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VOJTĚCH JARNÍK’S WORK IN COMBINATORIAL
OPTIMIZATION

Bernhard Korte and Jaroslav Nešetřil

Abstract. We discuss two papers of Vojtěch Jarník from 1930 and 1934 which are
devoted to the Minimal Spanning Tree Problem and the Euclidean Steiner Tree Problem.
These papers are historical milestones in combinatorial optimization.

Introduction

Jarník’s status as one of the foremost mathematicians of his time is docu-
mented in this volume in many places. With respect to his lasting achievements
in number theory and analysis the aim of this note may seem to be very modest:
we want to discuss two lesser known papers [J], [JK] which belong to a different
area from the major part of Jarník’s œuvre, namely to the area which much later
became known as combinatorial or discrete optimization. These are the only pa-
pers by Jarník related to such problems and in fact the only papers which do not
belong to the main line of his work (i.e. number theory, analysis and its founda-
tions). Perhaps this would only be enough to justify a shorter note. But there is
much more here than meets the eye. Papers [J], [JK] were overlooked for a long
time, and, as we shall demonstrate, they are even now little known. But they are
important and, as we wish to demonstrate, Jarník deserves much more credit for
these truly pioneering works. In both of these papers Jarník was lucky to have
dealt with problems which have since proved to be cornerstone pieces of Combi-
natorial Optimization developed in full in the fifties and sixties in the context of
Linear Programmming and Computer Science.

We thank Dr. R. von Randow for his help with the preparation of this paper.
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38 Bernhard Korte, Jaroslav Nešetřil

1. On a minimal problem

Jarník’s paper [J] is a very short one and we can include a translation of most
of it (the original two pages are given in Figs. 1 and 2).

One should see the original and look at a translation of [J]. The problem
is stated and treated with a rigour and clarity which is missing in many later
additions to this area. So we consider this as a good opportunity to present parts
of Jarník’s paper in full (we include a translation of about two thirds of [J]). We
found no mistakes or even misprints in [J]! The paper [J] has also an interesting
form: it is written in the “first person”-form and the reason for this is explained
by its subtitle. We have tried to preserve Jarník’s style as closely as possible. In
particular, all symbols and notations are preserved. While a longer discussion will
follow, we have included a few comments within the translation (we use square
brackets [ ] for these; the translation itself is in italics).

Figure 1 Figure 2
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Vojtěch Jarník

On a certain minimal problem

(From a letter to O. Borůvka)

In your article “On a certain minimal problem” (which appeared in “Práce

moravské přírodovědecké společnosti,” vol. III, No. 3) you solved an interesting

problem. It seems to me that there is a simpler solution of this problem. Allow me

to state my solution here.

[Thus Jarník decided to use the same title for his paper as Borůvka [B1]. Borůvka was
the first to solve the Minimal Spanning Tree problem, see [GH] and comments below.]

Let n elements be given, I denote them as numbers 1, 2, . . . , n. From these

elements I form 1
2n(n−1) pairs [i, k] where i 6= k, i, k = 1, 2, . . . , n. I consider the

pair [k, i] identical with the pair [i, k]. To every pair [i, k] let there be associated

a positive number ri,k (ri,k = rk,i). Let these numbers ri,k (1 6 i < k 6 n) be

pairwise different.

[It is interesting to note that Jarník denotes the unordered pair by [i, k], which is stan-
dard usage in graph theory today. This is also a departure from Borůvka’s paper [B1]
where the numbers ri,k are denoted by [i, k]. The fact that the numbers ri,k—i.e. in later
terminology weights of edges—are supposed to be distinct is neither discussed nor justi-
fied. It seems that both Borůvka and Jarník were aware—as classical mathematicians—of
“perturbation arguments.” Certainly applications that they clearly had in mind suggest
this, see [B3], [B4] and the discussion of the concluding remarks of Jarník’s paper below.]

We denote by M the set of all pairs [i, k]. For two distinct natural numbers

p, q 6 n, I call a chain (p, q) any set of pairs from M of the following form:

(1) [p, c1], [c1, c2], . . . , [cs−1, cs], [cs, q].

