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60 I. Sets 

2. Assuming the situation described in exercise 1., let G be the decomposition on G correspond
ing to the mapping g. Show that^the equality g(A n B) = gA n gB applies if and only 
if there holds (A n B) c Q = (A c G) n (B c G). 

3. Let gf be a mapping of the set G onto G* and {a, 5,...} stand for a decomposition on G. 
Then {gfa, g&,...} is a decomposition on G* if and only if {a, 6,...} is a covering of the 
decomposition corresponding to g. 

4. Suppose g is a simple mapping of the set G onto G*. Let, moreover, A a G be a, non
empty subset and A, B stand for decompositions in (on) G. In this situation there holds: 
a) the extended mapping g of the system of all the nonempty parts1 of G onto the 

system of all the nonempty parts of G* is simple; 
b) the sets AL, gA are equivalent, i.e., A ~ gA; 
c) gA is a decomposition in (on) the set G*; 
d) the decompositions A, gA are equivalent, i.e., A c* gA ; 
e) if the decompositions A, B are equivalent or loosely coupled or coupled, then the 

decompositions gA, gB have, in each case, the same property. 

8. Permutations 

In this chapter we shall deal with simple mappings of finite sets onto themselves; 
they play an important role in algebra, particularly, in the theory of groups. 

8.1. Definition 

By a permutation of the set G we mean a simple mapping of the set G onto itself 
(6.6). 

In this section we shall restrict our considerations to permutations of finite sets. 
Let G denote an arbitrary set consisting of a finite number n(^ 1) of elements. 

From the assumption that G is finite it follows that every simple mapping p of 
the set G into itself is a permutation of G (6.10.2). 

Let the elements of G be denoted by the letters a, b, ...,m. Then we can uni
quely associate, with every permutation p of the set G, a symbol of the form: 

( a b . . . m \ 
a* b* ... m*J* 

where a*, b*, ...,m* are the letters denoting the elements pa, pb, ...,pm. Since 
pQ = Qs the letters a*, b*, ...,m* are again a,b,...,m written in a certain order. 
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Conversely, every symbol of the above form, where the letters a*, 6*,..., m* are 
again the letters a,b,..., m written in a certain order, determines a certain per
mutation of the set G, namely, the permutation under which every element deno
ted by a letter x in the first row is mapped onto the element denoted by the letter 
lying under x in the second row. Note that the same permutation p may similarly 
be expressed by other symbols if the letters a, b,..., m in the first row are written 
in a different order but under each of them there remains the same letter as before. 
The identical mapping of G is, naturally, a particular permutation of G, the so-
called identical permutation; it is denoted by the symbol ( , " J or any of the 

(, v \ao... mj 

baZ.mj' 

8.2. Examples of permutations 

Let us first introduce a few simple examples of permutations of sets containing 
n = 1, 2, 3, 4 elements. 

1. n = 1. Let G be a set consisting of a single point a in a plane. In that case 

there exists, of course, exactly one permutation of G, namely, the identical per

mutation ( I. 
\aj 

2. n = 2. Let G b e a set consisting of two arbitrary points a, b in a plane. If a, b 
are rotated, in the plane, in one or the other direction, about the center of the line 
segment with the end-points a, b through an angle oc, then the point a shifts to 
a certain point af and the point b to bf and we have a simple mapping of the set G 
onto the set {af, bf}. If oc equals 0°, 180°, then the set {af, bf] is identical with G and 

we have the following permutations of the set G: [ , I, I» ] - respectively. 

3 . ^ = 3. Suppose G is a set of three points on a plane: a, b, c, forming the ver
tices of an equilateral triangle. If the points a, b, c are rotated, in the plane, in one 
or the other direction, about the center of the triangle through an angle oc, then the 
point a shifts to a certain point a'', the point b to bf, the point c to cf and we have a 
simple mapping of the set G onto the set {af, bf, c'}. If oc equals 0°, 120°, 240°, then 
the set {af, bf, cf] is identical with G and we have the following permutations of G: 

la b c\ lab c\ la b c\ 
\a b cy \b c a)' \c a &/' 

respectively. Further permutations of G are obtained by associating, with the 
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points a, b, c, the points symmetric with regard to some axis of symmetry of the 
triangle in question. The latter has altogether three axes of symmetry; each of them 
passes through one vertex and bisects the opposite side. Associating, with each of 
the points a, b, c, the point symmetric with regard to the axis of symmetry passing 
through a, we obtain the permutation 

la b c\ 

\a c bf 

in a similar way we obtain further permutations: 

