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LÖWIG’S WORKS ON FUNCTIONAL EQUATIONS

The defense of Heinrich Löwig’s doctoral thesis Über periodische Differen-
zengleichungen took place at the German University in Prague, December 1927.
The thesis itself is no longer extant, but its contents were summarised in a short
four-page outline [L1]. More importantly, the results were published in a series
of two extensive papers [L2, L3], which appeared in Acta Mathematica in 1931.
According to Löwig, these papers represent a revised and extended version of
his original thesis. Although their titles refer to “difference equations”, we pre-
fer to use the term “functional equations”, which seems to be more appropriate
in the context of current terminology.

The topic was inspired by earlier investigations of Émile Picard published in
Acta Mathematica under the title Sur une classe des transcendantes nouvelles.
The object of Picard’s study was a system of functional equations

fk(z + h) = Qk(f1(z), . . . , fn(z)), k ∈ {1, . . . , n},

where Q1, . . . , Qn are given and f1, . . . , fn are unknown functions, z is a com-
plex variable, and h is a nonzero complex number. Under certain assumptions,
Picard was able to prove the existence of ω-periodic solutions of the given sys-
tem of equations for every nonzero ω ∈ C which is not a real multiple of h. This
result might be interpreted as a generalisation of elliptic functions, i.e. functions
with two linearly independent complex periods h and ω.

Löwig succeeded in generalising Picard’s results to systems of the form

fk(z + h) = Qk(z, f1(z), . . . , fn(z)), k ∈ {1, . . . , n}, (1)

where the right-hand sides now depend not only on f1, . . . , fn, but also on
the variable z. The paper [L2] is devoted to linear functional equations, which
represent an important special case of the system (1); the results obtained there
were subsequently used in [L3] to analyse the general nonlinear system (1). The
following sections briefly summarise the contents of both Löwig’s papers.

1. Linear equations

A major part of the article [L2] is devoted to the study of a linear system of
functional equations

fk(z + h) =
n∑

l=1

qkl(z)fl(z) +Bk(z), k ∈ {1, . . . , n}, (2)
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where qkl, k, l ∈ {1, . . . , n} and Bk, k ∈ {1, . . . , n} are given functions, fk,
k ∈ {1, . . . , n} are unknown functions, z is a complex variable, and h is a given
nonzero complex number. This system represents a special case of the general
nonlinear system (1). Löwig assumed that all the functions qkl and Bk are
ω-periodic, where ω is a nonzero complex number which is not a real multiple
of h. The main results of the work [L2] are concerned with the existence and
uniqueness of ω-periodic solutions of the system (2), and also the existence of
an ω-periodic fundamental set of solutions for the corresponding homogeneous
system

fk(z + h) =
n∑

l=1

qkl(z)fl(z), k ∈ {1, . . . , n}. (3)

Before we proceed further, it might be helpful to review some facts from
complex function theory. Given a nonzero number ω ∈ C and a pair of numbers
a, b ∈ R, a < b, denote

Tω(a, b) =
{
z ∈ C; a < Im

( z

ω

)
< b

}
.

Thus T1(a, b) is a strip in the plane between the lines y = a and y = b. We
have z ∈ T1(a, b) if and only if ωz ∈ Tω(a, b), i.e.

Tω(a, b) = {ωz; z ∈ T1(a, b)}.

The geometric meaning of Tω(a, b) is now clear: if we interpret ω as a vector in
the complex plane, then Tω(a, b) is a strip between two lines parallel to ω. It is
occasionally useful to allow the cases a = −∞ or b =∞; the corresponding set
Tω(a, b) is then either a half-plane, or the whole complex plane. We note that
z ∈ Tω(a, b) implies z + ω ∈ Tω(a, b); this is the reason why the sets Tω(a, b)
occur frequently as the domains of ω-periodic functions.