Also, a single pair [p, q] I call a chain (p, q).

[Even today the terminology is not unique—a set of the form (1) is called a path, trail,
walk; Jarník considers (1) as a family—repetitions are allowed.]

A subset H of M I call a complete subset (kč in short), if for any pair of

distinct natural numbers p, q 6 n there exists a chain (p, q) in H (i.e. a chain of

form (1) all of whose pairs belong to H). There are kč; M itself is a kč.

[Jarník’s lucid Czech mathematical style became famous and standard; he may well be
a bit playful here: kč is close to Kč—an abbreviation of Czech currency (“koruna česká”).]

If

(2) [i1, k1], [i2, k2], . . . , [it, kt]
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is a subset K of M , we put

t∑
j=1

rij ,kj = R(K).

If for a complete set K the value R(K) is smaller than or equal to the values for

all other complete sets, then I call K a minimal complete set in M (symbolically

mkč). As there exists at least one kč and there are only finitely many kč, there

exists at least one mkč. The problem, which you [i.e. O. Borůvka] solved in your

paper, can be formulated as follows:

Problem. Prove that there exists a unique mkč and give a formula [i.e. an
algorithm] for its construction.

[Of course mkč is the unique minimum spanning tree. There is no mention of trees in
this paper.]

First Lemma. Let a1 be a natural number 6 n with

(3) ra1,a2 = min {ra1,k ; k = 1, 2, . . . , n, k 6= a1}.

Then every mkč contains a pair [a1, a2].

[Summary of proof: The First Lemma is proved by a textbook argument: if K is a kč not
containing [a1, a2], then consider a chain (a1, a2) = [a1, c1], [c1, c2], . . . , [ct, a2] and form
a new set K′ by removing [a1, c1] from K while adding [a, a2]. Then K′ is again a kč and
R(K′) < R(K).]

We introduce the following: Let K ≡ [i1, k1], [i2, k2], . . . , [it, kt] be a subset of

M . An index of K I call any natural number from among i1, k1, i2, k2, . . . , it, kt.

A subset K of M I call a connected subset if for any two distinct indices p, q of

K it is possible to find in K a chain (p, q) (i.e. a chain (p, q) consisting of pairs

from K only).

2. Lemma. Let S be a connected subset; let h1, h2, . . . , hS be all the indices

of S; let s < n.

Let l1, l2, . . . , lt be numbers from 1, 2, . . . , n which fail to be indices of S, let

(4) ra,b = min {rhi,lj ; i = 1, 2, . . . , s, j = 1, 2, . . . , t}.

Then I claim: every mkč containing S contains [a, b] as well.

[We do not translate the proof but just summarize it. The Second Lemma is proved again
by a textbook argument: let K be a kč containing S and not containing [a, b]. Let a be
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an index of S. Then there exists in K a chain (a, b) = [c0, c1], [c1, c2], . . . , [cv, cv+1] with
c0 = a, cv+1 = b, v > 1. Let cw be the last of the numbers c0, c1, . . . , cv which is an
index of S. Then define subset K′ by removing [cw, cw+1] and adding [a, b]. K′ is again
kč. Here Jarník considers two cases: cw = a and cw 6= a. But R(K′) < R(K) and thus
K fails to be mkč.

Jarník does not mention that Lemma 1 is a special case of Lemma 2. Indeed, in his
setting Lemma 1 is not a special case of Lemma 2 as a single vertex does not correspond
to the index set of any kč.]

Let us now introduce a certain subset J of M [J for Jarník?] as follows:

Definition of set J . J ≡ [a1, a2], [a3, a4], . . . , [a2n−3, a2n−2] where a1,

a2, . . . are defined as follows:

First Step. Choose as a1 any of the elements 1, 2, . . . , n. Let a2 be defined

by the relation ra1,a2 = min ra1,l (l = 1, 2, . . . , n; l 6= a1).

k-th Step. Having defined

(5) a1, a2, a3, . . . , a2k−3, a2k−2 (2 6 k < n)

we define a2k−1, a2k by ra2k−1,a2k = min ri,j where i ranges over all the numbers

a1, a2, . . . , a2k−2 and j ranges over all the remaining numbers from 1, 2, . . . , n.