( a b c \ la b c\ 

c b a ) ' \b a c)' 

So we have found, in this case, altogether 6 permutations, namely: 

la b c\ la b c\ la b c\ la b c\ la b c\ la b c\ 
[a b c/ ' \6 c ay [c a by [a c b)> [c b a)' [b a c)* 

4. n === 4. Now let G be a set of four points in a plane: a, b, c, d, forming the ver
tices of a square. Rotating the points a, b, c, d, in the plane, in one or the other 
direction about the center of the square through an angle a, we again obtain a 
simple mapping of the set G onto the set of certain points a', b', d', d' in the plane; 
if a = 0°, 90° 180°, 270°, then we get the following permutations of the set G, re
spectively: 

( a b c d\ la b c d\ labcd\ la b c d\ 

abed)' \b c d a)' \c d a b)' \d a b c)' 
Further permutations of the set G are found, again, by associating, with the points 
a, b, c, d, the points symmetric with regard to some axis of symmetry of the men
tioned square. The latter has althogether four axes of symmetry; two of them pass 
through two diagonal vertices and the other two bisect the two opposite sides. 
Associating, with each of the points a, b, c, d, the point symmetric with regard to the 
axis of symmetry passing through the vertices a, c, we obtain the permutation 

( a b c d\ 
a d c 5j 

in a similar way we obtain further permutations: 

( a b c d\ la b c d\ la b c d\ 

c b a d)' \b a d c)9 \d c b «/ 

Thus we have found, in this case, altogether 8 permutations, namely: 

( a b c d\ la b c d\ la b c d\ la b c d\ 

abed)9 [bed a)' \c d a b)9 [dab c)J 

( a b c d\ la b c d\ la b c d\ la b c d\ 

a d c by \c b a dy \b a d c)' \d c b a)' 
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8.3. The number of permutations 

Let us now resume our study of the permutations on a set G of n(^ 1) elements 
a, b, ..., m. 

How many permutations of G are there altogether? To answer this question, let 
us first note the fact that, under an arbitrary permutation p of G, the element a 
is mapped onto a certain element pa of G; if n > 1 then, moreover, the element b 
is mapped onto an element pb different from pa, the element c onto an element pc 
different from pa, pb, etc., up to the element m mapped onto an element pm dif
ferent from the elements pa, pb, pc,.... Conversely, associating with the element a 
any element a* ^ G and, if n > 1, with the element b any element b* c£ G different 
from a* and with the element c any element c* £ G different from a*, b* and so 
on up to the element m* € G different from the elements a*, b*, c*, ..., we obtain a 
certain permutation 

( a b c ... m \ 
a* b* c* ... m*f 

of the set G. The number of the permutations is exactly the same as the number of 
the possibilities of the above associations. But with the element a we may associate 
an element a* 6 G in n ways: first, the element a itself, then the element b and so 
on, until, the nth time, the element m; if n > 1 we may, moreover, associate with 
the element b an element b* £ G different from a* in altogether n — 1 ways and, 
similarly, with the element c some element c* £ G different from a*, b* in altogether 
n — 2 ways, and so on up to the element m with which we may associate some 
element m* £ G different from a*, b*, c*, ..., exactly in one way. So we have alto
gether n(n —- 1) (n — 2) ... 1 possibilities and the answer to the above question is 
that there exist exactly 1.2.3 ... n permutations of the set G. This number is gener
ally denoted by the symbol n\. For example, for every set consisting of n =-= 1, 2, 
3, 4, 5, 6, 7, 8, 9, 10 elements there exist exactly n\ = 1, 2, 6, 24, 120, 720, 5040, 
40320, 362880, 3628800 permutations. The permutations we have found in the 
above examples of 1, 2, 3 points in a plane are evidently all that there exist 
but, in case of 4 points in a plane, there exist, beside the 8 permutations we have 
found, 2.8 = 16 further permutations. 

