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APPENDIX 

41! C O M P A C T N E S S A N D C O M P L E T E N E S S 

A uniform space 0 is said to be complete if the following condition is fulfilled: 
if / is a uniformly continuous mapping of a dense subspace 2. of a uniform space 
01 into 0, then / is the restriction of a uniformly continuous mapping of 0 into 0\ 
stated in other words, every uniformly continuous mapping into 0 of any dense sub-
space of any uniform space 3ft has a uniformly continuous domain-extension to 0t. 
It turns out that a uniform space <P, 11S) is complete if and only if the following con-
dition is fulfilled: if SC is a proper filter on P containing "arbitrarily small sets", 
i.e. each U e 11 contains a set X x X with X in 9C, then the intersection of closures 
of sets of 3C is non-void. 

In a totally bounded uniform space every proper filter is contained in a proper 
filter containing arbitrarily small sets, and therefore in a complete totally bounded 
uniform space the intersection of closures of sets of any proper filter is non-void. 
Closure spaces possessing the last property are said to be compact. It should be 
remarked that compact spaces were considered in the exercises to Sections 17 and 
27, and in 29 B and 31 D. 

In subsection A we shall describe the fundamental properties of complete uni-
form spaces and compact closure spaces. It may be pointed out that we shall define 
complete uniform spaces by the condition on filters containing arbitrarily small 
sets, and the equivalence with the extension property, mentioned above, will be proved 
in 41 B. The most profound result states that the class of all complete uniform spaces 
as well as the class of all compact spaces are completely productive. 

In subsection B we shall prove that every uniform space admits an identity em-
bedding into a complete uniform space, and that every uniformly continuous mapping 
of a dense subspace of a uniform space 0 into a complete uniform space has a uni-
formly continuous domain-extension on 0. Particular attention is given to topo-
logical groups whose two-sided uniformity is complete. 

In subsection C we shall be concerned with the development of the properties of 
compact spaces in the class of all topological spaces and the class of all uniformizable 
spaces. Various formulations of the Stone-Weierstrass Theorem for uniformizable 
spaces (41 C.15) are given. 

In subsection D the theory of compactifications of uniformizable spaces is studied; 
the Cech-Stone compactification is introduced, and the Cech-Stone Theorem is 
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proved. The exposition is based on the theory of completion of uniform spaces. 
In subsection E the main results of D are reproved by means of the structure spaces 
of algebras of bounded continuous functions. 

A. G E N E R A L I T I E S 

In the exercises to sections 15 and 16 the concepts of a cluster point and a limit 
point of a proper filter of sets on a space were introduced and studied. For convenience 
we shall recall the definitions and properties which will be needed. 

41 A.l. Definition. Let <P, u) be a closure space, SC be a proper filter on P and x 
be an element of P. We shall say that x is a cluster point of 9C in <P, u> if x belongs 
to D{«X | X e i . e . , if each neighborhood of x intersects each X e l We shall 
say that x is a limit point of SC in <P, u) or that 9E converges to x in <P, u> if each 
neighborhood of x contains an element of 3C, i.e. if each neighborhood of x belongs 
to SC. If is a centered collection of subsets of P (i.e. a collection with the finite inter-
section property, or a sub-base for a proper filter on P) then we shall say that x is a 

- cluster point or a limit point of <& in <P, u> if x is, respectively, a cluster point or 
a limit point of the smallest filter on P containing i.e. of the filter generated by <&. 

41 A.2. Remarks, (a) An ultrafilter on a closure space converges to each of its 
cluster points, (b) If <P, u> is a non-void closure space, then each point of P is 
a cluster point of the smallest filter (P) on P, but (P) converges to each point of P if 
and only if <P, u> is an accrete space, (c) If <P, u> is a closure space, then each point 
is a cluster point of the filter (P) but x is a cluster point of the set P if and only if 
x e u(P — (x)). (d) Let / be a mapping of a closure space SP into a closure space J2 and 
let 11 be the neighborhood system of a point x of 0>. Then / [ [ ^ ] ] (= E{/[(7] | U e 
e H}) is a base of a proper filter f o n i and / is continuous at x if and only if "V con-
verges to fx in 2. (e) A mapping / of a closure space SP into another one 2 is continu-
ous if and only if the following condition is fulfilled: if x is a cluster (limit) point of 
a proper filter 9C on SP, then/x is a cluster (limit) point of/[[#"]]. 

Now we proceed to the subject proper of this subsection. 

41 A.3. Definition. A closure space 0 is said to be compact if every proper filter 
of sets on SP has a cluster point in SP. A Cauchy filter on a uniform space <P, H~) is 
a proper filter of sets SC on P such that each element U of 11 contains a set X x X 
with X in SC. A uniform space SP is said to be complete if each Cauchy filter 3C on SP 
has a cluster point in 

41 A.4. Examples, (a) Evidently every compact uniform space is complete. On 
the other hand a complete uniform space need not be compact; e.g. every uniformly 
discrete uniform space <P, 11s) is complete but no infinite discrete space is com-
pact. Indeed, if 9C is a Cauchy filter on <P, 11s) then X x X is contained in the dia-
gonal JP of P x P for some XedC because JP e 1l\ but clearly X x X a ) implies 
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that X has at most one element, and hence X = (x) for some x e P because X 4= 0. 
Thus SC is the fixed filter with base (x) and hence f)SC = (x). If <P, u> is an infinite 
discrete space, then there exists a free filter SC on P, and SC has no cluster point because 
uX = X for each X c= P and hence \XsSE) = f\SC = 0. Relations between 
complete uniform spaces and compact spaces will be described more fully in 41 A.8. 
(b) Every finite closure space is compact because there is no free proper filter on 
a finite set. (c) A monotone ordered space <P, u> is compact if and only if 
<P, is order-complete. First suppose that <P, :£) is order-complete and SC is 
a proper filter on P. Let x be the infimum of all y e P such that y is an upper bound 
of an X e SC. It is easily seen that x is a cluster point of SC in <P, u>. Conversely, sup-
pose that <P, ^ ) is not order-complete and let X be a non-void subset such that 
sup X or inf X does not exist. If sup X does not exist then the collection of all 
X n [ x, -» ], x eX, is a filter base for a proper filter on <P, u) which has no cluster 
point; in fact, if y is an upper bound of X, then P — X is a neighborhood of y which 
do not intersect X, and if y is not an upper bound of X, then we can choose an 
i e J f n J j / , - » ] , and clearly [ <-, x [ is a neighborhood of y which does not 
intersect X n [ x, -» ]. (d) Every closed bounded interval of reals is compact but 
R is not compact (by (c)). (e) If a closure space <P, w> is separated then <P, u) is 
compact if and only if u is a coarse separated closure (by 31 D.8). (f) Many examples 
of non-complete uniform spaces will be given later. 

It is interesting to note that a complete uniform space can be characterized without 
any reference to the induced closure. 

41 A.5. Theorem. A uniform space <P, is complete if and only if 
| U e % X e SC) 4= 9 for each Cauchy filter SC on <P, 

Proof. If u is the closure induced by "U, then uX = H{^[X] | U e <%} for each 
X e SC (23 B.5), and hence D M * ] | X&SC, UeQ} = | XeSC}. 

The next theorem asserts that, to prove the compactness of a closure space or the 
completeness of a uniform space, it is sufficient to show that every ultrafilter or Cauchy 
ultrafilter, respectively, has a cluster point. 

41 A.6. Theorem. A closure space 3? is compact if and only if every ultrafilter 
on 0 has a cluster point. A uniform space 0 is complete if and only if every Cauchy 
ultrafilter on 0 has a cluster point. 

Proof. "Only if" is evident because each (Cauchy) ultrafilter is a (Cauchy) proper 
filter. Conversely, suppose that SP is a closure space (uniform space) such that every 
ultrafilter (Cauchy ultrafilter) has a cluster point, and let SC be any proper filter 
(Cauchy filter) on 0>. By 12 C.2 there exists an ultrafilter on 0> containing SC 
(clearly is a Cauchy filter). By our assumption the ultrafilter <%/ has a cluster point, 
say x; since r> SC, x is a cluster point of SC. 

It is to be noted that the preceding theorem is profound even though the topological 
part of the proof is almost evident (we made use of the rather profound result that 
every proper filter is contained in an ultrafilter). 
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Before proceeding we shall give a characterization of Cauchy filters which will 
often be needed. 

41 A.7. Theorem. Let <P, H) be a uniform space. A proper filter SC on <P, 1l) 
is a Cauchy filter if and only if HE n E{[/[x] | x e P} 4= 0 for each U in 1l (i.e. for 
each U in 11 there exists an x in P such that i / [x] e SC)' 

Proof. Let I be a Cauchy filter and U ell. There exists an Z in I such that 
X x X <=. U. If x e X, then i/[x] X and hence f/[x] e SC. Conversely, suppose 
that SE fulfils the condition and U is any element of 11. Choose a symmetric element V 
of 11 so that VoV a U and an x so that X = V\x] e SC. Clearly X x X c: U, which 
shows that SE is a Cauchy filter. 

Corollary. If H is the neighborhood system of a point of a uniform space 3P, 
then 1l is a Cauchy filter on SP. 

Remark. Intuitively, a Cauchy filter on a uniform space <P, 11) is a proper filter 
on P containing "arbitrarily small sets" and this means that for each U in 11 there 
exists a "[/-small set" in SE. In definition 41 A.3 the expression "X is [/-small" was 
interpreted as X x X c [/, i.e. i/[x] X for each xeX, or stated in other words, 
every two points of X are [/-related. According to the foregoing theorem the expres-
sion "X is [/-small" can be interpreted as meaning that X <= i/[x] for some xeP 
which is an essentially weaker requirement. It is easily seen that in a semi-uniform 
space, which is not uniform, these two definitions of "X is [/-small" lead to different 
notions of a Cauchy filter, and it turns out that resulting notions of a complete semi-
uniform space are indeed distinct. 

We shall not study the completeness of semi-uniform spaces, since we are concerned 
with an examination of the extension of mappings, and for this purpose completeness 
of semi-uniform spaces is not needed. It may be in place to notice that if d is a semi-
metric for a set P, r is a positive real and U is the set of all <x, y) with d(x, y) ^ r, 
then X x X <= U means that the diameter of X is at most r, and X c [/[x] for some 
xeP means that X is contained in a closed /--sphere. 

As a consequence of the foregoing two theorems we obtain one part of the following 
theorem which completely describes the relationship between compact uniform spaces 
and complete uniform spaces. 

41 A.8. Theorem. In order that a uniform space SP be compact it is necessary 
and sufficient that SP be complete and totally bounded. More precisely, if <P, 11) 
is a uniform space, then the closure induced by 11 is compact if and only if <P, 1l) 
is a totally bounded complete uniform space. 

Proof . I. First suppose that <P, H ) is a complete totally bounded uniform space. 
To prove that the closure u is compact it is enough to show, by 41 A.6, that every 
ultrafilter SE in the totally bounded uniform space <P, 11) is a Cauchy filter, and this 
follows from 41 A.7. In fact, if U e 11, then {[/[x] | x e X} is a cover of 3P for some 
finite subset X of P, and SE being an ultrafilter, some i/[x], xeX, must belong to SE 
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(by 12C.8); consequently, by 41 A.7, SC is a Cauchy filter on <P, - II. Now 
suppose that the closure is compact. Evidently <P, is complete. To prove that 
<P, "Wy is totally bounded it is enough to show that each cover {ř7[x] | x e P}, 
UeH, has a finite subcover, and this follows from the following theorem (remember 
that {[/[x] | x € P} is an interior cover of <P, 

41 A.9. Theorem. In order that a closure space <P, u> be compact it is necessary 
and sufficient that every interior cover of <P, u> have a finite subcover. 

Proof. Let SC be a collection of subsets of P and let H be the collection of sets of 
the form P - X, X e SC. First observe that f ) " M = 0 if and only if U int [<gf] = 
= (J{int (P - X) | X e SC} = P. Indeed, by de Morgan formula, f> [XI = P ~ 
- \J{P - uX | X e SC} = P - (J {int (P - X) | X e SC}. Next, again by de Morgan 
formula, SC is a proper filter sub-base, i.e. C)3C1 4= 0 for each finite subcollection, 
if and only if contains no finite subcover; in fact, 

naTi = P ~ U{P - X \XeSC,} . 
Thus there exists an interior cover of <P, m> containing no finite subcover if and 
only if there exists a filter sub-base f on P such that = 0- Thus, if <P, u> 
is not compact, then there exists a filter 3C on P such that = 0, and then the 
collection <& consisting of complements of sets of 9C is an interior cover containing 
no finite subcover. Conversely, if <& is an interior cover of <P, u> containing no 
finite subcover, then the collection 3C consisting of complements of sets of <& is a 
proper filter sub-base of sets on P such that = 0! if is a proper filter con-
taining SC, then F)U[&i] <= = 0-

CoroUary. Every compact topological regular space and also every compact 
topological separated space is paracompact, hence normal, and thus uniformizable. 

It follows from 41 A.8 that no infinite totally bounded discrete uniform space is 
complete; in particular, the Čech uniformity of no infinite discrete space is complete. 

41 A.10. Theorem. Every closed subspace of a compact space is a compact space, 
and every closed subspace of a complete uniform space is a complete uniform 
space. 

Proof. Let (Q, v) be a closed subspace of a compact closure space <P, u) and 
let SC be a proper filter on Q. Let us consider the smallest filter <& on P containing SC. 
Since uQ = Q, we have vX = uX for each X <= Q, and hence r\v[5£~\ = f\u\SC\ 
Next, SC is a filter base for <& and therefore = However, <P, m> is com-
pact and hence 4= 0; consequently also f l 1 "^] + 0 which establishes the 
compactness of <Q, v). Now let (Q, i/"} be a closed subspace of a complete uniform 
space <P, and let SC be a Cauchy filter in <g, The smallest filter <& on P con-
taining SC is evidently a Cauchy filter in <P, <35(}, and hence + 0 where u is 
the closure induced by However, the closure v induced by y is a relativization of u 
and hence the argument used above yields + 0; this establishes the complete-
ness of <g, y y . 
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Example. We know that every bounded closed interval of reals is compact. It 
follows from 41 A.10 that every closed bounded subspace of R is compact. This fact 
enables us to prove that the uniform space of reals is complete. If 2£ is a Cauchy 
filter on R, then clearly 9C contains a bounded set Yand therefore F n n ^ | X e 
e9£} 4= 0 because Y is compact, in particular, OftlXeW} 4= 0. Next, if follows from 
the second statement of 41 A.10 that every closed uniform subspace of R is complete. 

The converse of 41 A.10 is not true, i.e. a compact subspace of a space need not be 
closed and a complete uniform subspace of a uniform space need not be closed. For 
example, if SP is an accrete closure space (an accrete uniform space), then every sub-
space of 2P is an accrete closure space (an accrete uniform space), and hence each 
subspace of SP is compact (complete), but no non-void proper subset of \SP\ is closed 
in SP. On the other hand the following important theorem holds. 