Moreover, let a2k−1 be one of the numbers in (5) such that a2k is not among the

numbers in (5). It is evident that in this procedure exactly k of the numbers in (5)
are different, so that for k < n the k-th step can be performed.

The solution to our problem is then provided by the following

Proposition.

1. J is mkč.

2. There is no other mkč.

3. J consists of exactly n− 1 pairs.

[Summary of Proof: Proof is by induction on n. Jarník defines J2 ≡ [a1, a2] by the First
Lemma. Given a connected set Jk with k indices Jarník uses the Second Lemma to define
Jk+1. He proves carefully that Jk+1 is connected. He then puts J = Jn.]

R e m a r k . The following is a visual interpretation of the solved problem:

We are given n balls numbered 1, 2, . . . , n which are joined pairwise by 1
2n(n− 1)

sticks. Let ra,b be the mass of the stick joining balls a and b. Let the sticks be bent

if necessary so that they do not touch. From this system we want to remove some

of the sticks so that the n balls hold together and the mass of the remaining sticks

is as small as possible.

In Prague, Feb. 12, 1929.
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[It is interesting to note how tempting it was for both Borůvka and Jarník to formulate
an application of the problem. Borůvka was led to the problem by his friends from the
Electric Power Company of Western Moravia in Brno, cf. [B3], and indeed published
a note in an electrotechnical journal [B2]. Jarník added a geometric interpretation—in
R3.]

2. Jarník’s paper in a historical perspective

A noncombinatorialist may wonder why we have discussed Jarník’s paper [J]
in such detail, and why it is worth translating. The reason is very simple as the
following problem is perhaps the central problem of combinatorial optimization
and a cradle of many key notions:

Minimal spanning tree (MST). Given a set V and a weight function

w :
(
V
2

)
→ R, find a tree (V,E) such that

∑
e∈E

w(e) is minimal.

MST was first solved by Borůvka [B1]. Jarník quickly realized the novelty of
this problem and immediately contributed his elegant solution [J]. Borůvka never
returned to this problem although he lectured about his solution in Paris [B3].
Also other early contributions were illustrious: by G. Choquet [CH], by K. Flo-
rek, J. Lukasiewicz, J. Perkal, H. Steinhaus, S. Zubrzycki [FLPSZ]. And after 1955
progress has been very fast and a number of general procedures and special al-
gorithms were formulated. A rich spectrum of these results and a history of the
problem is described in great detail and accuracy by R. L. Graham and P. Hell
[GH]. Let us just note that O. Borůvka is quoted by both the standard early ref-
erences: J. Kruskal [K] and R. C. Prim [P]. Vojtěch Jarník’s article only began to
be quoted later, see e.g. K. Čulík, V. Doležal, M. Fiedler [CDF], despite the fact
that his treatment was very precise (like all his mathematical work) and modern.
That should be clear from the above translation. His algorithm is identical with
the Prim algorithm [P] and his argument is a standard proving argument even
now after 65 years. Perhaps it is time to do justice to this elegant procedure and
call it the Jarník-Prim algorithm. Jarník returned to this topic only once more in
his second paper [JK], which we will discuss below. We believe that the geometri-
cal interpretation given in the final lines of [J] provided his definitely non-planar
motivation for [JK].
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3. On minimal graphs containing n given points

We proceed as in section 1: First we provide a translation of the key parts of
the Jarník-Kössler paper [JK]. We have decided (mainly because of space limita-
tions), to translate only the first two sections of the Jarník-Kössler paper. They
are devoted to general properties of “Steiner trees.” It appears that virtually all
general properties of Steiner trees have already been explicitly stated in [JK]. Even
today they are attributed to others and even today one can find in [JK] arguments
superior to those in common use (such as the local planarity of k-dimensional
Steiner trees; cf. Theorem 3(c) of [JK] and p. 77 of [HRW]). We hope to return to
this paper in the near future and give a critical version of the whole paper [JK].
We give a brief discussion below of the context and later development. Let us note
that what follows may be the first translation of the essential parts of [JK]. How-
ever, such a translation is badly needed. Even the recent papers and books (such
as [HRW]) are not aware of what a rich source of ideas is provided by [JK]. Some
of the main misquotations will be discussed below.