8.4. Properties of permutations 

1. Inverse permutations. Let us now proceed to a more detailed study of the proper
ties of permutations. Suppose p is a permutation of the set G. Since p is a simple 
mapping, there exists an inverse permutation p~x of p of G. I t is easy to see that 
the symbol of p~x is obtained by interchanging the two rows in the symbol p. For 
instance* the permutations inverse of the above 8 permutations of four points in 
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a plane are: 

( a b c d\ iabcd\ la b c d\ la b c d\ 

abed)9 [dab c)9 \c d a b)9 [bed a)9 

( a b c d\ la b c d\ la b c d\ la b c d\ 

a d c by \c b a dy \b a d cy \d c b aj 
2. Invariant elements. An arbitrary point x e£ G is mapped, under the permutation 

p, onto an element px which is or is not identical with x. In the first case, px = x, 
we say that the permutation p leaves the element x invariant (unchanged) or that the 
element x is invariant under the permutation p. I t is obvious that, under the per
mutation p and the inverse permutation p~x, the same elements of the set G are 
invariant. For instance, the above permutations of four points in a plane leave the 
following elements invariant: a, b, c, d; none; none; none; a, c; b, d; none; none. 

3. Cyclic (or circular) permutations. An element x and the permutation p uniquely 
determine the sequence of elements of G: x, px, p(px), p(p(px)), ..., in which 
every element except the first is the jp-image of the preceding one. Instead of 
x, px we sometimes write p°x, pxx and, for brevity, instead of (ppx), p(p(px)\ we 
generally put p%x, p%x,.... 

The permutation p is called cyclic or circular if there exists an element x € G 
and a positive integer k such that, in the sequence x, px, p%x, pzx, ,.., pk~lx, no 
two elements are identical but the image pkx of jpfe"% is again the element x and if, 
moreover, all the other elements of (?—if there are any—remain invariant 
under p. The permutation p can be more precisely described as a cyclic (circular) 
permutation with regard to the elements x, px, p%x, ..., pk~xx. 

The ordered set of elements x,px,p%x, ...,pk~%x is called a cycle of the permuta
tion p or, more precisely, a k-membered cycle or a k-cycle of p. If, in particular, 
k = n, i.e., if every element of G lies in this cycle we say that p is a pure cyclic 
(circular) permutation. 

Let the permutation p be cyclic with regard to the elements a?, px, p%x,.. .jp**"1^. 
Then the permutation p is usually expressed by a simple symbol: the elements 
x, px, p%x, •••, pk~lx are written in this order, next to each other, in parentheses. 
The inverse of the permutation p, i.e. p~x, maps every element of the sequence 
x, px, p%x, ..., pk~xx except the first onto the preceding one, the element x onto 
pk~%x and the other elements of G—if there are any—remain invariant; conse
quently, p~x is cyclic with regard to pu~"xx, ..., p%x,px,x. If we change the sym
bols of the elements of G by denoting the elements x,px,p%x,. ..',pk~xx by the letters 
a, b, c, ..., j , respectively, and the other elements of (?—if there are any—-by other 
arbitrarily chosen letters, then the simplified symbol of p is: (a, b, c, ..., j). The 
permutation may, of course, be expressed by any other symbol: (b, c, ..., j , a), 
(c, ..., j , a, b), etc., altogether in k ways. Then the symbol of the inverse permu
tation is, for example, (j, .,., c, b, a). 
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The simplest cyclic permutations are those with regard to one single element; 
by the above definition, every permutation of this kind is the identical permuta
tion of G and, consequently, may be expressed by any symbol (a), (b), ..., (m). 

Every cyclic permutation of G with regard to two elements is called a transpo
sition. 

For instance, in the above permutations of the set of n = 1, 2, 3, 4 points in a 
plane we have the following cyclic permutations: 

for n = 1: (a); 

for n = 2: (a), (a, b); 

for n = 3: (a), (a, b), (a, c), (b, c), (a, b, c), (a, c,b); 

for n = 4c9. (a), (a, c), (b, d), (a, b, c, d), (a, d, c, b). 

4. Invariant subsets and decompositions. Now, let again p stand for an arbitrary 
permutation of the set G. Any nonempty subset A cz G is mapped, under the 
extended mapping p, onto a subset pA cz G which is or is not a part of A. In the 
first case, if pA cz A, then pA = A. In fact, by the definition of the partial 
mapping pA, there holds pA = pAA; moreover, asp is a simple mapping of the finite 
set A into itself, it is a permutation of the set A; so we have pAA = A. 