41 A. l l . Theorem. If <2, v) is a compact subspace of a separated closure space 
<P, u), then Q is closed in <P, u>. If <Q, "Vs) is a complete uniform subspace of 
a separated uniform space <P, IIs) then Q is closed in <P, IIs). 

Proof . It may be noted that the first statement was proved in 31 D.10. Nevertheless, 
for the sake of completeness, we recall this proof. If x e u Q — Q and ¡X is the 
neighborhood system at x, then = (x) because <P, u> is separated, and hence 

= 0, where U = n Q, and clearly is a proper filter on Q because 
X n Q 4= 0 for each X e thus (Q, v) is not compact. Now let (Q, "Vs) be a sub-
space of a separated uniform space <P, IIs) and let u and v be the closures induced by 

and V; we know that v is a relativization of u. We shall show that (Q, "Vs) is not 
complete if Q is not closed in <P, u). Suppose x e uQ — Q and let 9C be the neigh-
borhood system at x in <P, u). By the corollary to 41 A.7, 9C is a Cauchy filter in 
<P, 11s). As above, f = [ f ] n Q is a filter on Q such that = 0- Since 9C 
is a Cauchy filter in <P, IIs), ®f is a Cauchy filter in (Q, "Vs), and hence the uniform 
space <Q, Vs) is not complete. 

Example. By example following 41 A.10 each closed bounded subspace 
of R is compact. Conversely, if X is a compact subspace of R, then X is closed in R 
by the preceding theorem, and X is totally bounded (by 41 A.8) and hence bounded. 
Thus a subspace of R is compact if and only if X is closed and bounded. 

Now we proceed to the most important result. 

41 A.12. Theorem. The class of all compact spaces is completely productive. 
The class of all complete uniform spaces is completely productive. 

The proof of both statements is based on the following lemma. 

41 A.13. Lemma. Let <P, u) be the product of a family {<Pfl, ua> | a e A} of 
closure spaces. If 9C is an ultrafilter on P, then 9C a = E{pra [X] [ l e i ) is a proper 
filter on Pafor each a and 

n«[iF] = n { n « . M I a e A} ; 
in particular, if C\u„[#"„] 4= 0 for each a, then 4= 0. 
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Proof. Clearly 9Ca are proper filters. Let 6C be an ultrafilter on P. If x is a cluster 
point of SC in <P, u), then pra x is a cluster point of SCa in <Pa, u0> for each a by 
41 A.2 (e) because of the continuity of projections. Thus c n{nwa[Xa]}- To 
prove the inverse inclusion, suppose that x is a point of <P, u> such that pra x is 
a cluster point of SCa in <Pa, wa> for each a. We must show that x is a cluster point 
of SC in <P, u>. It is enough to prove that each canonical neighborhood of x belongs to 
SC\ since SC is a filter, it suffices to show that if a e A and U is a neighborhood 
of prax, then F = P n p r ~ 1 [ l 7 ] belongs to SC. Since i / n pr aX 4= 0 for each 
X e SC, we have F n X 4= 0 for each X e SC (notice that F is the inverse image of U 
under pra n (P x Pa) and X c P), and this implies Ve SC because SC is an ultrafilter. 

Proof of 41 A.12. Let <P, u> be the product of a family {<Pa, wa> | a e A} of com-
pact spaces. To prove that <P, u> is compact, by 41 A.6 it is sufficient to show that 
f)u[SC] 4= 0 for each ultrafilter SC on P; but this follows from the foregoing lemma. 
Now let <P, tfiy be the product of a family {<Pa, H„y | a e A) of complete uniform 
spaces, and let u be the closure induced by °U and ua be the closures induced by alltl 

for each a. By 23 D.11, <P, m> is the product of the family {<Pa, wa>}. By 41 A.6 to 
prove that <P, is complete it is enough to show that 4= 0 for each Cauchy 
ultrafilter SC in <P, and this will follow from Lemma 41 A.13 if we show that, 
with the notation of 41 A.13, each SCa is a Cauchy filter in <Pa, <%a}; but this is 
a result of the proposition which follows because the projections of a product of 
semi-uniform spaces into the coordinate spaces are uniformly continuous. 

It should be noted that another proof of the first assertion of 41 A.12 was given in 
29 B.5. 

41 A.M. I f f is a uniformly continuous mapping of a uniform space3P into a uni-
form space SL and if SC is a Cauchy filter on 0>, then /[[#"]] = E{/[X] \ Xs&} 
is a filter base for a Cauchy filter on SL. 

Proof. Let <& be the filter generated by the collection of all/[X], X e SC. Clearly <& 
is a proper filter on SL. We shall prove that <W contains arbitrarily small sets. If Fis an 
element of the uniform structure of St, then U = ( / x / ) - 1 [F] is an element of the 
uniform structure of SP (because of the uniform continuity of / ) , and we can choose 
an X in SC so that X x X <= 17; clearly f\X] g <W and f[X] x f\X] c V. 

Up to now the theory of compact spaces and the theory of complete uniform spaces 
have been parallel. Now we have reached a point where the two theories diverge; 
compare 41 A.15 and 41 A.16 which follow. 

41 A.15. Any image under a continuous mapping of a compact space is compact, 
more precisely, if f is a surjective continuous mapping and D*/ is compact, then 
E*/ is compact. 

Proof . Let / be a mapping of a compact closure space <P, w> onto a closure space 
<Q, d> and let SC be a proper filter on Q. If <& is the collection of all the sets of the 
form f~l\X], XeSC, then <& is a filter base of sets on P and hence [)u[&] 4= 0. 
However t>/[Y] => / [uY] for each Y <= P (because of the continuity of / ) and there-

50—Topological Spaces 
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f o r e / f ^ n « ^ ] ] <= n»[«"] a n d hence the latter set is non-void; this establishes the 
compactness of (Q, v>. (One can also use 41 A.2 (e): if x is a cluster point of , then 
/x is a cluster point of ¿C.) 

41 A.16. Every uniform space is the image under a bijective uniformly continuous 
mapping of a complete uniform space, namely a uniform space <P, is the range 
carrier of the uniformly continuous mapping J : <P, f > <P, where V is the uni-
formly finest uniformity for P. On the other hand: If and "V are topologically equi-
valent uniformities for a set P, "ll c V and is complete, then is complete. In-
deed, if SC is a Cauchy filter on <P, tT>, then 3E is a Cauchy filter on <P, - It is to 
be noted that the assumption f c f is essential, e.g. consider the uniformly finest 
uniformity °U for an infinite set P and the uniformly finest totally bounded uniformity 
f for P. 

In conclusion we shall describe compactness and completeness by means of con-
vergent nets. We begin with a definition. 

41 A.17. Definition. A Cauchy net in a uniform space <P, is a net N in <P, 
such that for each U in there exists a residual set A of indices such that 
(N x N) [A x A] e U, i.e. aeA,beA=> <N„, N„> e U. 

41 A.18. Theorem. A closure space 0 is compact if and only if every net in 0> 

has an accumulation point. A uniform space 0 is complete if and only if every 
Cauchy net in 0 has an accumulation point. 

Proof. I. If 0 is not compact then there exists a proper filter 3C on 0 which has no 
cluster point. Let N be a single-valued relation such that DN = 9C and NX e X for 
each XeSC. Clearly (N, =>) is a net in 0 which has no accumulation point. If a uni-
form space 0 is not complete, then there exists a Cauchy filter 9C without cluster 
points; then the net constructed above is a Cauchy net. 

II. If N is a net in a closure space 0 and 9E is the collection of all subsets X of j0j 
such that N is eventually in X, then 3C is a proper filter on 0 (remember that N =)= 0), 
and each cluster point of 3C is an accumulation point of N (15 B.3). Thus if 0 is compact 
then N has a cluster point. Now if N is a Cauchy net in a uniform space 0, then the 
filter 9C constructed above is a Cauchy filter. As a consequence, if 0 is complete, then 
N has a cluster point. 

For the sake of completeness we shall prove the following result: 

41 A.19. Every convergent net in a uniform space is a Cauchy net. In a uniform 
space every Cauchy net converges to each of its accumulation points. 

Proof. Let <P, be a uniform space. Suppose that N converges to x in <P, 
and U e Choose symmetric Fin °U so that Fo F <= U and a residual set A of indexes 
such that N[A] <= F[x], Clearly, a e A, b e A => <Na, JV6> e F • V <= U. Thus N is 
a Cauchy net. Now let x be an accumulation point of a Cauchy net N and G be a 
neighborhood of x. Choose a symmetric U in so that (U o U) [x] c G and then 
a residual set A of indices so that (N x N) [A x A] cz U. Since x is an accumulation 
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point of N, there exists an a e A with Na e C/[x]. If b e A, then (Nb, Na} e U, 
<JV0, x> e U, hence (Nb, x}eUoU and therefore Nbe(U „ U) [x] <= G. Thus 
be A implies Nb e G. 

Remark. It turns out that the class of all Cauchy nets on a uniform space SP does 
not determine SP. This follows from 41 A. 19 and the fact that there exist two distinct 
topologically equivalent complete uniformities (see 41 ex. 4). 

41 A.20. Every Cauchy filter converges to each of its cluster points. 
Proof. Let x be a cluster point of a Cauchy filter SC on a uniform space <P, 

and G be a neighborhood of x. We must find an X in SC such that X <= G. Choose 
a symmetric U in 11 such that (U o U) [x] c G and then an X eSC such that X x 
x X cz U. We shall prove that X <= G. Since x belongs to the closure of X, the 

neighborhood U[x] of x intersects X, and X x X being contained in U, we obtain 
U[X n U[xJ] => X. However, U[X n U[x]] c E/[C/[x]] = (E7 „ 17) [x] c G. 

B. COMPLETIONS 

Recall that in the introduction to the present section a complete uniform space 
was defined as a uniform space SP such that uniformly continuous mappings into £P 
have certain uniformly continuous domain-extensions. In 41 A we adopted another 
definition. Now we shall prove that the two definitions are equivalent. 

41 B.l. Theorem. A uniform space SP is complete if and only if the following 
condition is fulfilled: 

If f is a uniformly continuous mapping of a dense subspace of a uniform space St 
into SP, thenf is the restriction of a uniformly continuous mapping of SL into 0*. 

Remark. The condition can be restated as follows: every uniformly continuous 
mapping into SP from a dense subspace of a uniform space SI has a uniformly continu-
ous domain-extension to Si. 

Proof. I. Suppose that SP is complete and / is a uniformly continuous mapping 
of a dense subspace SP, of a uniform space Si into SP. If 1lx is the neighborhood system 
at a point xe\&\ - \Sk\, then clearly Tx = \SP\ n [Hx] is a Cauchy filter on 0t 
(x belongs to the closure of \Sk\ in Si and therefore 0 4 clearly ~fx contains 
arbitrarily small sets), and, by 41 A . 1 4 , / [ [ y J ] (i.e. E{/[F] | VeVx}) is a base for 
a Cauchy filter iVx on SP. Since SP is a complete uniform space, the Cauchy filter has 
at least one cluster point, and hence, by 41 A.19, i f x converges to at least one point. 
As a consequence, there exists a domain-extension F of / to J such that Fx is a limit 
point of iVx in SP for each x in \2,\ — \Si\. Since / is uniformly continuous, to prove 
that F is uniformly continuous it is sufficient to show that, for each x e 13,\ — \Sk\, 
the domain-restriction Fx of F to the subspace ¡Sij u (x) of Si is continuous at x (by 
27 B.15); but this is obvious because Wx converges to Fx and hence each neighbor-

50* 
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hood G of Fx contains a f[U n (= FX[U n U e °U„ and hence F^Lf n 
n u x)]; but U n u (x)) is a neighborhood of x in the subspace u (x) 
of 2. 

II. Now suppose that 9 = <P, IIs) is not complete. We shall construct 2 such that 
SP is a dense subspace of 2 and / = J : 3P -* 0 has ho continuous domain-extension 
to 2. There exists a Cauchy filter 9£ on 0> which has ho cluster point. Let Q be the 
set consisting of 3C and of all elements of P*). For each symmetric U in 11 let 17* consist 
of all elements of 17, the element and all the elements <x, SC)> and (9C, x> such 
that [/[x] e 9C\ thus U* n (P x P) = U. Evidently each U* is a symmetric vicinity 
of the diagonal of Q x Q, and we shall prove that 

(*) VoVcU implies V* „ V* «= U*, 

where both F and U are assumed to be symmetric. Suppose that x, y, z e P. If 
<x, y> e F*, <y, z> e V*, then <x, y) e V, <y, z> e F, and hence <x, z> e Vo V cz 
c [i c U*. If <x, sey e V* and (S£, y} e V*, then F[x] e 3C, V[y] e 9C\ therefore 
F[x] n V[y] 4= 0 and hence xeVo V[y], i.e. <x, y} e Vo V <= U <= (7*. If <3T, x> e 
€ F*, <x, e V*, then F[x] e X, <x, j;> e F and thus U[y] => Vo F[y] = F[x], 
and hence i/[_v] e 9C, i.e. (JX, y} e U*; this completes the proof of (#). Now 
it is clear that the collection of all U*, U varying over all symmetric elements of 11, is 
a base for a uniformity V for Q, and clearly 1(is the relativization of "V (remember that 
17* n Q x Q = 17). Next, let us consider the filter ^ on 2 = (Q, YO generated 
by 3C (i.e. the smallest filter on 2 containing 3C). Since 3C is a base for U, 3C is a Cauchy 
filter on 0 and 0 is a subspace of 2, <& is a Cauchy filter on 2. Evidently converges 
\o % vn. 2(Xe9£, U ell, X x X e U => X <= I7*[^]), and hence & is dense in 2. 
Now let / be the identity mapping of & onto SP. Suppose that F is a uniformly continu-
ous mapping of 2 into 0 whose domain-restriction to 0 is / . We shall show that this 
assumption leads to a contradiction. Since <& converges to 3C, the smallest filter on 
0> containing all F[Y], Ye H, converges to F3E. But clearly & = SC (in fact, if 
Xe3C, then F[X] = / [ X ] = X, and since 3E is a base for % is a base for but 
3C is a filter on SP) and 3C has no cluster point in SP by our assumption. 

In the second part of this proof we constructed a uniform space containing a given 
uniform space & as a dense subspace and such that the given Cauchy filter 3C on SP is 
convergent in 2. If we take the set £ of all Cauchy filters on SP which have no cluster 
points, then the set Q = u £ can be endowed with a uniformity "V such that SP is 
a dense subspace of 2 = <Q, •f") and SC converges to 9C in 2 for each 3C in £,. It will 
follow that 2 is complete (see the proof of 41 B.5). If <3f is a neighborhood system 
of 3C in 2, then \SP\ n [<&]<= 2? but in general \SP\ n [<&] 4= It turns out that we can 
take an appropriate subset of £ instead of ^ such that the resulting space 2 is complete, 
and \SP\ n [<&] = 3C for each 9C. The choice of £ will be clear from two propositions 
which follow. 