[JK] is a paper with 13 pages, numbered 223–235. We include a translation of
p. 223–229. The first and third pages are reproduced in Figs. 3, 4.

Figure 3 Figure 4
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On minimal graphs containing n given points

Vojtěch Jarník and Miloš Kössler

(received Feb. 10, 1934)

In this paper we consider the following problem: given n points C1, C2, . . . ,

Cn, we want to find a connected set consisting of finitely many segments, which

contains the points C1, C2, . . . , Cn, so that “the total length” of this set is the least

possible (of course for n = 2 such a “shortest connection” is a line segment joining

points C1 and C2). In §2 we prove the existence of such a “minimal graph,” and

in §3 we consider the case when the points C1, C2, . . . , Cn form the vertices of

a regular n-gon.

The nature of this article is completely elementary. Also some of the steps in

the proof are routinely known and thus we are brief there.

[The reader should bear in mind that this paper was published before e.g. König’s book
[Ko] and no references are given.]

§1.

Let Rk (k > 1) be the k-dimensional Euclidean space.

[So already this first line violates the common belief that, while Jarník-Kössler pioneered
the Euclidean Steiner problem for the plane, the k-dimensional case was considered only
by Gilbert and Pollack in [GP]. In fact the whole paper [JK] is written for k dimensions.]

A nonempty point set G 6 Rk is called a graph in Rk if it has the following

properties:

1. G is connected,

2. either G contains one point only or G is a sum of finitely many closed seg-

ments.

[From now on we use the word union instead of sum. Now a footnote follows where Jarník
in his characteristic style clearly defines all used symbols starting with A ∈ B and ending
with 0(MN), (MN)0, 0(MN)0 for half-open and open line segments; MN denotes a line
segment, an oriented line segment or the length of this segment; “one need not be afraid
of a misunderstanding.”]

If P ∈ G and there exist exactly n (and not n+ 1) segments of G for which P

is an end-vertex and which do not have common points except for P , then we say

that P is a point of n-th order [or degree] of G. The points of order one are called

endpoints, points of higher order are called branching points (in every graph there

are finitely many of both types of points). If P is a point of n-th order in G, then

we put V (P ) = n − 2, and we further put V (G) =
∑
V (P ). V (P ) is called the

weight of point P .
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A cycle is a graph which is a closed, simple, continuous curve. A graph, no

part of which is a cycle, is called a tree. Now the following well-known theorem

holds:

Theorem 1. If G is a tree, then V (G) = −2.

[A note is added, stating that any tree with at least 2 points has at least 2 end-vertices.
A typical proof by induction on the number of vertices is given. The authors take care
in defining vertices of G.]

§2.

Let n (n > 2) points C1, C2, . . . , Cn in the space Rk (k > 1) be given.

These points are called basic points. Let G be a graph in Rk containing points

C1, C2, . . . , Cn.

[Recall that a graph is defined as a topological realization of a “graph” and that it is
always connected.]

By a “vertex of graph G” we shall understand:

1. basic points

2. all points of G of order > 2
3. all points of G of order 2 in which two noncollinear line segments meet.

A segment MN ⊂ G is called a “side of graph G” [i.e. an edge] if 0MN0

does not contain a vertex and both M and N are vertices. The graph G is then

the union of its sides. Obviously there are only finitely many vertices and sides in

a graph; if two sides have a common point, then this point is the endpoint of both

sides. The sum of all side-lengths is called the length of G and denoted l(G).
Let M denote the set of all graphs in Rk containing C1, . . . , Cn. In what

follows let us fix a lower bound d for all graph lengths in M . If l(G) = d, then G

is called a “minimal graph in Rk with respect to the points C1, . . . , Cn”. First we

prove

Theorem 2. Let C1, C2, . . . , Cn be points of Rk (k > 1, n > 2). Then there

exists at least one minimal graph in Rk with respect to the points C1, C2, . . . , Cn.