If pA = A, we say that the permutation p leaves the subset A invariant or that 
the subset A is invariant under the permutation p. 

The subset A is invariant under the permutation p if each of its elements is 
invariant under p. If p leaves the subset A invariant, then the same evidently 
holds for the inverse permutation p-1. For example, the above permutations of 
four points in the plane leave the following proper subsets of the set {a, b, c, d} 
invariant: all;none;{a, c}, {b, d}; none; {a}, {c}, {b, d}; {b}, {d}, {a, c}; {a, b}, {c, d}; 
{a, d}, {b, c}. Note that, if p is the cyclic permutation (a, b, c, ..., j), then every 
subset A cz G containing the elements a,b, c, ..., j is invariant under p, the par
tial permutation pA is cyclic as well and is expressed by the same symbol (a, b, 
c, . . . , / ) . _ _ 

Suppose G = {a, b, ..., m} is a decomposition of the set G. If G has the property 
that, under the extended mapping p, the image of every element of G is again an 
element of G, we say that the permutation p leaves the decomposition G invariant or 
that the permutation G is invariant under the permutation p. I t is clear that, if the 
permutation p leaves the decomposition G invariant, the same holds for the inverse 
permutation p~x. 

Let us, in particular, consider the case when every element of G is invariant 
under p so that pa = a, pb = b,..., pm = m. Then, x being an element of G, the 
partial mapping p~ is a permutation of x. The partial permutations p-, p-, ..., p^ 
uniquely determine the permutation p in the sense that the p-image of every ele
ment x 6 G is the same under the partial permutation p% of the element x 6 G 
containing x. Under the inverse permutation f r 1 every element of G is invariant 
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as well and p~x is determined by the inverse permutations ps"1; PF1? • •*> PsT1* 
Conversely, let G = {a, b, ..., m} be an arbitrary decomposition on G and choose, 
on each of its elements x, an arbitrary permutation p%; define, on G, the permuta
tion p by associating with every element x £ G its p^-image where x 6 x; then 
every element of G is invariant under p and ps, pi,..., p^ are the determining 
partial permutations of p. 

8.5. The determination of permutations by pure cyclic permutations 

Now we shall show that an arbitrary permutationp of any set G consisting ofn(^ 1) 
elements is determined by a finite number of pure cyclic permutations, in other words, 
that there exists a decomposition G = {a, b, ..., m] of G such that each element of 
G is invariant under p and the partial permutations are pure cyclic permutations 
of the elements a,b, ...? m. 

The proof will be based on the method of complete induction.1) For n = 1 our 
statement is correct because, in that case, p is the identical permutation of G and 
the greatest decomposition of G has the above property. I t remains to be shown that? 

if our statement holds for every set consisting of at most n — 1 elements, n stand
ing for an integer > 1? then it also holds for any set consisting of n elements. 
Let G stand for a set of n elements and p for a permutation of G. Let? moreover, 
a denote an element of G. Consider the sequence of the elements a, pa, p2a,..., pna 
of G, each of which is the jp-image of the preceding element. The number of these 
elements is n + 1 so that at least one element occurs in G at least twice. Proceeding, 
in the mentioned sequence, from the first element a successively to the subsequent 
elements, we arrive? for the first time, at : 

a) a certain element p^a, j denoting a number 0, ...? n — 1 that occurs among 
the elementspi+1a, ..., pna at least once more; 

b) the element p^a,~k being a number 1, ..., n —- / which is identical with the 
element p$a, so that p^a = p?+ka. 

If pia is not the first element a, i.e., if j > 0, then both elements p^a and p?+fc-% 
are mapped, under p, onto the same element p^a and, since p is a simple mapping, 
there holds pj~xa = j p^ -%; but that is not possible because, in the sequence a, pa, 

The method of complete induction is based on the following theorem: If one associates, 
with every positive integer n9 a certain statement gn such that: (1) the statement gt is correct, 
(2) for every n > 1 for which the statements gl,,..,g(n — 1) are correct, even gn is correct, 
then all the statements are correct. In fact, in the opposite case the incorrect statements are 
associated with certain positive integers one of which, let us denote it by m, is the least. 
By the assumption (1), there holds m > 1; by the definition of m, the statements gi,..., 
g(m — 1) are correct, whereas the statement gm is incorrect, but that contradicts the 
assumption (2). 