*) For convenience we assume that 3C $ P', see 35 F.1. 
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41 B.2. Let <P, 11) be a uniform space. If X is a Cauchy filter on <P, 11s) then the 
collection E{i7[Ji] | U e 1l, X e Xj is a base for a Cauchy filter contained in X which 
will be denoted by m(X). If X is a Cauchy filter, then m(m(X)) = m(X) and each 
of the following three conditions is necessary and sufficient for X = m(X): 

(a) each X eX is a proximal neighborhood of a set of X; 
(b) if HJ is a Cauchy filter, then either <2/ => X or X n Y = 0 for some XeX 

and YeW; 
(c) X is a minimal Cauchy filter, i.e. i f ^ c f and <2/ is a Cauchy filter, then 
= X. 

Proof. I. Let X be a Cauchy filter on <P, IIs) and let be the collection consisting 
of all I/[X], U e 11, X e X. If Zf = J , i = 1, 2, where U, e 11 and Xt e X, then 
X = (A-! n X2) e X, U = (U1n U2) e 11 and hence Z = e 2£; clearly 0 4= 
4= Z c Zj n Z2. Thus 2£ is a base for some filter m(X) on <P, 11s). We shall show that 
m(X) is a Cauchy filter. According to 41 A.7 it is sufficient to show that for each U 
in 11 there exists an x in P such that (7[x] e m(X). Given U in 11, choose a symmetric, 
Fin 1l so that Fo F c= U and an x e P so that F[x] e X (this is possible by 41 A.7). 
We have U[x] => F [ F [ x ] ] e S£ and hence V[x] e m(X). - II. Evidently X =. m(X), 
and to prove that m(m(X)) = m(X) it is enough to show that m(m(X)) => m(X)). 
Let Ye m(X) and choose an X in X and U in 11 so that t/[X] c Y, and a symmetric F 
in 11 so that VoVcU. We have V[X] e m(3C) and hence V[V[Xj\ e m(m(X)); 
however V[V[X]j = Fo V[X] c C/[Z] c Y and hence Ye m(m(X)). - III. Sup-
pose that X is a Cauchy filter. If X = m(X) and X e X, then X => U[Y] for some U 
in 11 and Yin X and hence X is a proximal neighborhood of Y. Thus condition (a) 
is necessary. Next we shall prove (a) => (b) => (c) and that (c) implies X = m(X). 
Evidently (b) => (c), and if (c) is fulfilled then X = m(X) because m(X) is a Cauchy 
filter contained in X. It remains to show that (a) implies (b). Suppose that is a 
Cauchy filter such that X n Y 4= 0 for each XeX, Ye<&\ we must prove X c H. 
Let XeX; to prove X e U it is sufficient to find a Yin H such that Y <=. X. Choose 
an X' in X so that A" is a proximal neighborhood of X', i.e. U[X'J <= X for some U in 
11, and then a set Y in D so that Y x Y e t / . Since X' n Y 4= 0 we obtain that 
Y c U\X' n Y] c U[X'] e X. 

41 B.3. Let <P, 1l~y be a uniform space. The neighborhood system of each point 
of <P, 11s) is a minimal Cauchy filter. If x is a cluster point of a Cauchy filter X, 
then X converges to x, and if X is also a minimal Cauchy filter, then X is the 
neighborhood system of x. 

Proof. I. The first statement follows from description 41 B.2 (a) of minimal 
Cauchy filters. Indeed, if Veil, U ell and Vo V <= U, then l/[x] is a proximal 
neighborhood of F[x]. 

II. Let x be a cluster point of a Cauchy filter X and let D be the neighborhood 
system of x. By I, <& is a minimal Cauchy filter and clearly X n Y 4= 0 for each XeX 
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and Ye<&. By 41 B.2 (condition (b)) we obtain %•=><%), which implies that 9C converges 
to x; if 9C is a minimal Cauchy filter then the inclusion SE => implies 9C = U. 

Corollaries to 41 B.2 and 41 B.3. (a) A uniform space is complete if and only if 
the intersection of each minimal Cauchy filter on 0* is non-void, (b) Let 0* be a sub-
space of a uniform space 2. If 3C is a minimal Cauchy filter on 2 and ifX n \0>\ * 0 
for each X e i , then [#"] n \0>\ is a minimal Cauchy filter on 0in particular, if x 
belongs to the closure of \0*\ in 2 and if SE is the neighborhood system of x in 2, then 

n \0>\ is a minimal Cauchy filter on 0 I f 0> is dense in 2 and if X is a minimal 
Cauchy filter on 2, then n P is a minimal Cauchy filter on 0* (because 
X n \0>\ 4= 0 for eachXeX). 

41 B.4. Definition. A completion of a uniform space 0> is a complete uniform 
space containing HP as a dense subspace. A completion-embedding is a uniform em-
bedding / such that E*/ is a completion of the subspace EIf of E*/• A completion 2 
of a uniform space 01 is said to be augmentation-separated if x g | j | — 
ye\2 
x e 2 

, x 4= y imply that x and y are separated, i.e. (}{X \ X e = (x) whenever 
and HE is the neighborhood system of x in 2. 

41 B.5. Theorem. Every uniform space has an augmentation-separated comple-
tion. 

Proof. I. Let SP = <P, 1l) be a uniform space and let £ be a set of Cauchy filters 
on without cluster points. Put*) Q = P u For each symmetric U e H let U* con-
sist of all elements of U, of all pairs <x, 9C) and <HE, x> such that x e P, 2E e £ and 
17[x] e 9C, and of all pairs (X, <&} such that SC e <& e £ and X x Y <= U for some 
Xe3C, Ye U. It is obvious that 

(*) U* n (P x P) = U, ]g <= U* cz Q x Q, U* n V* = (U n V)*,(U*)~X = U *. 
We shall prove that 

(**) Vo V cz U => V* o V* <= U*. 

According to the second part of the proof of 41 B.1 it remains to show that (JSC, 1/) e 
e V*, (<&, e V* implies <9C, JT> e U*. Choose X e SC, Ye and Z e % such that 
X x Y<= V, Yx Z <= V. Since (Y x Z) o (X x Y) = X x Z we have X x Z <= 
cVoVeU and hence 2£) e U*. It follows from (*) and (**) that the set of all 
U* is a base for a uniformity "V for Q and 11 is a relativization of "V, i.e. <P, 11) is 
a subspace of the uniform space <Q, V) . We shall prove that 

(***) if SE e £ and <& is the neighborhood system of X in <2, then 2£ = 
= P n [<&] is the minimal Cauchy filter contained in ?E. 

First we shall show that X => 3£. If U is a symmetric element of aU, X e 9C, X x X cz 
<zz U, then clearly X; since the sets of the form [/*[#"] form a base for <W, 
it follows that % => 2£. The inclusion X => % implies that Y n P 4= 0 for each YeU 
and hence, by the corollary of 41 B.3, is a minimal Cauchy filter. It follows from 

*) For convenience we assume that f n P = 0; see 35 F.1. 
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(***) that <P, liy is dense in (Q, y y and the Cauchy filter base 9C converges to 9C 
in <Q, for each 3C e f. 

II. If every free minimal Cauchy filter on <P, is contained in an 3C e then 
<2, "Vs) is complete; in particular, if £ consists of all free minimal Cauchy filters on 
<P, then <6, - f } is complete. 

Proof. It is sufficient to show that every minimal Cauchy filter on <2, i r y 
has a cluster point. Let 2£ be a minimal Cauchy filter on ( Q , y y without cluster 
points, i.e. is a free minimal Cauchy filter on <Q, y y . Since P is dense in <Q, 
®J = [Jf] n P is a free minimal Cauchy filter on <P, which is contained, by our 
assumption, in an 3C e Since the Cauchy filter base 3C converges to 9C in <Q, f ) , 
Jf also converges to X. 

III. Now let £ be the set of all free minimal Cauchy filters on <P, ,JUy and let 
<2, y y be the space constructed in I. By I and II the space <2, " O is a completion 
of <P, °liy. We shall prove that (Q, yy is an augmentation-separated completion. 
Let 3C e £ and let D be the neighborhood system of 3C in <2, ^O- We must show that 
n<& = (ar). Since [<T| n P <= 3C by (***), we have (\<8t <= Let 3T). 
Since i and 9CX are distinct minimal Cauchy filters, we can choose X e 9C, X1 e 
and a symmetric U e °U such that U\X\ n [ / [X^ = 0. It is easily seen that $ 
$ U*[(£ j]. The proof is complete. 

41 B.6. A completion 2 of a uniform space 0 is augmentation-separated if and 
only if no proper subspace 3k of 2, \3k\ => \SP\, is complete. In particular, a uniform 
spaced is complete if and only if 0 is the only augmentation-separated completion 
of 3P. 

Proof. I. Let 2 be an augmentation-separated completion of SP and be a proper 
subspace of 2, \3P\ c \3fc\. If 3C is the neighborhood system of a point x e 12\ — \3k\, 
then = (x), and hence \3k\ n f is a Cauchy filter on 3k which has no cluster 
point (notice e.g. that \Sk\ n 3C is a free minimal Cauchy filter on 3k). — II. If a com-
pletion 2 of 0 is not augmentation-separated then there exists a point x e |i>| — \3P\ 
such that fiar + (*)> where 3C is the neighborhood system of x in 2. If y e ()& — 
— (x), then a Cauchy filter converges to y if (and only if) it converges to x. It follows 
that the subspace 12\ — (x) of 2 is complete. — III. The second statement is an im-
mediate consequence of the first. 

41 B.7. Theorem. If 0 is a uniform space, 2 is an augmentation-separated com-
pletion of 0 and 3k is a completion of 3P, then there exists a uniformly continuous 
mapping f of 3k into 2 such that f \3P -* 3P is the identity mapping. The mapping 
f is a surjective projective generating mapping. 

Corollary. An augmentation-separated completion of a uniform space & is 
uniquely determined up to a uniform homeomorphism which is an identity on 3P. 

Proof. I. By 41 B.1 the mapping J \3P -* 2 has a uniformly continuous domain-
extension / to 3k. If x e \2\ — \3P\ and if 3C is the neighborhood system of x in 2, 
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then n \Sf \ is a Cauchy filter on 0> which has no cluster point in 3?. Since 8k is 
complete, the Cauchy filter base [X] n \8P\ converges to a point y e8k, and / being 
continuous, f y = x. Thus / is surjective. The fact that / is a projective generating 
mapping follows from 37 ex. 2. 

II. Let and 2Z be two augmentation-separated completions of 3P and let 
/ i C/2) be a uniformly continuous mapping of 2X onto 22 (22 onto 2X) such that 
/ i : 3P ^ (/2 : 0> -> 0>) is the identity mapping of Clearly / = / 2 o / j is a uni-
formly continuous mapping of onto 2L and / : 0> -* 0 is the identity mapping. 
We must show that / is the identity mapping of 2X onto 2L. If x e \2t\ — \8P\ and 
y =¥ x, y e \2X\, then there exists a neighborhood U of x and V of y such that 
U n V = 0. Since x belongs to the closure of U n \SP\, fx belongs to the closure of 
/ [ [ / n \0>\] = U n and hence /x 4= Thus /x =f= ^ for each ye^^y * x, 
i.e. fx = x. 

Remark. If^1 is separated then the second part of the proof follows from the uni-
queness theorem (27 A.8). Indeed, J is then separated and the identity mapping / 
of onto is the unique mapping of Sty into SLX such that / : 0 & is the iden-
tity mapping. 

41 B.8. Theorem. If 2, is a completion of a uniform space 3P and 2/1 is a subspace 
of &*, then the closure of \8$\ in 2 is a completion of!%. If 8P is the product of a family 

a} °f uniform spaces and 2a is a completion of »„for each a, then the product 
2 of {2a} is a completion of 3P. 

Proof. The first statement follows from the fact that a closed subspace of a com-
plete uniform space is complete. To prove the second statement only recall that 3P is 
dense in 2 (17 C.2) and 2 is complete (41 A.12). 

41 B.9. Let 2 be a completion of a uniform space 0*. The space» is pseudometriz-
able if and only if 2 is pseudometrizable; 0> is totally bounded if and only if 2 
is totally bounded. 

Proof. Since^ is dense in 2 and 2 is a uniform space, the statements follow from 
ex. 1,2. 

Corollary. Every completion of a totally bounded uniform space is compact. 
Proof. By 41 A.8 every complete totally bounded uniform space is compact. 

41 B.10. Let 2 be an augmentation-separated completion of a uniform space 0*. 
If 0> is separated, then 2 is separated. If 0* is metrizable, then 2 is metrizable. 

Proof. The first statement is obvious and the second follows from 41 B.9 and the 
fact that a separated pseudometrizable space is metrizable. 

The remaining part of this subsection is devoted to topological groups. Let 'S = 
= <G, •, m> be a topological group, 01, and be the right uniformity, the left 
uniformity and the two-sided uniformity of CS. Recall that if <S is the neighborhood 
system of the unit, then the set of all 0R = E{<x, y}\x.y~le 0}, 0 e <S, is a base 
for 0t, the set of all 0L = E{<x, y} | x - 1 . y e O}, 0 e <9, is a base for j£f, and 
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^ u if is a sub-base for 11. Thus X x X c 0R if and only if x . y 1 e 0 for each 
xeX^eX^.e.X.X'1 c 0 , a n d X . x X c 0L if and only if X - 1 . X <= O. Clearly 

41 B.l l . If 3C is a proper filter on a topological group then 
(a) 9C is a Cauchy filter with respect to the two-sided uniformity of'S if and only 

if 9C is a Cauchy filter with respect to both the right and left uniformities of <&. 
(b) 3C is a Cauchy filter with respect to the right uniformity of D if and only if 

the filter base E{[X] . [AT-1] | X converges to the unit in <§. 
(c) 30 is a Cauchy filter with respect to the left uniformity of <& if and only if the 

filter base E^X""1] . [A'] | X e 9£} converges to the unit in 

41 B.12. If the right uniformity or the left uniformity of a topological group 'S 
is complete, then all three uniformities of'S are complete. 

Proof, {x x - 1 } : <\<$\, -> JSf> is a uniform homeomorphism, and 
therefore the right uniformity is complete if and only if the left uniformity is complete. 
The two-sided uniformity is uniformly finer than the right uniformity and topological-
ly equivalent with the right uniformity, and therefore, by 41 A.16, if the right uni-
formity is complete then the two-sided uniformity is also complete. 

41 B.13. Example. If ^ is a subgroup of a topological group .JC, then the left 
uniformity, right uniformity and the two-sided uniformity of <§ are relativizations 
of the corresponding uniformities of A natural problem arises: given under 
what conditions does there exist a JC such that ^ is dense in and the right (equi-
valent^, left) uniformity or the two-sided uniformity of is complete. We restrict 
our attention to separated 0 and 3?. We shall prove that JC can be chosen so that 
the two-sided uniformity of J f is complete. On the other hand it is clear that if the 
two-sided uniformity of ^ is complete, then <§ is closed in any separated group 
(by 41 A.11) and therefore, if in addition the right uniformity of ^ is not complete, 
then ^ is a subgroup of no separated topological group whose right uniformity is 
complete (because any closed subspace of a complete uniform space is complete). 

We begin with a very simple particular case which includes commutative groups. 
First define a topological group <G, a, u} to be uniformly continuous if the map-
ping a : <G, Ity x <G, 11} <G, 1/} is uniformly continuous where 11 is the two-
sided uniformity. 

