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164 III. Groups 

4. Suppose U ZD 33 are subgroups of ®. Consider arbitrary left and right cosets al9 ct and ar, c r 
with regard to % respectively, and denote: 

It =. Oi n ®/|8 (== A| c «/ |») , £ , = C, n ®/,» (== c, c ®/,»), 

A r = ar n ®/f» (= a r c ®/r»), Or = cr n ®/f» (= cr c ®/r83). 

Each element of the decompositions AlfCi or Af,OrJs a left or a right coset with regard 
to SB, respectively. Moreover, there holds: At~Clf Ar~Cr. 

5. Let Sfc>8 be subgroups of ®. Consider arbitrary cosets a € ®/i% ar1 e ®/rSt inverse of 
each other and, on the latter, the decompositions set out below: 

i | = a n ®/|» ( = 5 c ©/,»), Ar =-= a-1 n ®/ r» (= a"1 c ®/rS). 

Either of the decompositions Alf Ar is, under the extended inversion n of ®, mapped 
onto the other. Aif Ar are equivalent sets, hence: Aj~ Ar. 

6. If A | and Cr are the same as in exercise 4, there holds A j m Cr. 
o 

7. Let p € ® denote an arbitrary element and ® the -p-group associated with ® (19.7.11). 
o O O O O 

Moreover, let % cz @ be a subgroup of ® and Stj cz ® (%r cz ®) the subgroup of ® on the 
field *p% (%p) (20.3.3). Show that the left (right) decomposition of the group ® with regard 

o 0 

to the subgroup %l (Ur) coincides with the left (right) decomposition of ® with regard to 
ft, that is to say: 

&/,«,==«/,«, ®/rir = ®/fa. 

22. Consequences of the properties of decompositions generated by subgroups 

22.1. Lagrange's theorem 

Assuming 21 cz ® to be an arbitrary subgroup of O, we shall now consider the 
consequences of the properties of the decompositions @5/jSt and %/r%. 

Suppose (B is finite. 
Le t us denote by N and n the order of @J and SI, respectively, so t ha t N is the 

number of the elements of G and n the number of the elements of SI. One of the 
elements of (B/M *s the field A of SI. This element therefore consists of n elements of 
iJ and; consequently (by 20.2.5), each element of ®/i% consists of n elements of 
dL Hence N = qn3 q denoting the number of the elements of ®/j3t. Thus we have 
arrived a t the following result: 

The order of each subgroup SI of an arbitrary finite group & is a divisor of the 
order of @. 
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This is Lagrange's theorem, considered to be one of the most important in the 
theory of finite groups. The number q, i.e., the number of the elements of the de
composition &/i% and, at the same time, even the quotient of N and n is called 
the index of 3t in &. Since &/i% and %jr% are equivalent sets, the index of 3t in d$ 
simultaneously indicates the number of the elements of @J/r3t. According to 
Lagrange's theorem, e.g., an arbitrary finite group whose order is a prime number 
does not contain any proper subgroup different from the least subgroup. 

Lagrange's theorem applies even if @J is infinite (N = 0). 

Example . Consider the group @3 whose elements are denoted by 1, a, b, c, d, f, 
as in 11.4. From the multiplication table of the group @3 (11.4) we see that the ele
ments 1, / form a subgroup of ©3. Let us denote it by 3t. 

The left cosets of the individual elements with respect to 31 are: 

13 t= /3 l = {l,/}, a% = c% = {a,c], b% = d% = {b,d\. 

The right cosets are: 

311 = 31/ -= {1,/}, 3ta = %d = {a, d], %b = %c = {b, c}. 

The left decomposition of the group <53, generated by 3t, therefore consists of the 
elements {!,/}, {a, c), {6, d], whereas the right decomposition comprises the ele
ments {!,/}, {a, d), {b, c}. Note that these two decompositions are different. The 
order of <53 is 6, the order of 3t is 2, the index of 3t in @3 is 6 : 2 = 3 = the 
number of the elements of the left and, simultaneously, even of the right decom
position of ©3 generated by 31. 

22.2. Relations between interchangeable subgroups 

The result arrived at in 21.6 and the properties of complementary decompositions 
(5) lead to a number of consequences as regards interchangeable subgroups. We 
shall restrict our attention to a few of them and leave further initiative to the rea
der. The formulae we shall obtain can mostly be verified directly. Owing to our 
method we can not only find them but even get a better understanding of their 
structure. 