We first introduce some notation. Let G ∈M . A free end of G is an endpoint

of G which is not a basic point. A free corner of G is a vertex of order 2 which is

not a basic point. Let N be the set of all G ∈M which are trees and which have

no free ends. Let P be the set of all G ∈ N which have no free corners. First we

prove the following statements:
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Proposition 1. Let G ∈ M −N . Then there exists G1 ∈ N such that

l(G1) < l(G).

Proposition 2. Let k > 3 and G ∈ N −P. Then there exists G1 ∈P such

that l(G1) < l(G).

Proposition 3. Let d1 be a lower bound for all lengths of graphs G ∈ P.

Then there exists at least one graph G◦ ∈M with l(G◦) 6 d1.

Proposition 4. If G is a minimal graph in Rk with respect to the points

C1, C2, . . . , Cn, and if K is the smallest convex set in Rk containing C1, C2, . . . , Cn,

then G ⊂ K [i.e. the convex hull contains all the Steiner points].

Theorem 2 follows from Propositions 1–4 as follows:

A) If k > 3, then Propositions 1 and 2 yield d1 = d and Theorem 2 follows from

Proposition 3.

B) If k 6 2, then we embed Rk in R3. From A) we get a minimal graph G in R3

with respect to the points C1, C2, . . . , Cn. But Proposition 4 implies G ⊂ Rk.

Thus it suffices to prove Propositions 1–4.

[Note again that for Jarník the k-dimensional case is essential.]

P r o o f of Proposition 1 is by deleting endpoints together with the corre-
sponding sides. The proofs of the remaining Propositions are elegant and more
interesting, and we outline the Jarník-Kössler arguments in a greater detail:

P r o o f of Proposition 2. Let k > 3 and G ∈ N −P, i.e. G ∈ M is a tree

without free ends containing at least one free corner M1 in which two non-collinear

sides M1M2 and M1M3 meet. M1 is not a basic point. We prove: there exists

a graph G′ ∈ N with less free corners satisfying l(G′) < l(G).

[It now follows that by repeating this argument one obtains Proposition 2.]

We shall distinguish two cases:

Case 1. Both M2 and M3 are basic points. Then the set G − [0(M2M1) +
(M1M3)0] is the union of two disjoint trees G2, G3, M2 ∈ G2, M3 ∈ G3. The

segment M2M3 contains at least one point of G2 (e.g. M2) and at least one point

of G3 (e.g. M3). Thus let P2, P3 be points of the segment M2M3 such that P2 ∈ G2,

P3 ∈ G3 and no point of the segment 0(P2P3)0 belongs to either G2 or G3. Then

the graph G′ = {G− [0((M2M1) + ((M1M3)0]}+ P2P3 is in N and has less free

corners than G.
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[This is justified in detail.]

Obviously l(G′) < l(G).

Case 2. One of the points M2, M3—say M2—is not a basic point. Let S be

a [(k − 1)-dimensional] hyperplane containing M2 but not M3. If M ′2 is any point

of S, then we denote by G(M ′2) the graph obtained from G by replacing all sides

MiM2 of G by segments MiM ′2. Put M2M1 +M1M3 −M2M3 = a > 0. It is clear

that there exists δ > 0 such that every graph G(M ′2) for which M2M ′2 < δ satisfies:

1. l(G(M ′2)) < l(G) + 1
2a, M ′2M1 +M1M3 −M ′2M3 >

1
2a,

2. the graph G(M ′2) has the same vertices (of the same order) and the same

sides as G with the exception that instead of the vertex M2 and sides M2Mi

we have M ′2 and M ′2Mi.