We now describe an analogy of the classical Fourier expansion for ω-periodic
holomorphic functions. First, consider a holomorphic function f which is de-
fined on T1(a, b) and has the period 1, i.e. f(z+1) = f(z) for every z ∈ T1(a, b).
Using the transformation z �→ e2πiz, the values of f can be mapped into the
annulus A bounded by two circles that are centred at the origin and have radii
e−2πb and e−2πa. In this way, we obtain a function g defined for every w ∈ A
with w = e2πiz by the formula g(w) = f(z). Note that if w = e2πiz1 = e2πiz2 ,
then z1−z2 is an integer; since f is 1-periodic, we conclude that f(z1) = f(z2),
which confirms that the definition of g makes sense. Since g is holomorphic in
the annulus A, it has a Laurent series expansion

g(w) =
∞∑

n=−∞
cnw

n, w ∈ A,

where cn are certain complex numbers. Consequently,

f(z) = g(e2πiz) =
∞∑

n=−∞
cne

2πinz, z ∈ T1(a, b).
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More generally, given an ω-periodic holomorphic function f defined on
Tω(a, b), we use the substitution f∗(z/ω) = f(z) to obtain a 1-periodic function
f∗ defined on T1(a, b). According to the previous result,

f(z) = f∗(z/ω) =
∞∑

n=−∞
cne

2πinz/ω, z ∈ Tω(a, b),

which is the promised analogy of Fourier series expansion. As we will see later,
Löwig often worked with ω-periodic holomorphic functions written in this form.
We refer the reader to [2] and [7] for a more detailed treatment of Fourier series
in the complex domain.

We now return to the discussion of Löwig’s work [L2] on linear functional
equations. The paper is divided into four sections, whose contents are analysed
below. We recall that h, ω is a pair of nonzero complex numbers such that
h/ω /∈ R. Following Löwig’s notation, let

λ = e2πih/ω

and observe that h/ω /∈ R implies |λ| �= 1.
The first section contains a number of auxiliary propositions. Using the

Weierstrass sigma and zeta functions (see e.g. [2]), Löwig was able to construct
an ω-periodic function f that is meromorphic in the entire complex plane and
satisfies the functional equation

f(z + h) = tf(z), (4)

where t ∈ C is an arbitrary fixed nonzero number. He then proceeded to show
that if a holomorphic function f satisfies (4) and t �= λn for every n ∈ Z, then
f is identically zero. Finally, using the Weierstrass sigma function again, he
constructed a sequence of ω-periodic meromorphic functions {fn}∞n=0 such that

f0(z + h) = tf0(z), fk(z + h) = tfk(z) + kfk−1(z), k ≥ 1. (5)

The second section is already concerned with the nonhomogeneous linear
system of functional equations

fk(z + h) =
n∑

l=1

qkl(z)fl(z) +Bk(z), k ∈ {1, . . . , n}, (6)

where qkl and Bk are given ω-periodic functions. It is assumed that qkl satisfy
the following conditions:

• There exists a number R > 0 such that the functions qkl are holomor-
phic in the half-plane given by the inequality |e2πiz/ω| ≤ R, and can be
expressed in the form

qkl(z) =
∞∑

α=0

qklαe
2πiαz/ω, k, l ∈ {1, . . . , n}.
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We remark that |ew| = eRew for every w ∈ C, i.e.

|e2πiz/ω| = eRe(2πiz/ω) = e−2π Im(z/ω).

Consequently, the inequality |e2πiz/ω| ≤ R represents the half-plane
Im(z/ω) ≥ − lnR2π .

• det{qkl0}nk,l=1 �= 0.
• There exists a positive number r ≤ R such that

det{qkl(z)}nk,l=1 �= 0

for all z in the half-plane |e2πiz/ω| ≤ r.

Initially, the functions Bk are assumed to satisfy the following condition,
which will be weakened later:

• There exists a number ρ > 0 such that the functions Bk are holomorphic
in the half-plane |e2πiz/ω| ≤ ρ and have the series expansions

Bk(z) =
∞∑

α=µ

Bkαe
2πiαz/ω, k ∈ {1, . . . , n},

where µ is an integer. If |λ| > 1, then ρ ≤ R, and if |λ| < 1, then ρ ≤ r.