1. Let 3t ZD 93, % be arbitrary subgroups of (& and suppose 93 and % are inter
changeable. Then even the subgroups 93, 31 n % are interchangeable and there holds 

8 n 5>» = (« n $ ) » . (1) 

In fact, by 21.6, the decompositions d$/j93, &li% are complementary. Since 
3t => 58, we have (U/jl ^ @5/j93 (21.3). In accordance with 5.3, ©^93 is comple-
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mentary to (®/,«, 65/,®) and, by 21.4, there holds (&h% ®/|S>) *-= ®/|(« n ®). 
We observe that the decompositions ®/i»? €$/j(t[ n ®) are complementary; from 
21.6 we conclude that the subgroups » , 91 n ® are interchangeable. 

By 5.4, ®/|® is modular with regard to &/ffl, @/*» and so 

(@/,a, [@/,», @/,®]) = [@/,», (@/,a, ®/,®)]. 

Hence, on taking account of 21.4 and 21.5, there follows 

(®/,«, ®/|S>») = [®,8, ®/,(« n ®)] 

as well as 

®/f(Bn®») = ® / , ( « n $ ) » . 

I t is easy to see that the element of this decomposition, containing the unit 1 
of d$, is the field of the subgroup 91 n S)» and, at the same time, the field of the 
subgroup (%t n ®)». The above formula is therefore correct. 

2. Let 2C =3 » , S ZD 5) 6e arbitrary subgroups of & and suppose » , % are inter
changeable. Then » , 9t n % and ®, % n » are interchangeable as well. Simultane
ously, even % n ®, (£ n » Awe £Ae 8awe property and there holds 

% n <g n ® » = (9t n %) (<£ n » ) . (2) 

Indeed, the first part of this statement immediately follows from the above 
theorem. Moreover, there holds (by 5.6.1) 

((©/,«, ®im, [@/,», @/,s>]) = [(©/,«, ©/,©), (@/,e, ©/,»)] (3) 

and the decompositions (©/,«, ©/,$), (©/,(£, ®/,JB), i.e., ©/,(« n ©), ©/,(<£ n S3) 
are complementary. Consequently (21.6), the subgroups 31 n %, (£ n 95 are inter
changeable and so (3) yields (2). 

3. In the situation described by Theorem 2 there also holds: 

(3t n $)33 n <g = (<£ n 33)® n 3t = (31 n ©)(© n 33). (4) 

We know that @/,83 and @/,® are complementary; moreover, there holds 
@/,2l ^ ®/,33, @/,6 S ©/,$>. Note that the fields of the subgroups 31, 33, S , % 
are elements of the corresponding left decompositions and contain the unit 1 of ©. 

Let us now use the result of 5.5 by which the decompositions 

Sf/,8 = St c © / ,» ( = @/,S3 n 3t), 

« / ,$ = U c ©/,© ( = ©/,® n <S) 
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are adjoint with respect to » , %. Thus there holds 

$(% c l / j » n <£) = s ( » c 6/,® n 9t). (5) 

By 2.6.5 a) we have 

$ c «/,» n | = ( D c «/,») n © = % c («/,» n <&,), 

» c e/,5) n % = (» c <£/i©) n « = » c (<£/,© n 91) 

and the results from 21.2.1 yield the formulas 

{% c «/|») n <£===((« n S»» n ©)/*(© n »), 

® c («/,» n ©) = (9t n $)(<£ n »)/,(<£ n »), 

(» c <£/!©) n | = ( ( | n »)© n «)/,(« n ©), 

» c (C/|3) n « ) = (6n »)(« n ©)/,(« n ©). 

So we have 

s(S> c «/,» n <£) = (« n ©)» n g = ( I n ©)(<£ n »), 

* (» c ©/*® n «) = (<£ n »)© n «==(<£ n »)(« n ©) 

which, together with (5), yield the formulas (4). 

22.3. Modular lattices of subgroups and of decompositions generated by subgroups 

Consider an arbitrary nonempty system O of subgroups of the group (U. Assume 
every two subgroups of the system O to be interchangeable and O to be closed 
with regard to the intersections and the products of the pairs of subgroups: the 
intersection and the product of any pair of subgroups % » £ 0 also belong to O, 
hence % n » , 9t» 6 0. 