An analogous theorem applies to the statements associated with integers greater than 
or equal to an integer 1c. 



8. Permutations 67 

p2a, ...,pna, the elementp$a is not preceded by any element occurring once more 
whereas, according to the above equality, p^a is such an element. Thus we have 
ascertained that j == 0. By the definition of the number k, we have pka = a but 
none of the elements pa, ..., pk~~xa is a. If any two of the elements a, pa, ..., pk~~xa 
are equal, i.e., if for some integers r, s satisfying the inequalities 0 g j r < < s s g & — 1, 
there holds pra =- psa, then we have pk~s(pra) = pk~s(psa), i.e., pk-s+ra = pka 
= a; but this contradicts the fact that none of the elements pa, ..., pk-la is a be
cause 1 ^ k —• s -\- r ^ k — 1 and therefore pk~s+ra is one of these elements. Thus 
we have verified that no two elements a, pa, ..., pk~%a are equal. 

Let a stand for the set of the elements a,pa,...,pk~xa. We observe that the sub
set a cz G is invariant under the permutation p and that the partial permutation 
ps is a pure cyclic permutation of a. If k = n, i.e., if a = G, then p5 = p and the 
greatest decomposition of G has the above property. Let us now consider the case 
k < n. In that case the set G contains, besides a, pa,..., pk~~xa, further elements the 
number of which is, at most, n — 1; the set of these elements will be denoted by 
H. Under the partial mapp ing^ , the image of every element x £ H is again an 
element of H because, in the opposite case, there holds px = pla, I standing for 
one of the numbers 0, ..., k — 1 and, consequently, x = pl~xa and x = pk~xa if 
I > 0 and 1 = 0, respectively; but in both cases this contradicts the assumption 
x £ H. The permutation pE is therefore a mapping of the set H into itself and, since 
it is simple and H has only a finite number of elements, pH is a permutation of H. 
If our statement holds for every set of, at most, n —- 1 elements, then there exists 
a decomposition H = {b, ..., m} of the set H such that every element of H is in
variant under the permutation 1% and the partial permutations of the elements 
b, ...,m, determined by*|%are pure cyclic permutations. Since pH maps every ele
ment of H onto the same element as p, the partial mappings pi, ..., p% of b,..., m, 
determined by p, are exactly these pure cyclic permutations. The system of the 
sets G = {a, b, ..., m\ is obviously a decomposition of G and we see that each 
element a, b, ..., m is invariant underp and that ps, pi, ...,Pm are pure cyclic per
mutations of a, b, ..., m, which completes the proof. 

8.6. The method of determining the pure cyclic permutations forming a given permutation 

Given a permutation p of the set G consisting of n ^ 1 elements, the pure cyclic 
permutations by which it is determined are obtained as follows: Starting from an 
arbitrary element a £ Gwe first determine the cycle a,pa,.. .,pk~xa; then, if k < n, 
we choose an element b £ G which is not in this cycle and determine the next cycle 
5, pb, ..., pl^b\ furthermore, if k + I < n, we choose an element c £ G which 
is not in any of the preceding cycles and determine the cycle beginning with 
the element c; in this way we proceed. To express the permutation p we 
then write, in a certain order, side by side, the symbols of the individual pui*e 
cyclic permutations. From this we obtain the symbol of the inverse permutation 
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jp-i by way of reversing, in each cycle, the order of the letters. For example, the 
above permutations of the set of n = 1, 2, 3, 4 points in a plane is determined by 
pure cyclic permutations as follows: 

if % = 1: (a); 

if n = 2: (a)(b), (a,b); 

if n = 3: (a)(b)(c), (a, b, c), (a, c, b), (a) (b, c), (a, c)(b), (a, b)(c); 

if n = 4: (a)(b)(c)(d), (a, b, c, d), (a, c)(b, d), (a, d, c, b), (a)(c)(b, d), 

(a, c)(b)(d), (a, b)(c, d), (a, d)(b, c). 