41 B.14. Theorem. Every uniformly continuous separated topological group 0 is 
a dense subgroup of a uniformly continuous separated topological grouped? whose 
two-sided uniformity is complete. More precisely, if 11 is the two-sided uniformity 
of a uniformly continuous separated topological group 'S = <G, c, u> and if 
(H, yy is an augmentation-separated completion of <G, 11s}, then the uniformly 
continuous extension p.: <H, TT> X <H, TT> <H, Vy of a : <G, 11> x <G, liy 
-> <G, 11s) defines a group structure on H, the closure v induced by is compatible 
for <H, p.y and "V is the two-sided uniformity of = <if, p., d>. 

Remark. If 'S is commutative, then Jf is commutative. 
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Proof. I. Let, <H, y > be an augmentation-separated completion of <G, °U). Since 
the mapping a of <G, 11) x <G, 1i) into <G, 11) and hence into <Ji, y > is uniformly 
continuous and <H, y > is complete and separated, by 41 B.1 and 41 B.8 there exists 
a unique uniformly continuous extension of a to a mapping p. of <//, " f ) x <ii, f ) 
into <H, y > . Let / be the inversion of <G, o, u);f : <G, 11) <G, is uniformly 
continuous and therefore, by 41 B.1, there exists an extension g o f / to a uniformly 
continuous mapping of <i?, y ) into <li, y >. Since / is a uniform homeomorphism, 
g is also a uniform homeomorphism. It is easily seen that \i is a group structure on H 
and g is the inversion of <ii, p); the proof is based on the unicity theorem (27 A.8) 
for continuous mappings into a separated closure space. We shall prove transitivity; 
the remainder is left to the reader. The mappings {<x, y, z) -*• xp(ypz)} and 
{<x, y, z) (xpy)pz} of <ff, y > x <ff, f ) x <H, y > into <H, y > are continu-
ous and coincide on a dense subspace, namely on <G, 11) x <G, x <G, 11), and 
therefore, by the unicity theorem, they coincide. — II. Let v be the closure in-
duced by y . Clearly u is a relativization of v. Since p is uniformly continuous and the 
inversion of p is uniformly continuous (of course, under y), </t, v) is continuous and 
its inversion is also continuous. Thus Jf = (H, p, v) is a topological group and 
<G, a, u) is a subgroup of Jiif. If if is the two-sided uniformity of J f , then 11 is a 
relativization of if, but 11 is also a relativization of y, if and y are topologically 
equivalent and G is dense in 3/f. In consequence, y = if by 27 B.13. Since y is 
complete, if is complete. — III. The remark is proved in the same way as e.g. the 
transitivity of ¡i was proved above. 

If the multiplication is not uniformly continuous then we cannot use the extens-
ion theorem 41 B.1 and we must prove the continuity directly; the main step is con-
tained in the following lemma. 

41 B.15. Lemma. Let Si be the right uniformity of a topological group & = 
= <G, •, u). If X and <& are Cauchy filters on <G, 91) then 2£ = E{[X] . [Y] | X e 
eX, YeH} is a Cauchy filter base on <G, Si). A similar result holds for the left 
uniformity. 

Proof . Let 0 be a neighborhood of the unit element. We must find an X e X and 
a Ye ^ so that x, xx eX, y, yt&Y imply x . y .{x1. J ^ ) - 1 e O. If z is any element 
of G, then x . y .(xy. = x . y . y^1 .x^1 = (x . a~l). a . y . yx

l .a'1 . (a .x^1). 
Choose a neighborhood V of the unit such that [F] . [F] . [F] <= O, an X e X such 
that [X~\ . [A - - 1] <= V, an a e X, a neighborhood U of the unit such that [a . U] . 
. a c F, and finally a Yin <H such that [Y] . [Y _ 1 ] c U. Clearly x . y . ( x t . e 0 
for each x, xx e X and y, yx e Y. 

Corollary. Under the assumption of 41 B.15, if 9C and If are Cauchy filters on 
<G, H) then is a Cauchy filter base on the same space. — Apply 41 B.11. 

41 B.16. Theorem. Every separated topological group & is a dense subgroup of 
a separated topological group 34? whose two-sided uniformity is complete. 



C O M P A C T N E S S A N D COMPLETENESS 795 

Proof. Let ^ be the two-sided uniformity of $ = <G, a, u) and let (H, yy be an 
augmentation-separated completion of <G, Qiy. The inversion / o f <G, <7) is uniformly 
continuous under "U and therefore, by 41 B.1,/has a uniformly continuous extension g 
of (H, yy into <H, since / is a uniform homeomorphism, g is also a uni-
form homeomorphism. The multiplication a need not be uniformly continuous 
and therefore 41 B.1 does not apply. It follows, however, that a can be continuously 
(not necessarily uniformly) extended to a mapping of <ff, y y x <H, y y . The 
remainder of the proof follows the pattern of the proof of 41 B.15. If <x, y} e H x H, 
3C is the neighborhood system of x and <W is the neighborhood system of y and 2£x = 
= G n [#"], <&l = G n [<&], then 3CX and <Sf r are Cauchy filters on <G, and 
hence, by the corollary of 41 B.15, % = E{[X] . [7 ] | X e 3E, Ys<&) is a Cauchy 
filter base on <G, Hy which converges to a unique point x/iy in </f, y y . Clearly a is 
a restriction of p, and it follows from 27 B.10 that p : <H, x <H, "T} <H, iT> 
is continuous. 

41 B.17. Theorem. In order that a separated topological group <8 = <G, a, u ) 
be a dense subgroup of a separated topological group = <H, p., whose right 
uniformity is complete, it is necessary and sufficient that the inversion of 'S carry 
Cauchy filters under the right uniformity into Cauchy filters under the right uni-

formity, i.e. that the Cauchy filters under the right and left uniformities coincide. 

Proof. I. Suppose that such an exists. Since the right uniformity of JC is com-
plete, the left uniformity is also complete, and since these uniformities are topologically 
equivalent, they have the same Cauchy filters. Since the right and the left uniformities 
of 'S are relativizations of the corresponding uniformities of JC, the same holds for the 
left and the right uniformities of <§. — II. Let Sk be the right uniformity of ^ and let 
<H, be an augmentation-separated completion of <G, Using Lemma 41 B.15 
instead of Corollary of 41 B.15 the procedure of the proof of the preceding theorem 
makes it possible to obtain a continuous domain-extension of a : <G, u> x 
x <G, w> -> <H, yy to <H, yy x yy. Using the condition and the same 

procedure, we obtain an extension of the inversion of ^ to a continuous mapping of 
<H, yy into <H, yy. The remainder is clear. 

Completions of topological rings, fields, modules and algebras are considered in 
the exercises. It may be in place to point out that the only difficult step is the ex-
tension of the multiplication of a topological ring to a completion of the underlying 
additive topological group. 

C. SPECIAL PROPERTIES OF COMPACT SPACES 

In the present subsection, some special properties of compact spaces are developed 
further. Concerning the contents of the subsection, the main result is Theorem 
41 C.4. Then we shall prove the following two important properties of compact 
spaces: a continuous mapping of a compact space into a separated space is inver-
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sely upper semi-continuous, and a mapping / of a space into a compact space such 
that the graph of / is closed in the product space is continuous. The concluding part 
is devoted to an investigation of compact uniformizable spaces. The main character-
izations of compactness in the class of all uniformizable spaces are summarized in 
Theorem 41 C.23. Special attention is given to algebras of continuous functions, in 
particular, various formulations of the so-called Stone-Weierstrass Theorem are 
presented. We shall prove that a uniformity (uniformizable proximity) is fine around 
each compact subspace; thus these subspaces behave similarly as finite subspaces. We 
invite the reader to give a special attention to 41 C.14 where, under some additional 
assumptions, the following characterization of compactness of a space 9 is given: if 
a family {/„} of continuous mappings of 9 "distinguishes" separated points of 9 , 
then {/„} projectively generates 9. 

For brevity we shall write 3C9 or 9C to denote the collection of all X9 , l e i . 

41 C.l. Definition. A complete accumulation point of a subset X of a closure 
space 9 is a point xoi9 such that card (17 n X) = card X ^ K0 for each neighbor-
hood U of x. 

Obviously, every complete accumulation point is an accumulation point. 

41 C.2. Theorem. In a compact space 9, 
(a) every infinite subset of 9 has a complete accumulation point. 
If a closure space 9 possesses property (a), then 
(b) for each non-void monotone collection 9C of non-void subsets of 8? the inter-

section of 9C is non-void. 
If 9 is a topological space, then (b) implies the compactness of 9. In particular, 

for topological spaces each of the preceding conditions (a) and (b) is necessary and 
sufficient for 9 to be a compact space. 

Proof . Let X be an infinite subset of a compact space. If X possesses no complete 
accumulation point, then there exists a family {Ux | x e 9} such that Ux is a neighbor-
hood of x and card (Ux n X) < card X. Since 9 is compact, some finite subfamily 
[Ux | x e F} covers 9. As a consequence X = n X | x e F}, and hence 

(*) card X ^ S(card (UxnX)\xeF} = m. 
Since F is finite and card (Ux n X) is less than the cardinal of X, m is less than the 
cardinal of X, which contradicts (*). 

Now we shall prove that in any space (a) implies (b). Suppose (a). Let X be a mono-
tone non-void collection of non-void subsets of 9. If 9C contains the smallest element 
X (relative to the order c on exp P), then 0 4= X = f)X <=. Suppose 9C contains 
no smallest element. By 11 A.18 there exists a cofinal subset of 9C which is 
minimally well-ordered by =>, i.e. <W is well-ordered and the cardinal of any down 
bounded subcollection of is less than the cardinal of D. For each Y in <& let us choose 
a point x(7) in the difference of Y and the successor of Y. If Y2elW and Yx 4= Y2, 
then x(Yj) 4= x(Y2), because Yt c= Y2 or Y2 <= Yt and in the first case x(Y2) $ Yt and 
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in the second x( Y^ £ Y2. Thus the cardinal of the set X of all x(Y), Ye <&, and that 
of <& are equal. Let x be a complete accumulation point of X; it will be shown that 
x e ()%/. If x £ F0 for some Y0 in Y, then \&\ - Y0 is a neighborhood of x. If Ye <W, 
Y <= Y0, then x(Y) $ \0>\ - Y0, and consequently the cardinal of (|0>| - Y0) n X is 
less than that of X, since <& is minimally wdl-ordered; this contradicts our assump-
tion that x is a complete accumulation point of X. Thus x e (\<3f and hence (\W #= 0. 
Since is cofinal in 3C, i.e. each X e 3C contains a Y e <2/, we have CY& <= f)2C, and 
consequently f)St 4= 0; this completes the proof of the implication (a) => (b). 

It remains to show that a topological space 5? is compact provided that it has 
property (b). Suppose 0 is a topological space with property (b). Let SC. be a cen-
tered collection of subsets of & and let stand for SC. Since 0 is a topological 
space, <y is a collection of closed subsets of 2? and obviously <W is centered. Now 
suppose f)<& = 0. Then there exists the smallest cardinal m such that the intersection 
of a subcollection of of cardinal m is empty. Since <& is centered, the cardinal m 
is infinite. There exists a minimal well-order >- on For each Yin let Z( Y) be the 
intersection of all Y' preceding Y, and let 2C be the collection of all Z(Y), Ye<S/0. 
Obviously 2C is monotone, and every set from 2£ is non-void, because is minimally 
well-ordered and the intersection of a subfamily of <W0 with cardinal less than m is not 
empty. By (b) the intersection of 2C is non-void. But every set from and hence from 
2£ is closed, and consequently Jf = 2£. Thus the intersection of 2£ is non-void. Since 
every Y e ^ 0 contains a Z e 2£, namely Z(Y), ^ f T h u s f\<&0 is non-void, 
which contradicts our choice of The proof is complete. 

Remark. It is to be noted that in general condition (a) does not imply compactness 
(see ex. 5 (b)), and (b) does not imply (a) (see ex. 5 (c)). 

41 C.3. Theorem. Each of the following two conditions is necessary and sufficient 
for a topological space 0 to be compact: 

(a) the intersection of any centered family of closed subsets of 0> is non-void; 
(b) every open cover of 0 contains a finite subcover. 
Proof. By the de Morgan formula the conditions (a) and (b) are equivalent. 

Indeed, an 3C is a centered collection of closed subsets with empty intersection if and 
only if the family consisting of complements of all sets from *3£ is an open cover 
of & containing no finite subcover. If 11 is a compact space (not necessarily topo-
logical), then (a) is obviously valid. Conversely, if 0 is a topological space satisfying 
(a) and SC is a centered collection of subsets of then 3C is a centered collection of 
closed sets and hence f\SC =f= 0 by (a). 

Remark. Let 3C be a centered collection of closed subsets of a spaced. Since the 
property "to be centered" is of a finite character, by 4 C.5 there exists a maximal 
centered collection <3/ => 3C of closed subsets of 2P, i.e. a centered collection <& of 
closed subsets with the following property: if •=> <& is a centered collection 
of closed subsets of 0>, then 2£ = <&. Now it is obvious that the condition (a) in 
41 C.3 can be replaced by the following formally weaker condition: 
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The intersection of every maximal centered collection of closed subsets of 9 is 
non-void. 

The first part of this subsection devoted to various characterizations of compact-
ness is concluded by the following useful, interesting and non-trivial characterization 
41 C.4 of compactness for topological spaces. Obviously a topological space 3P is 
compact provided that the intersection of any centered collection of sets of a certain 
closed base of 9> is non-void, or dually, if every cover consisting of elements of a 
certain open base for 9 contains a finite subcover. The following theorem asserts 
that the word "base" can replaced by "sub-base". 

41 C.4. Theorem. Each of the following conditions is necessary and sufficient 
for a topological space SP to be compact: 

(a) there exists a closed sub-base 3F for 3P such that the intersection of every 
centered subcollection of 2F is non-void; 

(b) there exists an open sub-base H for 9 such that every open cover consisting 
of sets from 11 contains a finite subcover. 

Proof . The necessity of either condition is evident. By de Morgan formula an 
2F is a closed sub-base of 0> with the property required by (a) if and only if the col-
lection H of all \0>\ — F, F e is an open sub-base of SP possessing the property 
required by (b). Thus both conditions (a) and (b) are equivalent. It remains to show 
that, for example, (a) is sufficient. Let us suppose that 9 is not compact. By the re-
mark following 41 C.3 there exists a maximal centered collection X of closed subsets 
of SP such that f = 0. Let J5" be a closed sub-base of SP. It will be shown that 

n f ) = !l. 
If x e \SP\, then there exists an X in 9C with x $ X. Since J5" is a closed sub-base 

there exists a finite sub-collection 3F0 of ¿F such that the union F0 of contains X 
and does not contain x. Since F0 => X e 3C, necessarily F0 e 9C. Since 9C is a maximal 
centered collection and the union F0 of the finite collection Q belongs to 3C, some 
F 6 #"0 belongs to 9C. Thus F e n 3C. By our choice x $ F0 and consequently 
x£ F, because F cz F0. The proof is complete. 