Let us associate, with every two-membered sequence of subgroups 91, » £ O, 
first, the intersection 91 n » and, next, the product 9t» of 91 and » . Thus we have 
defined two multiplications in the system O, hence a pair of groupoids on the 
field O. Each of the two groupoids is Abelian (1.6), associative (1.10.4; 18.1.1) and 
all its elements are idempotent (1.10.1; 15.6.4). Moreover, the multiplications in 
both groupoids are connected by the formulae: 

«(«n») = «, « n « » = «. 

I t follows that the above pair of groupoids is a lattice, Q. 
Let us now choose the upper (lower) multiplication in the lattice Q in the manner 

that, to every two-membered sequence of subgroups 8C, » £ Q, there corresponds 
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their product 5l» (intersection 51 n » ) : 

5 l u » = 5t», 5 l n » = 5 t n » . 

Then we obtain the upper (lower) partial ordering u (I) of Q by associating, with 
each 51 € Q, all its supergroups (subgroups) » £ Q. From 22.2.1 it is evident that 
every three-membered sequence of subgroups 81, » , (£ € Q for which % ^ © (u), 
satisfies the upper modular relation. Consequently, Q is modular. 

Let us, furthermore, associate with every subgroup 51 £ Q the decomposition 
@5/,St and denote the corresponding system of the left decompositions of & by the 
symbol 0*. Considering 21.4, 21.5, we realize that the system 0* is closed with 
respect to the operations (), [] and therefore includes, with every pair of left 
decompositions @/,5l, ©/,» € 0*3 even their greatest common refinement and 
their least common covering: 

(@/,a, ®/,»), [®/,a, ®/,»] € o*. 

Two multiplications in 0* may be defined by associating, with each two-membered 
sequence of the left decompositions @/,St, ($/,» € 0*, first, the greatest common 
refinement and, next, the least common covering of these decompositions. Thus we 
obtain, on 0*, a pair of groupoids Q* which, as it can again be verified, is a lattice. 

The function t, associating with each subgroup 51 € Q the left decomposition 
&ji% 6 Q*, is clearly a simple mapping of Q onto Q* such that for every 51, » £ Q 
there holds 

i(U n ») = ©/,(« n »), *SI» = ©/,«», 

ì.e. 

i(% n ») = M n t » , i(5t u 8 ) = « u i » . 

The mapping i is therefore an isomorphism of Q onto Q*. Since Q is modular, 
Q* is modular as well (18.7.14). 

The result: 

A nonempty system of subgroups of @ any two elements of which are interchangeable 
and which is closed with respect to the intersections and the products of any two sub
groups forms — together with the multiplications defined by the forming of the inter
sections and the products — a modular lattice. The system of the left (right) decompo
sitions of ®, generated by the individual elements of this lattice is, with respect to the 
operations (), [ ], closed and forms — with the multiplications defined by these oper
ations — also a modular lattice which is isomorphic with the former. 
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22.4. Exercises 

1. The order of any group consisting of permutations of a finite set of orders is a divisor of nU 
2. In every finite Abelian group of order N the number of elements inverse of themselves is a 

divisor of N. 

23. Special decompositions of groups, generated by subgroups 

23.1. Semi-coupled and coupled left decompositions 

Consider the subgroups 21=) 3 3 , © I D ® of @. Their fields are denoted by A, B, O, D. 
We first ask under what conditions the left decompositions 2l/j33, ©/*® are semi-

coupled or coupled. 
Since the intersection A n B contains the unit of ® and therefore is not empty, 

it is obvious, with respect to 4.1, that the mentioned decompositions are semi-coup
led if and only if 

a / l 8ne = g/ia)na. 

In accordance with 21.2.1, this may be written 

(21 n <£)/, (© n 33) = (21 n <£,)/, (8 n ©). 

This equality is evidently true if and only if 

« n © = ® n » . (1) 

Thus we have verified that the left decompositions 2t/j33, (£/|2) are semi-coupled 
if and only if the subgroups 21 n ®, © n 33 coincide, i.e., if 21 n % = © n 33. 

Now suppose the left decompositions 2t/|23, ©/j® are coupled. Then (by 4.1; 
20.3.2) we have, besides (1), even: 

A = (AnC)B} C=(Cf)A)D, 

from which it follows (19.7.8) that 21 n © is interchangeable with both 33 and % 
and so: 

2t = ($ n ©)33, © = (©n2t)®. (2) 

Conversely, if (1) and (2) simultaneously apply, then with respect to 4.1 and 
21.2.1, the left decompositions 2t/j33? (£/j3) are coupled. 
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