Löwig employed the method of undetermined coefficients to find an
ω-periodic solution of the system (6). He assumed that the unknown func-
tions fk can be expressed in the form

fk(z) =
∞∑

α=µ

akαe
2πiαz/ω, k ∈ {1, . . . , n}. (7)

By substituting the series expansions of fk, Bk and qkl into (6) and equating
the corresponding coefficients on both sides, we obtain

akαλ
k =

α∑

β=µ

n∑

l=1

qklα−βalβ +Bkα (8)

for every k ∈ {1, . . . , n} and α ≥ µ. The last equation is in turn equivalent to

n∑

l=1

(qkl0 − δklλ
α)alα +

n∑

l=1

α−1∑

β=µ

qklα−βalβ +Bkα = 0,

which uniquely determines the coefficients akα in the case when

det{qkl0 − δklλ
α}nk,l=1 �= 0
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for every α ≥ µ (using the last equation, it is possible to express a1α, . . . , anα
in terms of alµ, . . . , alα−1, l ∈ {1, . . . , n}). However, the system (8) might have
a solution even if some of the above mentioned determinants vanish.

After finding the coefficients akα, it remains to verify that the infinite series
in (7) are indeed convergent. Löwig proved that if akα, k ∈ {1, . . . , n}, α ≥ µ,
is an arbitrary set of coefficients satisfying (8), then the infinite series in (7) are
convergent in the half-plane |e2πiz/ω| ≤ ρ|λ| for |λ| > 1, and in the half-plane
|e2πiz/ω| ≤ ρ for |λ| < 1. It follows that the functions f1, . . . , fn defined by (7)
represent a solution of the nonhomogeneous system (6) in the corresponding
half-plane.

Löwig introduced the notation

K(t) = det{qkl0 − δklt}nk,l=1
and referred to K(t) = 0 as the characteristic equation; as we already know,
the problem of existence and uniqueness of solutions of the system (6) is closely
related to the question whether the characteristic equation possesses roots of
the form λα, α ∈ Z.

As a next step, Löwig proceeded to demonstrate a generalisation of the
theorem from the first section: Assume that the characteristic equation has no
roots of the form λα, α ∈ Z, and f1, . . . , fn are ω-periodic functions satisfying

fk(z + h) =
n∑

l=1

qkl(z)fl(z), k ∈ {1, . . . , n}. (9)

If either |λ| < 1 and f1, . . . , fn are holomorphic in the half-plane |e2πiz/ω| ≤
R|λ|, or |λ| > 1 and f1, . . . , fn are holomorphic in the half-plane |e2πiz/ω| ≤ r,
then f1, . . . , fn are identically zero. The proof is by induction on n and makes
use of the above mentioned theorem from the first section.

Löwig then returned to the nonhomogeneous system (6) and investigated the
existence and uniqueness of an ω-periodic solution under the following weaker
hypothesis on the functions Bk:

• There exist positive numbers ρ1, ρ2 such that ρ1 < ρ2, the functions
Bk are holomorphic in the strip ρ1 ≤ |e2πiz/ω| ≤ ρ2, and have the series
expansions

Bk(z) =
∞∑

α=−∞
Bkαe

2πiαz/ω, k ∈ {1, . . . , n}. (10)

Assume also that either |λ| > 1, ρ1 ≤ r and ρ2 ≤ R, or |λ| < 1, ρ1 ≤ r
and ρ2 ≤ r.

The essential difference is that in the series expansions of Bk, we are now
summing over all integers α. As a first step, Löwig showed that if the charac-
teristic equation has no roots of the form λα, α ∈ Z, then the nonhomogenous
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system (6) has at most one holomorphic solution. Indeed, the difference of any
two solutions is a holomorphic solution of the homogeneous system (9), and
using the above mentioned theorem, it is possible to show that the difference
is identically zero, i.e. the two solutions coincide.

To prove the existence of an ω-periodic solution of the nonhomogeneous
system (6), Löwig started by treating the special case obtained by choosing
a pair of numbers m ∈ {1, . . . , n}, γ ∈ Z, and letting

Bk(z) =

{
0, k �= m

e2πiγz/ω, k = m.

