∈ [a, b], i = 1, . . . ,m.

A K-partition is a M -partition which moreover satisfies

ξi ∈ [ti−1, ti], i = 1, . . . ,m.

Given a function ∆ : [a, b]→ (0,∞) (the so-called gauge on [a, b]), a partition D is
called ∆-fine if

[ti−1, ti] ⊂ (ξi −∆(ξi), ξi + ∆(ξi)), i = 1, . . . ,m.

1 Photo taken by Š. Schwabik
2 Photo from [McT]
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For a given function f on [a, b] and a M -partition D of [a, b] denote

S(f,D) =
m∑

i=1

f(ξi)(ti − ti−1).

Definition 6.1.1. Let X be a Banach space. A vector Sf ∈ X is called the
Kurzweil (McShane) integral of function f : [a, b]→ X if for every ε > 0 there is a
gauge ∆ : [a, b]→ (0,∞) such that

‖S(f,D)− Sf‖ < ε

for every ∆-fine K-partition (M -partition) D of interval [a, b]. We define

(K)
∫ b

a

f(t) dt = Sf or (M)
∫ b

a

f(t) dt = Sf , respectively.

We state the following theorems without proofs; they can be found (together with
more information about the Kurzweil, McShane and Bochner integrals) in the
book [SY]; other good sources are [Sch2, RG].

Theorem 6.1.2. Let X be a Banach space. Then every McShane integrable
function f : [a, b]→ X is also Kurzweil integrable (but not vice versa) and

(K)
∫ b

a

f(t) dt = (M)
∫ b

a

f(t) dt.

Theorem 6.1.3. Let X be a Banach space. Then every Lebesgue (Bochner)
integrable function f : [a, b]→ X is also McShane integrable and

(M)
∫ b

a

f(t) dt = (L)
∫ b

a

f(t) dt.

The converse statement holds if and only if X is a finite-dimensional space.

6.2 Product integrals and their properties

We now proceed to the definitions of Kurzweil and McShane product integrals. The
definition of Kurzweil product integral appeared for the first time in the paper [JK];
the authors speak about the Perron product integral and use the notation

(PP )
∫ b

a

(I +A(t) dt).

The McShane product integral was studied in [Sch1, SS].
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For the sake of simplicity we confine our exposition only to matrix functions A :
[a, b]→ Rn×n instead of working with operator-valued functions A : [a, b]→ L(X)
or even with functions A : [a, b] → X with values in a Banach algebra X. For an
arbitrary M -partition D of [a, b] and a matrix function A : [a, b]→ Rn×n denote

P (A,D) =
1∏

i=m

(I +A(ξi)(ti − ti−1)).

Definition 6.2.1. Consider function A : [a, b] → Rn×n. A matrix PA ∈ Rn×n is
called the Kurzweil (McShane) product integral of A if for every ε > 0 there is a
gauge ∆ : [a, b]→ (0,∞) such that

‖P (A,D)− PA‖ < ε

for every ∆-fine K-partition (M -partition) D of interval [a, b]. We define

(K)
b∏

a

(I +A(t) dt) = PA, or (M)
b∏

a

(I +A(t) dt) = PA, respectively.

We also denote

KP ([a, b],Rn×n) =

{
A : [a, b]→ Rn×n; (K)

b∏

a

(I +A(t) dt) exists

}
,

MP ([a, b],Rn×n) =

{
A : [a, b]→ Rn×n; (M)

b∏

a

(I +A(t) dt) exists

}
.

The right product integrals can be introduced using the products

P ∗(A,D) =
m∏

i=1

(I +A(ξi)(ti − ti−1)),

but we limit our discussion to the left integrals.

Example 6.2.2. Assume that the Riemann product integral (R)
∏b
a(I + A(t) dt)

exists, i.e. for every ε > 0 we can find δ > 0 such that

∥∥∥∥∥P (A,D)−
b∏

a

(I +A(t) dt)

∥∥∥∥∥ < ε

for every partition D of [a, b] which such that ν(D) < δ. If we put

∆(x) =
δ

2
, x ∈ [a, b],
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then every ∆-fine K-partition D of [a, b] satisfies ν(D) < δ. This means that the
Kurzweil product integral of A exists and

(K)
b∏

a

(I +A(t) dt) = (R)
b∏

a

(I +A(t) dt).

Example 6.2.3. Consider the function

f(x) =
{−1/x if x ∈ (0, 1],

0 if x = 0.

It can be proved (see [SS]) that

(M)
1∏

0

(1 + f(x) dx) = 0.

It is worth noting that neither the Riemann integral (R)
∏1

0(1 + f(x) dx) nor the
Lebesgue integral (L)

∏1
0(1 + f(x) dx) exist; this follows e.g. from Theorem 6.2.10.

Theorem 6.2.4.1 Consider function A : [a, b] → Rn×n. Then the following
conditions are equivalent:

1) The integral (K)
∏b
a(I +A(t) dt) exists and is invertible.

2) There exists an invertible matrix PA such that for every ε > 0 there is a gauge
∆ : [a, b]→ (0,∞) such that

∥∥∥∥∥
1∏

i=m

eA(ξi)(ti−ti−1) − PA
∥∥∥∥∥ < ε

whenever D = {([ti−1, ti], ξi)}mi=1 is a ∆-fine K-partition of [a, b].