The inverse permutations of the latter are: 

if n = 1: (a); 

if n = 2: (a)(b), (a,b); 

if n = 3: (a)(b)(c), (c, b, a), (b, c, a), (a)(b, c), (a, c)(b), (a, b)(c); 

if n = 4: (a)(b)(c)(d), (d, c, b, a), (a, c)(b, d), (b, c, d, a), (a)(c)(b, d), 

(a, c)(b)(d), (a, b)(c, d), (a, d)(b, c). 

8.7- Composition of permutations 

1. The concept of the composition of permutations. The permutations of the set G 
may, of course, be composed according to the rule of composing mappings. Let p, 
q denote arbitrary permutations of G. The mapping qp composed of the permu
tations p, q is again a permutation of G. The symbol of the latter is obtained by 
writing, under each letter x denoting some element of G, the letter of the element 
q(px). If the permutations p, q are expressed in usual two-lined symbols, then 
the letter denoting the element q(px) is found as follows: First we find the letter 
denoting the element px which lies, in the symbol of p, under x, and then the 
letter denoting the element q(px) which lies, in the symbol of q, under the letter 
denoting px. If, for instance, n = 3 and p, q are given by the symbols 

( a b c\ labc\ 

b c a)9 [a c b)f 

then the symbol of qp is 

( a b c\ 
c b aj' 

Analogously we proceed if p, q are expressed by the pure cyclic permutations by 
which they are determined. For example, if n = 3 and p, q are given by the sym
bols (a, b,c), (a)(b, c), then qp is expressed by (a, c)(b). 
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2. Interchangeable permutations. Note tha t the result of composing two permu
tations of G may depend on the order in which they are composed, i.e., the permu
tation qp composed of p, q may be different from the permutation pq composed 
of q, p. I n the above example there holds qp =j= pq, for qp is the permutation 
(a, c), whereas pq is (a, b). If the permutations p, q are such tha t the results of 
their composition does not depend on their order, i.e., if qp = pq, then they are 
called interchangeable. E.g., the identical permutation of the set G and any other 
permutation of G are interchangeable. 

3. Associative law for the composition of permutations. To any permutations p, q, 
r of the set G there, of course, applies the associative law 

riap) = (rq)p> 

the permutation of G lying on either side of this equality is briefly denoted by rqp. 

4. The inverse of a composed permutation. By means of the associative law we 
can easily show tha t the inverse of the composed permutation qp is p^q'1, i.e., 
t ha t there holds 

(qp)'1 =p~lq"1. 

In fact, let x denote an arbitrary element of G. Taking account of the definition 
ofp-iqr-i a n d the associative law, we have (p^q-^qpx) = p~1(q~1(qpx)) 
=:P~1[(^.~1^l)Px) and, furthermore, p~1((qf~1qr)p^) =p~1(^(px)) =P'~1[(eP)x) =p~%(px) 
== (p~1p)x = ex = x, where e denotes the identical permutation of G. Consequent
ly, the permutation p^q"1 maps the element qpx onto x and our statement is 
correct. 

8.8. Exercises 

1. Give an example of a simple mapping of an infinite set (let us say, the set of all natural 
numbers) into itself which is not a permutation. 

2. Write down the symbols of all the permutations of a set consisting of four elements and 
express the single permutations by means of pure cyclic permutations. 

3. Say by which rule you would proceed if you were to write down the symbols of all the 
permutations of a set consisting of n(^ 1) elements so as not to forget any of them. 

4. A regular n-gon(n ^ 3) in a plane has altogether n axes of symmetry. Rotating the vertices 

(360\° / 360\° / 360\° 
j 9 J2. 1 , . . . , U% — 1). 1 

n ) \ n J \ n J 
and, furthermore, associating with them the vertices symmetric with regard to the single 
axes of symmetry we obtain, altogether, 2n permutations of the set of vertices; let us 
denote the set of these permutations Mn. Prove that Mn has the following properties: 
1. If p € Mn, q e Mn9 then evenqp € Mn; 2. e € Mn; 3. if p e M^thenp-1 € Mn. 

5. Any two cyclic permutations of a set of w(^ 1) elements whose cycles have no common 
elements are interchangeable. 


		webmaster@dml.cz
	2012-09-06T02:56:37+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