Then he used the method of undetermined coefficients to find an n-tuple of
functions of the form

fkmγ(z) =
∞∑

α=γ

bkmαγe
2πiαz/ω, k ∈ {1, . . . , n},

which constitute a solution of the corresponding nonhomogeneous system.
Now, given a general nonhomogenous system with functions Bk having the
form (10), the natural candidate for an ω-periodic solution is the n-tuple of
functions

fk(z) =
∞∑

γ=−∞

n∑

m=1

Bmγfkmγ(z) =
∞∑

α=−∞

n∑

m=1

α∑

γ=−∞
bkmαγBmγe

2πiαz/ω, (11)

k ∈ {1, . . . , n}. The difficult part of the proof is to verify the convergence
of the infinite series on the right-hand side. We remark that Löwig was able
to establish the existence of an ω-periodic solution even in the case when the
characteristic equation has roots of the form λα, α ∈ Z.

Using the explicit expression (11), Löwig derived the following estimate:
There exists a constant χ > 0 such that if B1, . . . , Bn are ω-periodic and holo-
morphic in the strip P = {z ∈ C; ρ1 ≤ |e2πiz/ω| ≤ ρ2} and f1, . . . , fn represent
the ω-periodic solution of the corresponding nonhomogeneous system (6), then

|fk(z)| ≤ χ · max
l=1,... ,n

(
sup
z∈P

|Bl(z)|
)
, k ∈ {1, . . . , n}.

The inequality is valid in the strip ρ1 ≤ |e2πiz/ω| ≤ ρ2|λ| if |λ| > 1, and in
the strip ρ2|λ| ≤ |e2πiz/ω| ≤ ρ2 if |λ| < 1. The statement generalises Picard’s
estimate given in the paper [5], which corresponds to the special case when qkl
are constant functions.

Löwig concluded the second section by a short discussion of the nonhomoge-
neous system (6) in the case when Bk are no longer ω-periodic functions; his at-
tention was mostly directed toward the functional equation f(z+h)−f(z) = z.
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The third section is again concerned with the homogeneous system

fk(z + h) =
n∑

l=1

qkl(z)fl(z), k ∈ {1, . . . , n}. (12)

The main result is the proof of the existence of ω-periodic meromorphic func-
tions which constitute a fundamental set of solutions of the system (12). These
functions are defined in the half-plane |e2πiz/ω| ≤ R|λ| if |λ| > 1, and in the
half-plane |e2πiz/ω| ≤ r if |λ| < 1.
The terminology is completely similar to the one used in the theory of or-

dinary differential equations: we say that f i
1, . . . , f

i
n, where i ∈ {1, . . . , n},

represent a fundamental set of solutions, if for every i ∈ {1, . . . , n}, the func-
tions f i

1, . . . , f
i
n satisfy (12), and if every solution f1, . . . , fn of (12) can be

uniquely expressed as

fk(z) =
n∑

i=1

ai(z)f
i
k(z), k ∈ {1, . . . , n},

where a1, . . . , an are suitable ω-periodic functions. Consequently, every solu-
tion of the nonhomogeneous system (6) can be uniquely expressed in the form

fk(z) = f0k (z) +
n∑

i=1

ai(z)f
i
k(z), k ∈ {1, . . . , n},

where f01 , . . . , f
0
n is an arbitrary fixed (particular) solution of the nonhomo-

geneous system (6), and a1, . . . , an are suitable ω-periodic functions. Löwig
proved the existence of the ω-periodic meromorphic fundamental set of solu-
tions by induction on n.

If the ratio of any two roots of the characteristic equation is different from λα,
where α is a nonzero integer, Löwig provided a more detailed description of the
fundamental set of solutions, which is based on the knowledge of multiplicities
of the roots t1, . . . , tj of the characteristic equation, and of the elementary di-
visors of the matrix {qkl0 − δklti}nk,l=1, i ∈ {1, . . . , j}. He also made use of
the proposition proved in the first section concerning the existence of functions
satisfying the system (5). We omit the technical details, which are too compli-
cated to be reproduced here (only the statement of the corresponding theorem
in [L2] extends over two pages).