If one of these conditions is fulfilled, then

(K)
b∏

a

(I +A(t) dt) = PA.

A similar statement holds also for McShane product integral.

Theorem 6.2.5. Consider function A : [a, b] → R. The integral (K)
∫ b
a
A(t) dt

exists if and only if the integral (K)
∏b
a(1 + A(t) dt) exists and is different from

zero. In this case the following equality holds:

(K)
b∏

a

(1 +A(t) dt) = exp

(
(K)

∫ b

a

A(t) dt

)
.

1 [JK], p. 651, and [SS]
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A similar statement holds also for McShane product integral.

Proof. Assume that (K)
∫ b
a
A(t) dt = SA exists and choose ε > 0. Since the

exponential function is continuous at the point SA, there is a δ > 0 such that

∣∣ex − eSA
∣∣ < ε, x ∈ (SA − δ, SA + δ). (6.2.1)

Let ∆ : [a, b]→ (0,∞) be a gauge such that

|S(A,D)− SA| < δ

for every ∆-fine K-partition of interval [a, b]. Each of these partitions satisfies

∣∣∣∣∣
1∏

i=m

eA(ξi)(ti−ti−1) − eSA
∣∣∣∣∣ =

∣∣∣eS(A,D) − eSA
∣∣∣ < ε

and using Theorem 6.2.4 we obtain

(K)
b∏

a

(1 +A(t) dt) = exp

(
(K)

∫ b

a

A(t) dt

)
.

The reverse implication is proved in a similar way using the equality

S(A,D) = log

(
1∏

i=m

eA(ξi)(ti−ti−1)
)
.

Remark 6.2.6. The previous theorem no longer holds for matrix functions A :
[a, b]→ Rn×n. Jaroslav Kurzweil and Jǐŕı Jarńık constructed1 two functions A,B :
[−1, 1]→ R2×2 such that

(K)
∫ 1

−1
A(t) dt exists, (K)

1∏

−1

(I +A(t) dt) doesn’t exist,

(K)
∫ 1

−1
B(t) dt doesn’t exist, (K)

1∏

−1

(I +B(t) dt) exists.

Theorem 6.2.7. Every McShane product integrable function is also Kurzweil
product integrable (but not vice versa) and

(K)
b∏

a

(I +A(t) dt) = (M)
b∏

a

(I +A(t) dt).

1 [JK], p. 658
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Proof. The inclusion MP ⊆ KP follows from the fact that every K-partition is
also a M -partition; the equality of the two product integrals is then obvious. We
only have to prove that MP 6= KP . For an arbitrary function f : [a, b]→ R denote

Af (t) = I · f(t),

where I is the identity matrix of order n (Af is therefore a matrix-valued function
on [a, b]). Then evidently

P (A,D) = I · P (f,D)

for every partition D of [a, b] and Af is product integrable (in the Kurzweil or
McShane sense) if and only if f is product integrable. Theorem 6.1.2 guarantees
the existence of a function f : [a, b] → R that is Kurzweil integrable, but not
McShane integrable; then (according to Theorem 6.2.5) the corresponding function
Af : [a, b] → Rn×n is Kurzweil product integrable, but not McShane product
integrable.

Theorem 6.2.8.1 Consider function A : [a, b]→ Rn×n. Suppose that the integral
(M)

∏b
a(I +A(t) dt) exists and is invertible. Then for every x ∈ (a, b) the integral

Y (x) = (M)
x∏

a

(I +A(t) dt)

exists as well and the function Y satisfies

Y ′(x) = A(x)Y (x)

almost everywhere on [a, b].

Remark 6.2.9. In Chapter 3 we have defined the Lebesgue (or Bochner) product
integral (L)

∏b
a(I+A(t) dt); the definition was based on the approximation of A by a

sequence of step functions which converge to A in the norm of space L([a, b],Rn×n).
The following theorem describes the relationship between McShane and Lebesgue
product integrals.

Theorem 6.2.10.2 Consider function A : [a, b]→ Rn×n. The following conditions
are equivalent:

1) A is Lebesgue (Bochner) integrable.
2) The McShane product integral (M)

∏b
a(I +A(t) dt) exists and is invertible.

If one of these conditions is fulfilled, then

(M)
b∏

a

(I +A(t) dt) = (L)
b∏

a

(I +A(t) dt).

1 [JK], p. 652–656 and [SS]
2 [Sch1], p. 329–334 and [SS]
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Remark 6.2.11. We conclude this chapter by comparing the classes of functions
which are integrable according to different definitions presented in the previous
text.

Let R, L, M and K be the classes of all functions A : [a, b] → Rn×n which are
integrable in the sense of Riemann, Lebesgue, McShane and Kurzweil, respectively.
In a similar way let RP and LP denote the classes of Riemann product integrable
and Lebesgue product integrable functions. Instead of working with the classes KP
and MP it is more convenient to concentrate on the classes

KP ∗ =

{
A : [a, b]→ Rn×n; (K)

b∏

a

(I +A(t) dt) exists and is invertible

}
,

MP ∗ =

{
A : [a, b]→ Rn×n; (M)

b∏

a

(I +A(t) dt) exists and is invertible

}
.

The following diagram shows the inclusions between the above mentioned classes.

R ⊂ L = M ⊂ K

RP ⊂ LP =MP ∗ ⊂ KP ∗
= = 6==
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