[This may be seen as follows:]

Let us consider all lines through M3 and some other point of G. These lines

intersect S in a set Σ which consists of finitely many points, segments and half-

lines. As k > 3 [and thus S is at least 2-dimensional] there exists at least one

M ′2 ∈ S−Σ such that M2M ′2 < δ. This graph then has properties 1 and 2. Moreover,

the graph G(M ′2) has the following property: no point of G(M ′2) belongs to the

segment 0(M ′2M3)0.

[This is justified in a detailed footnote.]

Now define graph G′ = {G(M ′2) − [M ′2M1 + M1M3]} + M ′2M3. Clearly G′ ∈
N , G′ has less free corners than G, and finally from Condition 1 it follows that

l(G′) < l(G).

P r o o f of Proposition 3. This is a routine limit argument. Let G1, G2, . . . be

a sequence of graphs from P and let lim
r=∞

l(Gr) = d1.

[We preserve as before all the notation of the paper [JK].]

As C1 ∈ Gr, all graphs Gr lie in a closed ball with centre C1 and diameter

equal to the upper bound of the numbers l(Gr) (r = 1, 2, . . .). All vertices of the

graph Gr are basic or branching points. By Theorem 1 it follows that V (Gr) = −2.

As all the endpoints (with weight −1) are basic points, we have at most n of them.

Thus the number of branching points (with weight at least 1) is at most n − 2
and the graph Gr has at most 2n − 2 points. Hence there exists a subsequence

G′1, G
′
2, . . . of G1, G2, . . . such that all G′r have the same number of vertices. We

denote the vertices of G′r by Xr
1 , X

r
2 , . . . , X

r
z such that Xr

i = Ci for 1 6 i 6 n. For
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graph G′r define the matrix
0 ar12 ar13 . . . ar1z
ar21 0 ar23 . . . ar2z
ar31 ar32 0 . . . ar3z
. . . . . . . . . . . . . . . . . . . . . . . .

arz1 arz2 arz3 . . . 0


where aril = 1 or 0 according to whether or not Xr

iX
r
l is a side of the graph G′r.

[So this is the adjacency matrix of G′r.]

As there are only finitely many such matrices, there is a subsequence G′s1 ,

G′s2 , . . . such that the same matrix


0 a12 a13 . . . a1z

a21 0 a23 . . . a2z

. . . . . . . . . . . . . . . . . . . . . . . .

az1 az2 az3 . . . 0


corresponds to every graph of the subsequence. Finally, as the sequences X1

i , X
2
i ,

X3
i , . . . (i = 1, 2, . . . , z) are bounded, we can find a subsequence G′t1 , G

′
t2 , . . . such

that all the limits lim
p=∞

Xtp
i = Xi (i = 1, 2, . . . , z) exist. Let G0 denote the union of

segments XiXl (1 6 i < l 6 2) for which ail = 1.

[Footnote: Of course some of these segments may degenerate to points.]

Obviously G◦ ∈M and the following holds:

l(G′tp) =
∑

16i<l6z

ailX
tp
i X

tp
l ,

l(G0) 6
∑

16i<l6z

ailXiXl = lim
p=∞

l(G′tp) = d1.

This completes the proof.

[This is a word for word, symbol-preserving translation. And even today the most elegant
argument!]

P r o o f of Proposition 4. Let G ∈M be a graph which violates G ⊂ K. Then

there exists a hyperplane S [(k − 1)-dimensional] such that all basic points lie on

one side of S and a nonempty subset G′ of G lies on the other side of S. Define

a graph G1 by replacing the subset G′ by an orthogonal projection of G′ onto the

hyperplane S. Obviously G1 ∈M and l(G1) < l(G), which completes the proof.
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[k dimensions are essential again.]

Now we can easily prove Theorem 3 which describes the structure of minimal

graphs in a greater detail.

Theorem 3. Let G be a minimal graph in Rk (k > 1) with respect to points

C1, C2, . . . , Cn (n > 2). Then G has the following properties:

a) G is a subset of the smallest convex set containing C1, C2. . . . , Cn.

b) G is a tree without free ends and free corners.

c) If two sides of G have a common point, then their angle is at least 2
3 π.

d) Every branching point of G has degree 3. The three sides of the graph incident

to a branching point lie in a (2-dimensional) plane and any two have angle
2
3 π.