Now we proceed to an investigation of the properties of compact spaces. In 41 A.12 
we proved that the class of all compact spaces is completely productive and closed 
under continuous mappings, closed subspaces of compact spaces are compact and 
a compact subspace of a separated space is closed. Next, a topological separated or 
regular compact space is uniformizable (because it is paracompact). 

41 C.5. Theorem. A continuous mapping of a compact space into a separated 
closure space is inversely upper semi-continuous, in particular, it is a quotient 
mapping. 

Proof. Let / be a continuous mapping of a compact space <P, w) into a separated 
space <Q, u>. Let j e E / and G be a neighborhood o f i n <P, m>. We must 
find a neighborhood U of y in (Q, v) such t h a t / - 1 [ l / ] G. For each z e Q — (y) 
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let Uz be a neighborhood of y and Vz be a neighborhood of z such that Uz n Vz = 0. 
Since/ is continuous, the family { / _ 1 [ F j } interiorly covers P — and hence 
the collection consisting of G and of a l l / - 1 [K Z ] is an interior cover of <P, u). Since 
<P, u) is compact, some finite subcollection covers P, and therefore (J{/~1 [ | z e 
e Z} => P - G for some finite subset Z of Q - (y). Put U = f){Uz | z e Z}. Evidently 
U is a neighborhood of y a n d / _ 1 [ t / ] c G. 

Remark. If <P, u)is topological then it is enough to show that / i s closed, and this 
follows from the facts that a closed subspace X of <P, w> is compact, its continuous 
image f\X\ is compact and hence, <Q, v} being separated,/[Z] is closed in <Q, v) 
and hence in Ef. 

Corollary. A one-to-one continuous mapping of a compact space into a separated 
space is an embedding. 

If 9 is a separated space and / is a continuous mapping of a space 2 into 9, then 
the graph of / is closed in the product space 2 x 9 (by 27 A.9), but the converse 
need not be true. 

i 
41 C.6. Theorem. If f is a mapping of a closure space 2 into a compact space 9 

such that the graph of f is closed in the product space 2 x 9, thenf is continuous. 
Proof. Suppose that a net {x0} converges to x in 2. We shall prove that {fx„b} 

converges to fx for some subnet {xab} of {xa}. Since 9 is compact the net {/xa} has an 
accumulation point y in 9 and hence some subnet {/x aJ converges to y in 9; the 
subnet {xaJ of {xc} converges to x. As a consequence the net N = {<*„„,/xa(j>} con-
verges to <x, y), and since N ranges in gr / and g r / i s closed, <x, _y> must also belong 
to gr/ , i.e. y = fx. 

It turns out that the property of compact spaces stated in the preceding theorem 
characterizes the compact spaces in the class of all separated spaces. 

41 C.7. If a separated space9 is not compact, then there exists a mapping of a 
separated topological space 2 into 9 such that the graph of f is closed in 2x9 
but f is not continuous. 

Proof. Let 9C be a filter o n 9 — <P, u> without cluster points, Q = P u (X), and let v 
be the closure for Q such that each point of P is isolated in < Q,v) and {(&) uX\XeX} 
is the neighborhood system of (X) in (Q, v). Let / be a mapping of (Q, v) into 9 
such that fx = x if x e P. The mapping/ is not continuous at (#"). In fact, choose an 
X in 9C such that fSC does not belong to the closure of X; since 3C e vX, f[X\ = X, 
f is not continuous at SC. On the other hand, it is easily seen that if 9 is separated, then 
g r / n (P x P) is closed in (Q, v) x 9 and hence g r / i s also closed. 

Now we proceed to semi-uniformities and proximities. 

41 C.8. Theorem. If <P, m> is a compact uniformizable space, then there exists 
exactly one uniformity inducing the closure u; this uniformity consists of all neigh-
borhoods of the diagonal. 

We shall prove somewhat more: 
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41 C.9. Suppose that the closure structure of a compact topological space 0 is 
induced by a semi-uniformity 11 such that the collection "V of all closed (in 
3P x SP) elements of 11 is a base for 11. Then 1l contains all open neighborhoods 
of the diagonal of 0 x 2P. 

Proof of 41 C.8. Suppose that the closure structure of a compact space is induced 
by a uniformity 11. We know that each element of a uniformity is a neighborhood of 
the diagonal. On the other hand, the collection "V of all closed elements of 11 is a base 
for 11 and therefore, by 41 C.9, 11 contains each neighborhood of the diagonal. 
Thus 11 is the set of all neighborhoods of the diagonal. 

Proof of 41 C.9. Let U be any neighborhood of the diagonal and let G be the 
interior of U; thus G is an open neighborhood of the diagonal. Let us consider the 
collection 3C of all sets V— G, Ve y . Since f is a base for 11 and 11 induces the 
closure structure of SP, we have (]& = 0 (for each x in \SP\ there exists a F in "V such 
that V\x\ c= G[x]). The elements of 9C are closed and the product space 0 x 0 is 
compact and therefore 3C is not centered, and hence 0 e 3C because 9C is multiplicative. 
Thus V <= G for some F i n - f , which shows that Ge1l and hence U e 11. 

41 C.10. Corollary. If 11 and are topologically equivalent continuous uniform-
ities for a compact space, then 11= y . If p and q are topologically equivalent 
continuous uniformizable proximities for a compact space, then p = q; in particu-
lar, there exists exactly one uniformizable proximity inducing the closure struc-
ture of a given uniformizable compact space. 

Proof. A closure coarser than a compact closure is compact, and therefore the 
first statement follows immediately from 41 C.8. The statements concerning uni-
formizable proximities follow from the corresponding statements concerning unifor-
mities (each uniformizable proximity is induced by a uniformity). 

Remarks, (a) There exists a non-compact space the closure structure of which is 
induced by exactly one uniformity; e.g. the ordered space of all countable ordinals 
has this property (see 41 D.11). 

(b) It need not be true that the semi-uniformity 11 of 41 C.9 consists of neighborhoods 
of the diagonal; e.g. let 3P be the ordered space [ 0, 1 ] of reals and let iV be the set 
of all Wr, 2 > r > 0, where Wr consists of all <x, y} in P x P such that either 
\y — x| ^ r . x or x = 0, ^ r or y = 0, |x| ^ r. Clearly W is a base for a semi-
uniformity 11 inducing the closure structure of 3P and each Wr is closed in 0 x 

In 41 C.8 and 41 C.10 uniformities and uniformizable proximities on compact 
spaces were considered. Now we shall exhibit a basic property of compact subsets 
of uniform spaces and uniformizable proximity spaces. 

41 C. l l . Theorem. Each uniformity (uniformizable proximity) is fine around 
each compact subset. More precisely, if 11 is a uniformity for a set P, p is the pro-
ximity induced by 1l, u is the closure induced by p and X is a compact subset of 
<P, m> (i.e., the corresponding subspace is compact), then 11 is fine around X 
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(i.e. if G is a neighborhood of X then G for some U in 11) and p is fine 
around X (i.e. each neighborhood of X is a proximal neighborhood of X). 

Proof. It is sufficient to prove the statement concerning H. For each x in X let 
us choose an open element Ux in 11 such that Ux o Ux\x~\ c G. The open cover 
{l/*[x] | xeX} of X contains a finite subcover {¡7x[x] | x eF}, because the subspace X 
of <P, u> is compact. Put U = | xeF}. We have U[X] e U[U{tf,|>] [ x e 
e F}] <= U { l > M x ] ] | x e F} <r \J{UX „ Ux[x] \ x e F} c= G. 

The preceding result has the following important consequence. 

41 C.12. Theorem. Let 9 be the product of a family {¡?a \ a e A) of uniformizable 
spaces and let G be a neighborhood of asetX = II{^Lfl} in 3P. If each Xa is compact 
in 2Pa, then there exists a canonical neighborhood G' = n { g f l } of X in 9 such that 
G' cz G. 

Before presenting the proof we shall state the following particular case. 

Corollary. Let 9 = SPX x 0>2 and X = Xx x X2, where ^ are uniformizable 
and Xi is compact in If G is a neighborhood of X in then there exists neigh-
borhoods G; of Xi in ¡Pi, i = 1,2, such that G t x G2 cz G. 

Proof of 41 C.12. For each a let aUa be a uniformity inducing the closure structure 
of SPa and let 11 be the product uniformity. Since X is compact in 9 and 11 induces 
the closure structure of we can choose (by 41 C.11) a V in 11 such that E/[X] <= G. 
By Definition 23.D.10 of the product uniformity, there exists a finite subset F of A 
and a family {V„ | a e A] such that Va e 11 a for each a, a e A — F implies Va = 
and the relational product V of {Va} is contained in U. Then 

g = t / [ x ] ^ v[x] = n { [ / f l [ z j } , 

which completes the proof. 

Remark. It should be noted that similar results can be proved without uniform-
ities or assuming that the space is uniformizable (see 41. ex. 7). 

The concluding part is devoted to an investigation of algebras of bounded continu-
ous functions in connection with compactness. Recall that algebras of bounded pro-
ximally continuous functions were studied in 25 D (main result: P*(9, R) is a closed 
subalgebra of unif F*(0>, R)) and 25 E (main result: the Stone-Weierstrass Theorem 
for proximity spaces). 

First we shall try to carry over the Stone-Weierstrass Theorem for proximity spaces 
to closure spaces. The Stone-Weierstrass Theorem states that, given a proximity space 

the smallest algebra containing all constant functions on SP and also a collection of 
bounded functions projectively generating 0> is dense in the normed algebra P*(9, R) 
of all bounded proximally continuous functions on SP. Now let us consider a uniform-
izable closure space <P, u>, a uniformizable proximity p inducing the closure u, and 
the set s4 of all / : <P, u> -> R, / e P*«P, p>, R). By 39 B.2 the collection s i pro-
jectively generates <P, u>. Clearly s i is a closed subalgebra of C*(<P, u), R) con-

si—Topological Spaces 
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taining all constant functions, and si = C*(<P, u>, R) if and only if p is the Čech 
proximity of <P, u>. It follows that if the closure u is induced by a uniformizable 
proximity which is not the Čech proximity of <P, u>, i.e. if u is induced by two distinct 
uniformizable proximities, then <P, u> is projectively generated by a proper closed 
subalgebra of C*(<P, u>, R) containing all constant functions. Conversely, assume 
that <P, w) is induced by exactly one uniformizable proximity p, which is necessarily 
the Čech proximity of <P, u), and let us consider any collection of bounded func-
tions projectively generating <P, u). The collection SF' = E{/ : P R | / e J2"} pro-
jectively generates a uniformizable proximity q for P. Again by 39 B.2 the proximity q 
induces the closure projectively generated by { / : P R | / e J5"}, i.e. q induces u. 
Consequently p = q. By the Stone-Weierstrass Theorem 25 E.2, the smallest algebra 
si' containing all / : <P, p> R, / e and all constant functions on <P, p> is 
dense in P*(<P, p>, R). Let g be the single-valued relation which assigns to each 
/ e F*(<P, «>, R) the function / : <P, p> R. Clearly Q : F*«P, «>, R) -> F*«P, p>, 
R) is a normed-algebra-isomorphism, and = ŠF'. Since p is the Čech proximity 
of <P, u> we have e[C*«P, u>, R)] = P*«P, p>, R). If si is the smallest sub-
algebra of F*(<P, «>, R) containing and all constant functions, then g[si] = si' 
because q\3F~\ = 8F'. Finally, £ is a homeomorphism and therefore the image under 
Q of si is the closure of si', i.e. P*«P, p}, R). Thus = C*«P, u>, R). We have 
proved the following theorem. 

41 C.13. Theorem. The following two conditions on a uniformizable closure 
space 0 are equivalent: 

(a) There exists a unique uniformizable proximity inducing the closure struc-
ture of 0>. 

(b) If 0 is projectively generated by a collection !F of bounded functions, then 
the smallest subalgebra of F * ^ , R) containing OF and all constant functions is 
dense in C*(0>, R). 

For example, if 0 is a compact uniformizable space, then (a) is fulfilled (by 41 C.8) 
and therefore (b) is fulfilled (by 41 C.13). On the other hand a space with property 
(a) need not be compact. We want to strengthen condition (b) to obtain a characteri-
zation of compactness. 

If a collection ¡F of functions projectively generates a closure space <P, u) and 
x $ u(y), then fx =(= f y for some / in J5". It is almost evident that the converse is 
not true. On the other hand, if <P, m) is compact and topological, then the converse 
does hold. 

41 C.14. Lemma. Suppose that SF is a collection of continuous mappings of a 
space 0 = <P, u> into separated closure spaces, (a) If 0 is a compact topological 
space and for each x $ u(y) there exists anf in such that fx #= f y , then 0 is pro-
jectively generated by the collection SF. (b) If 0 is a separated compact closure 
space and ŠF distinguishes the points of 0 (i.e. for each x + y there exists an f in 3F 
such that fx 4= f y ) , then SF projectively generates 
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Proof. I. Under the assumptions of (a) let x be any point of0, G be any open neigh-
borhood of x in 0, and SC be the smallest multiplicative collection of sets containing 
each set / - 1 [ l / ] — G where/ e 3F and U is a neighborhood of fx in E */. We must 
show that SC contains the empty set. Because of compactness, on assuming the contrary 
we can choose a point y which belongs to each uX, X e SC. Since G is open, y e 
e \0\ — G, hence x $ u(y) and therefore we can choose an / in such that fx 4= fy. 
Since E*/ is separated we can choose a neighborhood U of fx in E*/ the closure of 
which does not contain fy; since/is continuous, we have y$uf~1 [17], which contradicts 
our assumption that y e uX for each X e SC. — II. Assuming in (b) that 0 is topo-
logical, the conclusion of (b) becomes an immediate consequence of (a). Although 
statement (b) will only be applied in this case, we shall prove (b) in the general setting. 
It should be noted that the same proof may be applied; since G need not be open, we 
only obtain ye \0\ — int G, which implies x 4= y, and P being separated, this yields 
x 4 u(y). Nevertheless the following proof is simpler: consider the closure v projec-
tively generated by the family {/ : \0\ —• E*/1/e J*}; r is coarser than u and, clearly, 
separated. It follows from 41 C.5 that u = v. 

Now we are prepared to state the main theorem. 

41 C.15. Theorem. The following condition is necessary and sufficient for a uni-
formizable space 0 = <P, u) to be compact: 

If 2F is a set of bounded continuous functions on 0 such that x £ u(y) implies 
fx #= f y for some f in OF, then the smallest subalgebra of F*(0>, R) containing 3F 
and the constant function {x -> 1} : 0 -* R is dense in C*(0, R). 

As an immediate consequence of 41 C.14. we obtain the following characterization 
of compactness in the class of all separated uniformizable spaces. 

41 C.16. Theorem. The following condition is necessary and sufficient for a 
separated uniformizable space 0 to be compact: 

If is a set of bounded continuous functions which distinguishes the points of 0> 

(i.e. x 4= y implies that fx 4- f y for some f in then the smallest subalgebra 
of F*(0, R) containing SF and the constant function {x -> 1} : 0 -> R is dense in 
C*(0, R). 