The final fourth section discusses functional equations of the n-th order

n∑

l=0

pl(z)f(z + lh) = A(z), (13)

where pn(z) = 1 for every z ∈ C. It is easily checked that this equation is
equivalent to a system of first-order functional equations

f1(z + h) = f2(z), f2(z + h) = f3(z), . . . , fn−1(z + h) = fn(z),
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fn(z + h) = −
n∑

l=1

pl−1(z)fl(z) +A(z).

Using the earlier results on systems of first-order equations, it is fairly easy
to prove existence as well as uniqueness of an ω-periodic solution of the equa-
tion (13) and the associated homogeneous equation

n∑

l=0

pl(z)f(z + lh) = 0. (14)

Löwig assumed that the following conditions are satisfied:

• There exists a number R > 0 such that the functions p0, . . . , pn have
the series expansion

pk(z) =
∞∑

α=0

pkαe
2πiαz/ω, k ∈ {0, . . . , n},

which is valid in the half-plane |e2πiz/ω| ≤ R. (Obviously, pn0 = 1 and
pnα = 0 for α ≥ 1.)

• p00 �= 0.
• There exists a positive number r ≤ R such that p0(z) �= 0 for every z
in the half-plane |e2πiz/ω| ≤ r.

• There exist positive numbers ρ1, ρ2 such that ρ1 < ρ2 and the func-
tion A has the series expansion

A(z) =
∞∑

α=−∞
Aαe

2πiαz/ω

in the strip ρ1 ≤ |e2πiz/ω| ≤ ρ2.

These conditions guarantee that the system of n first-order equations ob-
tained from the single n-th order equation satisfies the hypotheses listed in the
previous sections. An application of the corresponding theorems then gives
the existence of an ω-periodic solution of the nonhomogeneous equation (13),
existence of an ω-periodic meromorphic fundamental set of solutions of the
homogeneous system (14), etc.

The characteristic equation is now

n∑

l=0

pl0t
l = 0.

Assuming there are no roots of the form λα, α ∈ Z, the equation (13) has
a unique holomorphic solution.
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2. Nonlinear equations

The subsequent paper [L3] is devoted to systems of nonlinear functional
equations of the form

fk(z + h) = Qk(z, f1(z), . . . , fn(z)), k ∈ {1, . . . , n}. (15)

Again, the question raised by Löwig is the existence of ω-periodic solutions. He
assumed that the functions Q1, . . . , Qn are ω-periodic in the first argument,
and Qk(z, 0, . . . , 0) = 0 for every k ∈ {1, . . . , n}. Moreover, for every z in
the strip ρ1 ≤ |e2πiz/ω| ≤ ρ2, it was assumed that Qk as a function of the
n variables f1, . . . , fn possesses the Taylor series expansion

Qk(z, f1, . . . , fn) =
n∑

l=1

qkl(z)fl +
∑

α1+···+αn≥2
Gα1...αn

(z)fα1
1 · · · fαn

n

in a certain neighbourhood of the point (0, . . . , 0).

Without going into technical details, we describe the main idea of Löwig’s
proof of the existence of ω-periodic solutions. We introduce the notation

Bk(z, f1, . . . , fn) =
∑

α1+···+αn≥2
Gα1...αn

(z)fα1
1 · · · fαn

n .

Consequently,

Qk(z, f1, . . . , fn) =
n∑

l=1

qkl(z)fl +Bk(z, f1, . . . , fn), k ∈ {1, . . . , n}.

We already know that under certain conditions, the homogeneous linear system

fk(z + h) =
n∑

l=1

qkl(z)fl(z), k ∈ {1, . . . , n}

has a fundamental set of solutions consisting of meromorphic ω-periodic func-
tions f i

1, . . . , f
i
n, i ∈ {1, . . . , n}. For every n-tuple of real numbers c1, . . . , cn,

let

f
(0)
k (z, c1, . . . , cn) =

n∑

s=1

csf
s
k(z), k ∈ {1, . . . , n}.