[Here as elsewhere k dimensions are essential. We have not found d) in later literature.
This yields a better and stronger argument than e.g. in [HRW] p. 77.]

P r o o f of Theorem 3. Property a) follows from Proposition 4. To prove b)
we can assume (by a)) that k > 3 (if k < 3 then we can embed Rk into R3).

Then b) follows from Propositions 1 and 2. The property c) we prove as follows:

let G ∈M and let PM , PN be two sides of G with angle α < 2
3 π. We construct

a point M ′ in the interior of side PM and a point N ′ in the interior of side PN

such that PM ′ = PN = h. Then we have (see Fig. 1)

M ′W = N ′W = M ′W
2√
3

=
2√
3
h sin

1
2
α,

PW = PX −WX = h cos
1
2
α− 1√

3
h sin

1
2
α

and thus

M ′W +N ′W + PW = h
(√

3 sin
1
2
α+ cos

1
2
α
)
< 2h = PM ′ + PN ′.

[This step is justified in a detailed and characteristic footnote: We have d
dx (
√

3 sinx +
cosx) =

√
3 cosx−sinx = cosx(

√
3−tanx) > 0 for 0 < x < 1

3p and thus
√

3 sinx+cosx
is an increasing function for 0 6 x 6 1

3p, hence we have for 0 < x < 1
3p:√

3 sinx+ cosx <
√

3 sin 13p + cos 13p = 2.]

Define graph G1 = [G − (M ′P + N ′P )] + M ′W + N ′W + PW . Obviously

G1 ∈M , l(G1) < l(G) and thus G is not a minimal graph.

The property d) follows immediately from c): three line segments incident in

a point and which do not lie in a plane form angles whose sum is less than 2π.
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R e m a r k. From Theorem 3 we obtain the following for the minimal graph G:
if P is a branching point, then V (P ) = 1, whereas V (P ) = −1 for every endpoint
P . From V (P ) = −2 it follows that the number of branching points equals the
number of endpoints −2.

This is the end of the first two sections of the Jarník-Kössler paper. This is
a remarkable text both in its clarity and contents. This part deals with general
properties of Steiner trees, and these properties are generally attributed to later
contributors although they are explicitly stated in the Jarník-Kössler paper. Here is
a sample of such instances, mostly taken from a recent monograph [HRW] devoted
to the “Steiner Tree Problem.”

The fact that for a Steiner tree all branching points are of degree 3, as well
as the angle condition, the number of branching points, the convex hull result
(i.e. Theorem 1.1, Theorem 1.2 of [HRW]) are attributed to Courant and Rob-
bins [CR], Corollary 1.1, Corollary 1.5 of [HRW] are attributed to Gilbert and
Pollak [GP]. These results are all explicitly contained in [JK] as various parts of
Propositions 1–4 and Theorems 2–3.

Moreover, the generalization to k dimensions treated in [HRW], section 6.1 is
not only mentioned but instrumental to [JK]. In fact the whole paper is written
in k dimensions. And the complicated argument on [HRW], p. 77 is replaced by
the pleasant Jarník-Kössler argument that three sides incident with a branching
point are coplanar.

After all these years the Jarník-Kössler paper precisely in its general part
(i.e. sections 1 and 2) is an example of clear style and elegance, and it is worth
studying even today. The clarity of the introduction to the problem is not shared
by many later texts.

No wonder, the “Steiner problem” is due to Jarník and Kössler and was elab-
orated by them to a degree surpassed only 30 years later. Comparing [J] and [JK]
we see that what we have here is Jarník’s problem.