Indeed, if 0 is separated then the conditions of 41 C.15 and 41 C.16 are equivalent. 
Proof of 41 C.15. I. Suppose that 0 is compact and the assumptions of the con-

dition are fulfilled. By 41 C.14 (a), the collection & projectively generates 0>. By 
41 C.8, condition (a) of 41 C.13 is fulfilled (because of compactness.of 0) and hence 
41 C.13 (b) is fulfilled, i.e. the smallest subalgebra of F*(0, R) containing & and all 
constant functions is dense in C*(0, R). 

II. Assuming that a uniformizable space 0 is not compact, we shall construct 
a subalgebra of C*(0, R) containing all constant functions such that 3F is not 
dense in C*(0, R), but x $ u(y) implies that fx 4= f y for some / in Since 0 is not 
compact we can choose a proper filter SC on 0 such that = Consider the 
collection S£ of exact closed sets of SC. Since 0 is uniformizable we have = 

50* 



804 A P P E N D I X 

= = 0- Choose any point x of 2P and let us consider the set 3F of all bounded 
continuous functions on 9 such that / [Z ] = (fx) for some Z in We shall prove 
that 2F has the required properties. It is almost self-evident that J5" is an algebra 
(S£ is multiplicative). If x $ u(y), then there exists a bounded continuous function g 
on 9 such that gx = 0 and gy = 1. Since ()£? = 0, we can choose a Z in 2£ such 
that y $ Z, and then we can choose a bounded continuous function h on 9 such that 
Z = E{z | hz = 0}. If / = h . g, then fx = 0 and / [ Z ] = (0), which shows that 
/ e and clearly fx =|= fy. The general case is now obvious. But is not dense in 
C*(3P, R). Indeed, choose a Z in J such that x $Z, and then choose a bounded 
continuous function h such that Z = E{z | hz = 0}. Thus hx 4= 0. If / e then 
| | / — ¿ M - Indeed, if | f x — hx| ^ i|/*x| then necessarily | f z — hz| S: i|/ix| 
for some z in Z. Thus J2" is not dense in C*(9, R). The proof is complete. 

From the proof of the preceding theorem one may, incidentally, obtain an interesting 
characterization of compactness in the class of all uniformizable spaces. Let us 
consider the closure v projectively generated by the family { / : \3?\ -* R | / e 
where & is the algebra of the second part of the proof of 41 C.15. It is easily seen 
that v is strictly coarser than u. Indeed, x e vZ for each Z in Jf but x £ Z = uZ for 
some Z in Thus we have proved: If <P, u) is a non-compact uniformizable space 
then there exists a uniformizable closure v strictly coarser than u such that x e v(y) 
implies that x e u(y) (and hence, x e u(y) o x e f(j')). On the other hand, if <P, m> 
is a compact uniformizable space and v is a uniformizable closure coarser than u 
such that x e t>(y) implies x e u(y), then it follows from 41 C.14 (a) that the family 
{ / : P -> R | / e C*(<P, v), R)} projectively generates u, and hence u = v. Thus we 
have proved the following result. 

41 C.17. Theorem. A uniformizable closure u is compact if and only if there 
exists no uniformizable closure v strictly coarser than u such that x e u(y) if and 
only if xe v(y) (i.e. such that the quasi-discrete modifications of u and v coincide). 
In particular, a separated uniformizable closure u is compact if and only if there 
exists no separated uniformizable closure strictly coarser than u. 

Remark. If <P, m> is a uniformizable closure space, then the condition "if x £ u(y) 
then/x * f y for some / in J27" can be stated as follows: SF distinguishes separated 
points of <P, u>. 

Some of the preceding theorems stated that the smallest subalgebra containing 
a given set SF and also all constant functions (i.e. the unit) is dense in the algebra of 
bounded proximally continuous functions or of bounded continuous functions. We 
want to describe the smallest closed algebra containing The next simple lemma 
reduces this question to the corresponding preceding results. For convenience we re-
view some of earlier definitions and results for real algebras, which will be needed. 

An ideal in an algebra is a linear subspace L of such that / . g e L for each 
/ in si and g in L. An ideal L is proper if L 4= \-d\- A maximal ideal is a proper 
ideal which is a proper subset of no proper ideal. If / belongs to a proper ideal, 
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then the multiplicative inverse of / , denoted by 1//, does not exist; stated in other 
words, each proper ideal consists of (multiplicatively) non-invertible elements. If s i 
has a unit, then each proper ideal is contained in a maximal ideal. If si has a unit then 
the following conditions on any subset Loi si are equivalent: 

(a) L = (p~1 [(0)] for some non-zero homomorphism of si into R; 
(b) Lis a linear subspace of si and each element of si can be uniquely written as 

r . 1 + / , / e L, r e R; 
(c) L is a maximal ideal in si. 

Remember that (pg = riig = r.\+f where cp is of (a) and r. 1 + / i s the decomposi-
tion of g as stated in (b). Now let si be a topological algebra. The closure of an ideal 
is an ideal. It follows that a maximal ideal is closed or dense, and hence if si has a unit 
and the set of all non-invertible elements is closed (this is the case when si = 
= C*(0>, R); indeed,/is invertible if and only if | / | 2: r > 0), then each maximal ideal 
is closed. The constant function {x -* 1} : 9 -* R is the unit of F*(9, R) for each 
non-void struct 0 

41 C.18. Lemma. Let si be a topological algebra with unit and let !F cz |si\. 
If six is the smallest closed subalgebra containing 2F and the unit and si2 is the 
smallest closed subalgebra containing then either si2 = six or si2 is a maximal 
ideal in si x (which is necessarily closed). 

Proof. Assuming that si2 4= -s^i, it is sufficient to prove that each element of sit 

can be written uniquely in the form r . 1 + / , / e si2. I f r . l + / = s . l + </, where 
/ e si2, g e si2, then (r — s) . 1 = (g — / ) e si2, and hence r — s = 0 because 
1 $ si2, consequently r = s and g = / , which establishes uniqueness. To prove the 
existence let us consider the set si3 of all r . 1 + / , r e R, / 6 si2. We must prove 
six = si3. Clearly si3 is a subalgebra of si containing J 7 and 1, and si3 a six. 
Thus it is sufficient to show that s&3 is closed. Suppose that a net {ra . 1 + /„} in si3 

(where/, e si2 and ra e R) converges to a g e siWe must show that g = r . 1 + / 
with / in si2 and r in R. If we show that the net {ra . 1} converges to some r . 1, 
r e R, then the net {/„} will converge to g — r . 1 because fa = (ra.l+ /„) — ra . 1, 
and si2 being closed, g — r . 1 e si2, i.e. g — r . 1 = / for some / in si2, and hence 
g = r. 1 + / . To prove that {ra. 1} is convergent it suffices to show that {ra . 1} 
is a Cauchy net. Consider the mapping <p of the product algebra R x si2 onto si 3 

which assigns to each <r,/> the point r . 1 + / . Since si2 is closed in si3 and 1 £ si2, 
the mapping q> is a uniform homeomorphism, in particular {<ra,/fl>} is a Cauchy 
net; hence {ra} is a Cauchy net in R, and thus {ra. 1} is a Cauchy net. 

Combining Lemma 41 C.18 with the Stone-Weierstrass Theorem for proximity 
spaces (25 E.2) we obtain immediately the following result. 

41 C.19. Theorem. Suppose that a proximity space SP is projectively generated 
by a set of bounded functions. If si is the smallest closed subalgebra of 
F*(9, R) containing then either si = P*(9, R) or si is a maximal ideal in 
P*(0>, R). 
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Combining Lemma 41 C.18 with 41 C.13 and 41 C.15 we obtain immediately the 
following results. 

41 C.20. Theorem, (a) The following condition is necessary and sufficient for 
a uniformizable space 0 to be induced by a unique uniformizable proximity: 

If a collection c: C*(0>, R) projectively generates HP, then the smallest closed 
subalgebra of R) containing either coincides with \C*{0, R)| or is a ma-
ximal ideal of C*(0>, R). 

(b) The following condition is necessary and sufficient for a uniformizable space 
& to be compact: 

If a collection iF c C*(0, R) distinguishes separated points of SP, then the small-
est closed subalgebra of C.*(3P, R) containing either coincides with \C*(9, R)| 
or is a maximal ideal in C*(0, R). 

The usual formulation of the Stone-Weierstrass Theorem for compact spaces in-
volves a description of maximal ideals in C*(0, R) which will now be given. If 
X <=. \3P\ and Lx is the set of all bounded continuous functions which vanish on X, 
then clearly Lx is a closed ideal in C*(3P, R). We shall prove that a space SP is compact 
if and only if each closed ideal in C*(0, R) is of this form. First we shall introduce 
some terminology. 

41 C.21. Definition. Let si be a subalgebra of a normed algebra R), where SP 
is a non-void struct. A fixed ideal in si is an ideal Lin si such that L = E {/1 f e si, 
f\pC\ <= (0)} for someX c \gp\. An ideal L is said to be free if it is not fixed. 

If Lis a proper fixed ideal then there exists a point x such that each function of L 
vanishes at x. Indeed, if L = E{/ | / [X] <=. (0)} and X = 0, then clearly L coincides 
with \C*(0>, R)|. In particular, if L is a maximal ideal, then each function f of L 
vanishes at a point independent o f f . 

41 C.22. Theorem. Each of the following two conditions is necessary and suf-
ficient for a uniformizable space 0 = <P, u} to be compact: 

(a) Each closed ideal in C*(0>, R) is fixed. 
(b) Each maximal ideal in C*(3P, R) is fixed. 

Proof. I. Each maximal ideal in R) is closed and hence (a) implies (b). 
It remains to show that (a) is necessary and (b) is sufficient. 

II. Assume that SP is compact, and let L be a closed ideal in C*(0, R). Consider 
the set X of all x e \3P\ such that fx = 0 for each / in L, and the fixed ideal Li consisting 
of all / e R) which vanish on X. We shall show that Lx = L. Let us consider 
the set si of all / e C*(0, R) which are constant on X, and the closure v projectively 
generated by the family {f : P -y R\f e si}. Clearly si is a closed subalgebra of 
C*(0, R) and v is coarser than u, and hence v is compact. Let q be the mapping of 
F*(0>, R) onto F*«!^ , v>, R) which carries each / into / : <P, v> R; thus Q is a 
normed-algebra-isomorphism, the collection s\_si~\ projectively generates the compact 
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space <P, v), and &[<&?] is a closed subalgebra of F*«P, v), R) containing all con-
stant functions, and therefore by 41 C.13, = C*(<P, v), R). To prove L = L t 

it is sufficient to show that g[L] = i-e- that g[L] consists of all / e C*«P, v), 
R) vanishing on X. Notice that g[L] is a closed subalgebra of C*(<P, v), R). Let 
88 be the smallest closed algebra containing all constant functions and g[L]. If we 
show that 3S = C*«P, v}, R), then each element / of C*«P, u>, R) must have the 
form r . 1 + g, where g e i?[L], and hence/ e g[L] if and only i f / vanishes on X, and 
this is precisely that what is needed. Thus it remains to prove that 38 = C*(<P, v}, R). 
Since <P, u> is compact, it is sufficient to show that x <£ v(y) implies that fx 4= f y 
for some / in e[L] (by 41 C.15). Suppose x $ u(y). Clearly at least one of the points x 
and y does not belong to X, say y, and hence we can choose a g in L such that gy 4= 0. 
Next, u is finer than v and hence x $ u(y), which implies that hx 4= hy for some h 
in C*(3P, R); clearly we may assume that hx = 0. Since Lis an ideal, the function 
h . g belongs to Land (h . g) x = 0, (h . g) y * 0. Thus / = g(h . g) belongs to g[L] 
and fx 4 - f y . 

III. Assuming (b) let us consider a proper filter 9C of sets on 3P and the set L of all 
bounded continuous functions / on 3P such that / vanishes on some X of 9C. Clearly 
L is an ideal. Let Lt be a maximal ideal containing L. Since L t is fixed, there exists a 
point x such that fx = 0 for each / in L1; in particular, fx = 0 for each / in L. 
Thus, given an X in 9£, if a bounded continuous function / vanishes on X, then 
fx = 0; consequently x e uX. It follows that x e The proof is complete. 

It seems to be in place to summarize the preceding characterizations of compact-
ness in the class of all uniformizable spaces. It should be noted that some conditions 
have not been explicitly stated up to now. 

41 C.23. Theorem. Each of the following conditions is necessary and sufficient 
for a uniformizable closure space to be compact: 

(a) The intersection of any centered collection of exact closed sets is non-void (see 
41 c.4;. 

(b) Each cover of 8P consisting of exact open sets has a finite subcover. 
(c) If a collection & of bounded continuous functions distinguishes separated 

points of then HF projectively generates 3P. 
(d) If a uniformizable closure v is coarser than u and the quasi-discrete modifica-

tions of u and v coincide, then u and v coincide. 
(e) Each closed ideal in C*(3?, R) is fixed. 
(f) Each maximal ideal in C*(3P, R) is fixed. 
(g) If a collection of bounded continuous functions distinguishes separated 

points of then the smallest algebra containing and all the constant functions 
is dense in C*(&>, R). 

(h) If a collection OF of bounded continuous functions distinguishes separated 
points of 8P, then the smallest closed algebra containing 2F either coincides with 
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C*(0, R) or consists of all bounded continuous functions f vanishing at a point x 
(independent of f ) . 

Remark . The necessity of (h), the so-called Stone-Weierstrass Theorem, is the 
generalization of the Weierstrass Theorem due to M. H. Stone. 

D . C O M P A C T I F I C A T I O N S 

Some of the results obtained earlier will nov be applied to the theory of compacti-
fication. 

41 D.l. Definition. A compactification of a closure space 0 is a uniformizable 
compact space 2 containing 0 as.a dense subspace such that each point of \2\ — \0\ 
is closed in 2; and hence, if x e \2\ — \0\, y e | 2\ - (x), then the points x and y 
are separated (because 2 is uniformizable). A compactification 2X of 0 is said to be 
finer than a compactification 2Z °f & if there exists a continuous mapping/ of 2X 

into £¿2 such that fx = x for each xe0, i.e. / : 0 -* 0 is the identity homeomorphism 
of^>. 

41 D.2. Remarks , (a) A space 0 is uniformizable if and only if it has a com-
pactification. Indeed, if 0 has a compactification then 0 is uniformizable as a sub-
space of a uniformizable space. If 0 is uniformizable, then the closure structure 
of 0 is induced by a totally bounded uniformity 11 and an augmentation-separated 
completion <Q, y > of (¡0j, liy is a complete totally bounded uniform space, and 
hence <Q, v) is a compact space where v is the closure induced by ; clearly <6, v} 
is a compactification of 0 (since (Q, is an augmentation-separated completion 
of <\0\, my). 

(b) If <Q, vy is a compactification of <P, u ) and J is a compact subspace of 
<jP, M>,then the closure of X in (Q, vy contains no point of Q — P. In fact, if X c P 
and x e uX — P and if H is the neighborhood system of x in <Q, d), then 
n{t>Y| Ye <3'} = (x) (because x and each other point of <Q, vy are separated, i.e. 
if y 4= x then there exists an Yin <%) such that y$vY), and hence v(X n Y) [ Ye 
e = 0; since X n [&] is a proper filter on X, X is not compact. 