Given a positive integer ν and an n-tuple of sufficiently small numbers
c1, . . . , cn, Löwig defined the functions f

(ν)
k , k ∈ {1, . . . , n}, to be the

ω-periodic solutions of the nonhomogeneous system

f
(ν)
k (z + h, c1, . . . , cn) =

n∑

l=1

qkl(z)f
(ν)
l (z, c1, . . . , cn)+
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+Bk(z, f
(ν−1)
1 (z, c1, . . . , cn), . . . , f

(ν−1)
n (z, c1, . . . , cn)).

Finally, he proved the existence of the limits

fk(z, c1, . . . , cn) = lim
ν→∞

f
(ν)
k (z, c1, . . . , cn), k ∈ {1, . . . , n}.

The functions z �→ fk(z, c1, . . . , cn), where c1, . . . , cn are sufficiently small fixed
numbers, are ω-periodic and satisfy the system (15).

Thus we see that Löwig in fact proved the existence of infinitely many so-
lutions of the system (15). The meaning of the parameters c1, . . . , cn becomes
clear when we look at the partial derivatives of fk; it is possible to show that

∂fk
∂cs
(z, 0, . . . , 0) = fs

k(z), k, s ∈ {1, . . . , n}.

In the final part of [L3], the results are again reformulated for the nonlinear
functional equation of the n-th order of the form

f(z + nh) = P (z, f(z), f(z + h), . . . , f(z + (n− 1)h)),

which is clearly equivalent to the system of first-order equations

f1(z + h) = f2(z), f2(z + h) = f3(z), . . . , fn−1(z + h) = fn(z),

fn(z + h) = P (z, f1(z), . . . , fn(z)).

3. Conclusion

Even our brief overview indicates that Löwig’s works on functional equations
are quite involved from the technical point of view. His theorems usually have
numerous assumptions and, as a consequence, the statements often exceed one
printed page (for example, the statement of Theorem 13 in [L2] fills three
pages). One source of problems is the necessity of distinguishing between the
cases |λ| > 1 and |λ| < 1; even the proofs are often different for each case.
Using vector and matrix notation, it would be possible to rewrite some of the

statements in a more compact form. For example, the nonhomogenous system

fk(z + h) =
n∑

l=1

qkl(z)fl(z) +Bk(z), k ∈ {1, . . . , n}

can be written more succinctly as f(z+ h) = Q(z)f(z)+B(z), where f , B are
vector functions and Q is a matrix function. However, this notation was still
not common among mathematicians at the time.
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Consisting of 101 printed pages, the paper [L2] is slightly unusual, but not
quite exceptional; in the 1930s, the journal Acta Mathematica published other
papers of similar length. Even today, the journal continues to publish very long
papers written by leading mathematicians.

The proof of the existence of ω-periodic solutions of the nonlinear system is
based on the well-known method of successive approximations due to Picard.
Although it is without doubt that Löwig possessed an excellent knowledge
of both real and complex analysis, the proofs in both papers are altogether
elementary with no revolutionary ideas or methods. Of course, we have to
keep in mind that [L2, L3] represent only a slightly modified and extended
version of Löwig’s doctoral thesis. From this point of view, it can be said that
the thesis was of very good quality.

It seems that Löwig’s works on functional equations did not have a definitive
influence on further research within this field. However, his achievements were
not completely forgotten, as evidenced by the citations of his work e.g. in the
monograph [3] or in the papers [1, 4, 8].
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Functional analysis arose in the early twentieth century and gradually, con-
quering one stronghold after another, became a nearly universal mathematical
doctrine, not merely a new area of mathematics, but a new mathematical world
view. Its appearance was the inevitable consequence of the evolution of all of
nineteenth-century mathematics, in particular classical analysis and mathemat-
ical physics. Its original basis was formed by Cantor’s theory of sets and linear
algebra. Its existence answered the question of how to state general principles of
a broadly interpreted analysis in a way suitable for the most diverse situations.

A. M. Vershik ([Ve], p. 438; [Mc], p. vii)
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