The Jarník-Kössler paper [JK] continues with the treatment of regular n-gons.
They solve the cases n = 3, 4, 5 explicitly and carefully with all details (without
referring to any earlier work for n = 3) and remark that for n = 6 they prove
that the situation is entirely different: the solution is given by 5 sides of a regular
hexagon. They prove this by an elegant argument for all n > 13. They leave
it open for 7 6 n 6 12 and remark that this is a finite problem which could be

directly solved with a certain amount of effort. Indeed, their method of solution for
n = 3, 4, 5 suggests that they were aware of the finiteness of the problem (proved
much later by Melzak [M]).
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4. Jarník-Kössler’s paper in a historical perspective

The problem of finding a shortest connection between n given points in the
plane has a long history. Indeed, it is one of the oldest optimization problems
and it was, and is, frequently used as an example of maximality (and minimality)
arguments. However, for most of the time in the long history of the problem, only
the case n = 3 was considered. This goes back to a question posed by Fermat, was
considered by Mersenne and solved by Torricelli and Cavalieri. The elegant solution
of this problem of elementary geometry of course attracted many researchers such
as Simpson and Steiner who also considered a generalization of the 3-point problem
in a different direction: given n points in the plane, find a single vertex with the
smallest sum of distances.

The history is involved and there are several sources available, such as [Ku] and
[Z], and also early industrial applications such as the book [W] and the thorough
mathematical treatment in [St].

However, prior to 1934 the problem of the shortest connection of n points was
not considered (Ron Graham [G] informed us that Gauss formulated the n-point
problem in one of his letters). It was first considered by Jarník and Kössler [JK],
with a clarity and rigour which we hope is clear from the translation of the first
two sections of [JK].

It is difficult to speculate why the authors considered this problem. In Jarník’s
œuvre the papers [J] and [JK] present the only singularity. As a possible solution
to this puzzle one could perhaps stress the fact that Jarník instantly recognized
the novelty of Borůvka’s problem and saw it as an n-point minimization problem.
His interpretation of the minimal spanning tree problem given at the end of [J]
(section 1 of this paper contains a translation of this) may suggest how naturally
he may have arrived at the problem considered in [JK]. That could also suggest
why Jarník considered essentially the k-dimensional problem. He didn’t arrive at
it from the geometry of the plane but from spatial geometry (see again the Remark
at the end of [J], translated in section 1).

Like Borůvka, Jarník never returned to this problem again.

The 3-point problem was a classical optimization problem and it found its
way into the Courant-Robbins book [CR] where the problem for n = 3 (i.e. the
Fermat-Torricelli-Cavalieri-Simpson-Steiner problem) is called the Steiner prob-
lem and the problem of the nearest point to a given set of points (i.e. the problem
considered by Steiner) is called a “mathematically sterile generalization.” The
problem of the shortest interconnection between n points is called the general-
ized Steiner problem [CR]. This is clearly Jarník’s problem or the Jarník-Kössler
problem.
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These attributions (and some stylistic expressions) suggest that Courant and
Robbins were motivated by [St] and [Z].

In the thirties Jarník was an internationally famous mathematician (a speaker
at both the Zürich 1932 and the Oslo 1936 Congress of the International Math-
ematical Union) and thus the main reason for the omission probably was that
Courant and Robbins did not know about his work outside number theory and
analysis. The “Steiner” problem was then dormant for another 20 years until it
was revived by Melzak [M], Gilbert and Pollack [GP] and others with the vigour
and confidence of newly developing fields of combinatorial (discrete) optimization
and the theory of algorithms. The problem is hard both theoretically [GGJ] and
practically, and for its direct applications in VLSI [KPS] and other fields (see
e.g. [HRW]) it is still intensively studied. And it is far from being solved.

Summarizing, let us just say that with these combinatorial papers [J], [JK]
Jarník was very lucky. Single handedly (with the help of Borůvka and Kössler)
he started important branches of fields which were in his time not yet born. The
style and rigour of his contributions have lasting value. Jarník’s contribution is
widely unrecognized (e.g. neither the recent Handbook of Combinatorics nor the
Handbook of Computational Geometry mention him).

It is not a marginal contribution by a passerby. It is rather an important
contribution by a major mathematician. Combinatorics was gaining strength while
slowly emerging from the “slums of topology,” through the expertise and brilliance
of mathematicians from other fields. From number theory these were Erdös and
Turán and Jarník.
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