(c) A uniformizable space 0 is compact if and only if 2P is the unique compactifica-
tion of 0>. In fact, if 0> is a compactification of 0>, then 0 is compact, and if 3. is 
a compactification of & and J 4= then SP is not compact by (b). 

(d) If X is a closed subspace of a space & and 2. is a compactification of P, then 
the closure Yof X in 2 is a compactification of X. Indeed, X is dense in Y, Yis com-
pact as a closed subspace of a compact space, and each point of Y — X is closed be-
cause Y - X cz 12\ -

(e) If 2 is a compactification of 2P, then 2 is a compactification of each subspace 
01 of 2 such that \0\ <= \0\. 
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(f) If 2 is a compactification of 9 and 01 is a compact subspace of 2 such that 
\0>\ e \m\, then 01 = 2. 

(g) If / is a continuous mapping of a compactification 2 of 9 into 2 such that 
fx = x for each x e \9\, then / is the identity mapping of 2 onto 2. We shall prove 
that fx = x for each x e 2. If x e 12\ — \9\ and y e \2\ — (x), then we can choose 
neighborhoods U of x and V of y such that U n V = 0. Since x e U n \9\, fx e 
ef[U n ¡0>j] = U n \9\ and hence fx 4= y, this proves fx = x. 

(h) If 2 is a compactification of 9 and 9 is separated, then 2 is separated. If 2 
is a separated uniformizable compact space, then 2 is a compactification of each 
dense subspace of 2, e.g. [ 0, 1 ] is a compactification of ] 0, 1 [ as well as of Q n 
n [ 0 , l ] . 

In the following theorem we shall describe relations between compactifications 
of 9, totally bounded uniform structures of 9 and completions of totally bounded 
uniform structures of 9. Recall that, by 41 C.8, if 2 is a compact uniformizable 
space, then there exists a unique uniformity inducing the closure structure of 2. 

41 D.3. (a) Let 9 be a uniformizable space and let K be the class of all com-
pactifications of 9. The relation E{<2U 22} \ 2x is a compactification of 9 finer 
than the compactification 22j is a quasi-order on K, and 2X is equivalent with 22 

(i.e. 2X is finer than 22 and 22 is finer than 2X) if and only if there exists a homeo-
morphism f of 2t onto 22 such that fx = x for each x e \9\. (b) For each 2 in K 
let be the relativization to \9\ of the unique uniformity "Ý"^ inducing the 
closure structure of 2. Then is totally bounded and "V~3 is an augmentation-
separated completion of %2for each 2eK. IfV is an augmentation-separated com-
pletion of a totally bounded uniformity % inducing the closure structure of 9 
then V = and H = 1l3for some 2 in K. Stated more formally, the relation 
{2 -* Hz | 2eK} ranges on the set of all totally bounded uniformities inducing the 
closure structure of 9, {2 -> | 2 eX} ranges on the class of all augmentation-
separated completions of totally bounded uniformities inducing the closure structure 
of 9. (c) 2t is finer than 22 if and only if is uniformly finer than (d) There 
exists a finest compactification of 9; it corresponds to the Čech uniformity of 9. 

Proof. I. Proof of (a): The transitivity of the relation in question follows from the 
fact that the composite of two continuous mappings is a continuous mapping. If 2X is 
finer than J 2 and 22 is finer than 2X and i f /and g are the corresponding mappings, 
then g of = h is a continuous mapping of 2X into itself such that hx = x for x in \9\. 
By 41 D.2 (g), h is the identity mapping of 2y onto itself. The second statement of (a) 
follows. 

II. Proof of (b): If 2 e K , then is a totally bounded uniformity and hence 
the relativization of to 19\, is totally bounded as well. Next, since 2 is com-

pact, y 3 is complete and hence (\2\, V i s a completion of <\9\,HS}. Next, 
each point of \2\ — 19\ is closed and hence <|2\, is an augmentation-separated 
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completion of <\SP\, 11 ¿y- If 11 is a totally bounded uniformity inducing the closure 
structure of SP and if <g, y > is an augmentation-separated completion of 1iy, 
then <Q, "Vy is a complete and totally bounded uniform space and the induced space 
<Q, vy is compact. Clearly 2 = (Q, u> is a compactification of SP and 1i = 11%, 

III. Proof of (c): If 2i is finer than 22 and/ is a continuous mapping of 2X into 22 
such that fx = x for each x e \0>\, then f: <\2X\, V^ -* <|j2 | , f " a i ) is uniformly 
continuous because is the fine uniformity of 2X. Consequently, the restriction 
/ : -> is also uniformly continuous, which shows that 

is uniformly finer than 11^ (because / : \SP\ -* \SP\ is the identity mapping). 
Conversely, if 11is uniformly finer than 11 then the mapping J : ->• 
-* is uniformly continuous, and has an extension to a uniformly con-
tinuous mapping / of <\2x\,YSiy into <\22\, Y^y (by theorem 41 B.1). Clearly 
/ : 2X -> 22 has the required properties. 

IV. Proof of (d): Since the Čech uniformity of SP is the finest totally bounded 
uniformity inducing the closure structure of SP, statement (d) follows from state-
ment (c). 

41 D.4. Definition. A Čech-Síone compactification of a uniformizable space 0 is 
a compactification SLoiSP such that the Čech uniformity of 0 is a relativization of the 
Čech uniformity of 2 (this is the unique uniformity inducing the closure structure 
of 2). A Čech-Stone compactification of SP is usually denoted by ¡ISP. 

41 D.5. Main theorem on Čech-Stone compactifications. Every uniformizable 
space has a Čech-Stone compactification, and each of the following conditions is 
necessary and sufficient for a compactification 2 of a uniformizable space SP to be 
a Čech-Stone compactification: 

(a) 2 is a finest compactification of 
(b) The Čech uniformity of 2 is a completion of the Čech uniformity of SP. 
(c) Each bounded continuous function on 0 has a continuous extension to 2. 
(d) Each continuous mapping of SP into a uniformizable compact space has a 

continuous domain-extension to 2. 

Proof. Existence follows from 41 D.3. Again by 41 D.3, conditions (a) and (b) are 
only restatements of the definition of the Čech-Stone compactification. Clearly (d) 
implies (c) (recall that every closed bounded interval of reals is compact). Since 
the Čech uniformity is projectively generated by the collection of all bounded con-
tinuous functions, condition (c) implies that the Čech uniformity of SP is a relativiza-
tion of the Čech uniformity of 2\ by definition 41 D.4, 2 is the Čech-Stone compact-
ification of It remains to show that if 2 is a Čech-Stone compactification, then 
(d) holds. Let / be a continuous mapping of SP into a uniformizable compact space 
SR., and let iV be the unique uniformity inducing the closure structure of Si, 11 be the 
Čech uniformity of SP and be the Čech uniformity of 2. Since 11 is the finest con-
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tinuous totally bounded uniformity for 9 and W is totally bounded, the map-
ping g = f : (\9\, H} -* Wy is uniformly continuous. Since i i s com-
plete and Hy is dense in < | j | , - ry , by 41 B.1 there exists a uniformly continuous 
domain-extension of g to <|j2, "V~y. Clearly g : 2 -* 9, is a continuous extension 
o f f . 

Remark. The results of Theorem 41 D.5 are one of the most profound results of 
this book. The Cech-Stone compactifications have many interesting properties, some 
of which will be given in the exercises. 

Every uniformizable space has a finest compactification, the so-called Cech-Stone 
compactification. On the other hand a space need not have a coarse compactification. 
This may be seen from the following theorem. 

41 D.6. Theorem. The following conditions on a uniformizable space 9 are 
equivalent: 

(a) There exists a coarsest compactification of 9. 
(b) There exists a (unique) uniformly coarsest uniformity inducing the closure 

structure of 9, i.e. 9 has a coarse uniformity. 
(c) There exists a (unique) proximally coarsest uniformizable proximity in-

ducing the closure structure of 9, i.e. 0* has a coarse uniformizable proximity. 
(d) The proximity p = {X -»• Y \ X <= \0>\, Y <= \9\, if either X or Y is compact 

then X n Y 4= 0} is uniformizable and induces the closure structure of 0 
(e) 9 is feebly locally compact, i.e. each point of 9 has a neighborhood which 

is a compact subspace of 9. 
(f) \9\ is open in a compact uniformizable space. 
(g) \&\ is open in a Cech-Stone compactification of 
(h) 9 is compact or there exists a one-point compactification of 9 (i.e., a com-

pactification 2 of 9 such that \2\ — \9\ is a singleton). 

Remark. If the equivalent conditions of (a)—(h) are fulfilled, then the proximity 
p of (d) is the coarse uniformizable proximity of 9, and any compactification 2 of 9 
such that 12j — \9\ has at most one point is a coarse compactification of 9. 

For the proof we shall need the following two propositions each of which is also 
useful in other situations. 

41 D.7. (a) If 9 is a regular topological feebly locally compact space, then 
the relation p = {Z -> <= \9\, Y <= \9\, if either X or Y is compact, then 
Xn F 4= 0} is a uniformizable proximity inducing the closure structure of 9, 
and p is the proximally coarsest uniformizable proximity inducing the closure 
structure of 9. 

(b) If 2 is a coarse compactification of a space 9, then \2\ — \9\ has at most 
one point. 
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41 D.8. If 0LV and £l2 are compactifications of 0 and £i2 is coarser than then 
there exists a unique continuous mapping f of into H2 leaving fixed the points 
of 9 (i.e. such that fx = xfor each x in 9). This mapping is surjective and carries 
the points of l^l - \0>\ into the points of |J2| - i.e. - = |j22| -

-M-
Remark. Notice that the uniqueness assertion is a generalization of 41 D.2 (g). 
Proof of 41 D.6. We shall prove (a) => (h) => (g) => (f) => (e) => (d) => (c) => 

- ( b ) - ( a ) . 
I. The implication (a) => (h) follows from 41 D.7 (b). 
II. If J is a compactification of 9 such that X = |¿¿\ — \8P\ has at most one point 

and / is a continuous mapping of a PSP into 2L which leaves fixed the points of SP, 
then (by 41 D.8) the set \p3P\ - \&>\ = f~1[X~\ is closed because X is closed in SL, 
and hence \SP\ is open in PSP. Thus (h) => (g). 

III. Clearly (g) => (f), and (f) => (e) follows from the fact that an open subspace 
of a regular feebly locally compact topological space is feebly locally compact. 

IV. The implication (e) => (d) was stated in 41 D.7 (a). 
V. The proximity p of (d) is a coarse uniformizable proximity of 3P. In fact, 

if q is any uniformizable proximity inducing the closure structure of Xq Y and 
X n F = 0, then neither X nor Fis compact (by 41 C.11) and hence XpY, which 
shows that p is proximally coarser than q. Thus (d) implies (c) and the first statement 
of the remark to 41 D.6 is proved (and the second is evident). 

VI. If p is the coarse uniformizable proximity of SP and "U is the proximally 
coarse semi-uniformity of />>, then clearly H is a coarse uniformity of SP. Thus 
(c) implies (b). 

VII. The implication (b) => (a) follows from 41 D.3. 
Proof of 41 D.7 (a). Let us notice that if two sets X and Y are distant in <1^1, p>, 

then X n F = 0 and at least one of the sets X and Fis compact. 
First let us prove the following statement: if U is a neighborhood of a compact 

set K then there exists a closed compact neighborhood Ky of K such that c int U. 
For each x in K let Vx be a closed neighborhood contained in the intersection of 
int U with a compact neighborhood of x. Thus {int Vx | x e K} is an open cover 
of K, and K being compact, some finite subfamily {int Vx | x e F} also covers K. 
Clearly the set Kt = U{7t | x e F] has the required property. Now the proof is 
almost evident. In fact, if U is a neighborhood of x in 9 then (x) is compact and hence 
there exists a compact closed neighborhood K of x such that K <=. int U. Clearly 
K n \0>\ - U = K n (\SP\ - int U) = 0 and K = K is compact. Thus [/is a proximal 
neighborhood of K and hence U is a proximal neighborhood of x. Thus p induces the 
closure structure of If X non p Y, then one of the sets X and Y, say X, is compact, 
and of course U = — Y is a neighborhood of X. By our auxiliary proposition 
we can choose a compact closed neighborhood K of X such that K cz int U, and 
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then we can choose a compact closed neighborhood Kt of K such that Kt c int U. 
Clearly K is a proximal neighborhood of X and \0\ — K is a proximal neighborhood 
of ¡0j — Kt and hence of 7 c j0j — Thus the proximity p fulfils condition 
(prox 5). By 25 B.2, p is uniformizable. 

Proof of 41 D.7 (b). It suffices to prove that if 2 is a compactification of 0 and 
| 2\ — \0\ has at least two distinct points, say x and y, then 2 is not coarse. To prove 
this we shall construct a compactification 0t which is coarser than 2 but which is not 
finer than 2. Identifying the points x and y of 2 we obtain evidently a compacti-
fication 0t of 0 which is coarser than 2 because the canonical mapping / of 2 onto 0 
is continuous and leaves fixed the points of \0\. On the other hand, 0 is not finer than 
2. In fact, assuming the contrary, take a continuous mapping g of M into 2 which 
leaves fixed the points of j0j; thus h = g of is a mapping of 2 into 2 which leaves 
fixed the points of \0\; by 41 D.2 (g) the mapping h is the identity mapping of 2 
and hence the equality hx = hy (which follows from the equality fx = f y ) implies 
that x = y, and this contradicts our assumption. 

Proof of 41 D.8. Le t / be a continuous mapping of 21 onto 32 which is an exten-
sion of J : 0 0. The set E/ is compact in 22 and contains \0\. By 41 D.2 (f), Ef = 
= \22\, and hence/is surjective. Let x be any point of \2y\ — ¡0j; we shall show that 

fx $ ¡0j. Consider the neighborhood system sá of x in 2y and the collection of all 
A n \0\, A e si. Of course 01 is a proper filter on \0\ and the intersection of all B9, 
B e ŠS, is empty. We have x e BSi for each B in 38, and hence fx e B*1 for each B 
in 01 (recall tha t / is continuous). Finally, BSl c= B® u (\22\ - \0\), and consequently 

fx 4 \0\. Thus / has the required properties. We shall show tha t / is the unique conti-
nuous mapping which leaves fixed the points of \0\. Suppose that there are two such 
mappings, say / and g, and choose an x such that fx #= gx. Evidently x e 12 tj — \0\, 
and hence both fx and gx belong to 122\ — \0\. The points fx and gx are separated 
and therefore we can choose neighborhoods U of fx and Fof gx such that U n V = 0. 
The se t s / - 1 [ t / ] and are neighborhoods of x in 2X and hence W = / - 1 [ t / ] n 
n g~r\V~\ is a neighborhood of x. Clearly Wn \0\ = U n Vn \0\ = 0, which 
contradicts the fact that \0\ is dense in 2t. 

Now we may present various characterizations of uniformizable spaces with a 
unique uniformizable proximity. 

41 D.9. Theorem. The following conditions on a uniformizable space & are 
•equivalent: 

(a) There exists a unique uniformizable proximity inducing the closure structure 
of 0, i.e. vP(0) is a singleton. 

(b) \f}0\ - \0\ has at most one point. 
(c) Any compactification of 0 is a Čech-Stone compactification, i.e., any two 

compactifications of 0 are equivalent. 
(d) If two closed sets X and Y are functionally separated (i.e. distant with respect 

to the Čech proximity), then at least one of the sets X and Yis compact. 
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(e) There exists a unique uniformity inducing the closure structure of 9, i.e. 
is a singleton. 

Proo f . I. The equivalence of (a), (b) and (c) follows immediately from Theorem 
41 D.3 which describes the relationship between compactifications and uniformizable 
proximities. Condition (d) states that the proximity p of 41 D.6 (d) coincides with 
the Čech proximity, i.e. that p is uniformizable, induces the closure structure of Sf 
and coincides with the Čech proximity; by 41 D.6, p is the coarse uniformizable 
proximity of 0>. Thus (d) states that the Čech proximity is the coarse uniformizable 
proximity of 0> and this is a restatement of (a). Thus the conditions (a)—(d) are 
equivalent. 

II. Clearly (e) implies (a), and (a) implies that there exists a unique proximally 
coarse uniformity (i.e. a totally bounded uniformity) inducing the closure structure 
o f ^ . It remains to show that if (d) holds, then each uniformity inducing the closure 
structure of 0> is proximally coarse. We shall prove somewhat more, namely that (d) 
implies that each continuous pseudometric on 3P is totally bounded. Assuming that 
a continuous pseudometric d is not totally bounded we can find a positive real r and 
an infinite set M such that d<x, y} ^ r for each x and y in M, x 4= y. If X and Y 
are any two non-void disjoint subsets of M, then the distance from X to 7(in <\S?\, d}) is 
positive, namely at least r, and hence X and Fare functionally separated in dy 
and so certainly in SP. On the other hand, the closure (in 0) of no infinite subset X 
of M is compact; in fact, the relativization of d to X is not totally bounded. 

If & is a normal space, then any two disjoint closed sets are functionally separated 
and therefore condition (d) of the last theorem can be stated as follows: if X and Y 
are disjoint closed sets, then either X or Fis compact. Thus we have proved 

41 D.10. Corollary. A normal space 9 has a unique uniformizable proximity 
if and only if at least one of any two disjoint closed sets is compact. 

41 D.l l . Example . The space 0> of all countable cardinals has a unique uniform-
izable proximity. Indeed, 9 is normal, and if X and Y are two disjoint closed sets 
then either X or Y is bounded (and therefore compact), because in the opposite case 
we could construct two sequences, {x„} in X and {y„} in Y, such that x„ ^ yn ^ x„ + 1 ; 
but this is impossible because such sequences would have a common limit point, 
namely sup {x„} = sup {y„} which must belong to X n Y. For further examples see 
the exercises. 

In conclusion we shall describe locally compact uniformizable spaces and spaces 
with a unique uniformity by means of continuous functions with compact support. 
In accordance with 19 F.11, the closed support (in what follows, simply support) of 
a function on a space is the closure of the set of all points at which the function does 
not vanish. Notice that each continuous function with a compact support is bounded. 

41 D.12. Theorem. Let 9 be a uniformizable closure space, and let A be the set 
of all continuous functions on 9 with compact supports, (a) A is an ideal in C*(9, R) 
and A = C*(9, R) if and only if 0* is compact, (b) The space 3? is locally compact 
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if and only if the collection A projectively generates 2P. (c) The space 2P has a unique 
uniformity if and only if either A = C*(0, R) (this is the case when 0 is compact) 
or A is dense in a maximal ideal in C*(3?, R). 

Proof . Statement (a) is evident. I. The "only if" in (b) follows from the description 
of projective generating families by means of neighborhoods (32 A.6). Conversely, as-
sume that A projectively generates 2P and let us consider the set X of all points x of 2P 
such that/x = 0 for each/ in A. If y e \0>\ — X and if / is an element of A such that 
f y 4= 0, then the support of / is a compact neighborhood of y, and hence 2P is feebly 
locally compact (and so certainly locally compact) at each point of \2f\ — X. We 
shall prove that X = 0. First we shall observe that the complement of any open 
neighborhood of any point of X is compact. Given an open neighborhood G of an 
xeX, choose fu . . . ,/„ in A and neighborhoods C7; of /¡x = 0 such that V — 
= n { / f 1 [ ^ i ] | 1 = «} c G. Clearly the complement of Fis contained in the unioA 
K of the supports of the functions /,-. The set K is compact (as the finite union of com-
pact sets) and the complement of G is contained in K. Thus \2P\ — G is compact (as 
a closed set in a compact set). The proof is now straightforward. If 2P is compact then 
the constant function {x 1} belongs to A, and hence X = 0. It remains to observe 
that X =f= 0 implies that 0 is compact. If SC is any proper filter on 2P and if x e X, 
then either x is a cluster point of 9C or the complement of some neighborhood of x 
belongs to 9C\ consequently x is a cluster point of f or f contains a compact set 
(namely the complement of an open neighborhood of x, which is compact). In both 
cases HE has a cluster point, and hence 2? is compact. 

II. If A = C*(0, R) then 2? is compact (by (a)), and hence 0 has a unique uni-
formity. Suppose that the closure B of A is a maximal ideal in C*(2P, R), and 
consider a Cech-Stone compactification 2 of 2?. We shall prove that \2\ — \2?\ is 
a singleton, and hence 2 is a coarse compactification of 2P\ it will follow from 
41 D.9 (b) that 0 has a unique uniformity. It is sufficient to show that each continuous 
function on 2 is constant on \2\ — \2P\. Consider the canonical isomorphism h of 
C*(0>, R) onto C*(£>, R) which assigns to each / e C*(0>, R) the unique continuous 
domain-extension of f to 2L. Clearly each hf, f e A, is zero at each point of 
| — in particular, each hf is constant on |i>| — \0>\. Since h is an iso-
morphism, the same is true for each / e B, and /i[B] is a maximal ideal in C*(2, R). 
Consequently, each continuous function on 2L is the sum of an hf, f e B, and a con-
stant function. Thus each continuous function on £1 is constant on \2.\ — \2P\. 

III. Assuming that a non-compact space 2? has a unique uniformity we shall 
prove that the closure B of A in C*(2P, R) is a maximal ideal. Consider any compacti-
fication 2. of 2P\ thus 2 is a Cech-Stone compactification and simultaneously a coarse 
compactification. Consider the isomorphism h : C*(2P, R) -> C*(2, R) defined in II. 
We shall show that the set h [5] consists of all continuous functions on 2 which vanish 
at the unique point x of 12\ — \2?\. Clearly hfx = 0 for each f e A, and hence for 
each / e B. Conversely, assuming that hfx = 0 we shall prove that f e B. Clearly 
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we may and shall assume that / ^ 0. For each n in N and each y in & let f„y = 
= max((n + l)_1,/_y) — (n + l ) - 1 . Clearly the sequence {/„} converges to / in 
C.*(SP, R). It is easily seen that/„ e A for each n, and hence/ e B; it suffices to observe 
that the closure of any set E{y | |/y| ^ r}, r > 0, is compact in SP (because the closure 
of this set in SL does not contain x). The proof is complete. 

Remark. If 3P has a unique uniformity then the set A need not be closed. 

E. SPACES O F IDEALS 

If <P, u> is a uniformizable space and p is a uniformizable proximity which induces 
u, then there exists a compactification (K, u> of <P, m) such that p is a relativization 
of the unique uniformizable proximity inducing v, i.e. XpY if and only if X <= P, 
Y <= P and vX n vY 4= 0. This important result has been proved by means of com-
pletions of uniform spaces. In this subsection we shall give a new proof by means of 
the structure space of maximal ideals of the algebra of all bounded proximally continu-
ous functions. 

If Pi and p2 are uniformizable proximites inducing the closure structure of a given 
space SP and if Jf x and J f 2 are any corresponding compactifications, then there 
exists a continuous mapping of X x onto Jf 2 which leaves fixed the points of 9 if 
and only if p2 is proximally coarser than The "only if" is evident and "if" was 
proved by means of the theorem on extension of uniformly continuous mappings into 
a complete uniform space. Here we shall give an alternate proof. 

Let SP, + , •) be a commutative semi-ring with a unit. In 18 E we defined 
the structure space SDl(^) of maximal ideals of 0T. By 18 E.6 the space SDi(^) is the set 
of all maximal ideals of 9 endowed with a topological closure operation such that 
the sets 

ha = E{L| L is a maximal ideal containing a} 

form a closed base. The set ha is called the hull of a in 931 (9). 

41 E . l . Theorem. The structure space of a commutative semi-ring 01 with 
a unit 1 is compact. 

Proof . It is sufficient to show that the intersection of any centered family 
{ha | a e A} where A c is non-void. Let us consider the set B of all elements of 
the form b0 a0 + ... + b„a„ where n e N, ate A and e We shall prove that 
1 $ B, i.e. l * ^ ] M i f° r each n, bt and af; then B will be a proper ideal of SP con-

iin 
taining A, and if L is any maximal ideal containing B (such a maximal ideal exists 
because HP, has a unit), then necessarily L belongs to each ha, aeA, i.e. the intersection 
in question is non-void. Let b = b0a0 + ... + b„a„ be any element of B. By our 
assumption the set C\{hai | i S »} is non-void and hence there exists a maximal 
ideal L' containing all ah i ^ n. Consequently b e L' and hence b 4= 1. 
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41 E.2. Theorem. Let 9 be a closure space and let si be a closed subspace of 
F*(9, R) which contains all constant functions. If/_1[0] is closed in 8P for each f 
in si then each function in si is continuous. 

Proof. It is sufficient to show that g of e si provided t h a t / e si and g is a con-
tinuous function on R. In fact, if F is closed in R, then we can choose a continuous 
function g on R such that gx = 0 if and only if x e F ; and then / _ 1 [ F ] = 
= (9 ° / ) - 1 [0] f° r e a c h / i n Ĵ » which shows t h a t / _ 1 [ F ] is closed in 0> for each/ 
in si and each closed set F in R, that is to say, eachf e si is continuous. To prove our 
auxiliary proposition let us consider the proximity p projectively generated by si. By 
the Stone-Weierstrass Theorem for proximity spaces, the set si consists of all / such 
that / : P> -* Ris proximally continuous. If g is a continuous functions on R 
a n d / g si then/ : p> ->• R is proximally continuous and E/ is a bounded subset 
of R, and hence / : <1^1, p> -* K is defined and proximally continuous for some com-
pact subspace K of R. The function g : K -> R is proximally continuous because K is 
compact. Thus g of : p} -» R is proximally continuous. Consequently g of e si. 
The proof is complete. 

We now proceed to the subject proper of this subsection. 

41 E.3. Let 3P = <P, p) be a uniformizable proximity space, and let us consider 
the structure space W(P*(iP, R)) of maximal ideals of the algebra P*(0>, R). For 
brevity we shall write 9 i n s t e a d of m(P*(0>, R)). If x e \0>\ then the fixed ideal Lx 

consisting of all / e P*(0, R) such that fx = 0 is a maximal ideal; indeed, each / 
can be written as r. 1 + g with g in Lx and this decomposition is unique (see the 
notes preceding 41 C.18). Let t, more precisely be the mapping of SP into 
which assigns to each x the fixed maximal ideal Lx. 

If L is a maximal ideal then any / e P*(9, R) can be written as r. 1 + g with g 
in L and this decomposition is unique. Let {rfL | / e P*(0>, R), Le 9Jt#} be the family 
of reals such that / = rfL. 1 + gL in Lfor each / andL. For each/ le t /*be the function 
on which assigns to each L the number rfL. If L is a fixed ideal ix, then f*L=fx; 
in fact / = rfL . 1 + gL with gL in L, i.e. gLx = 0, and hence fx = rfL. Thus/* o i = / 
for each / . We shall prove 

(a) The mapping {/->/*} : P*(&>, R) F*(9Jl#, R) is a normed-algebra-embed-
ding. 

S i n c e / * o i = / w e have ||/*|| ^ ||/|| (of course the norms are taken in the corres-
ponding algebras). On the other hand, it is easily seen that |r f L | g ||/|| (for each x we 
have \rfL\ g |/x| + \gLx\ g ||/|| + \gLx\, and inf {|fifLx|} = 0 because gL belongs to 
a maximal ideal), and hence ||/*|| ^ [|/||. Thus the mapping is norm-preserving. 
Clearly, rf+gL = rfL + rgL, rfgL = rfL . rgL and rafL = a . rfL for each / , g, L and 
a e R, and hence the mapping is an algebra-homomorphism. Finally, the mapping is 
injective, because i f / * is the zero-function then | | /* | = 0, and hence [|/|| = 0, which 
implies that / is the zero-function. 

52—Topological Spaces 
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(b) The set si of all f* is a closed subalgebra of F*(®i0>, R) (because P*(&, R) 
is complete and thus si is complete). Next, / * _ 1 [0 ] consists of all maximal ideals 
containing/. In fact,/*L = 0 if and only i f / = 0 . 1 + g with g in L. Thus/* - 1 [0] 
is the hull of / . Consequently / * _ 1 [0 ] is closed in 501̂ .. By 41 E.2 each/* is continuous. 
Finally, the functions/* distinguish the points of SJî .; in fact, if Ll and L2 are distinct 
maximal ideals then we can choose an / in L2 — Lly and then f*L2 = 0, f*L1 4= 0. 
We have proved that the set si of a l l /* is a closed algebra of continuous functions 
on a compact separated topological, hence uniformizable, space SJî  and each con-
stant function belongs to si \ by the Stone-Weierstrass Theorem si coincides with the 
set of all continuous functions on i.e. = C*(9Jl#, R). Combining this with (a) 
we obtain 

(c) The mapping { / ->• / * } : P*(0, R) -> C*(9Jl^, R) is a normed-algebra-iso-
morphism, and SOl^ is separated and uniformizable. 

The space is compact and uniformizable, and hence there exists a unique uni-
formizable proximity q inducing the closure structure of 501̂ . Consider as a pro-
ximity space <|9Jla>|, q}. A function on SOl̂  is proximally continuous if and only if 
it is continuous. The functions / * projectively generate the proximity space and 
the functions/ = / * o i projectively'generate the proximity space SP\ projective genera-
tion is associative (39 A.S), and therefore 

(d) The mapping i of 0 into the proximity space is a projective generating 
mapping; in particular, if SP is separated then i is a proximal embedding. 

Finally let us observe that 

(e) Et (i.e. the set of all fixed maximal ideals) is dense in 
In the opposite case there would exist a non-zero continuous functions on 501̂» 

which is zero on Et; however, such a function does not exist because {/ ->/*}: 
P*(0>, R) C*(5Dt<p, R) is surjective (by (c)). 

The results of 41 E.3 will be summarized in the following theorem. 

41 E.4. Theorem. Let 0 be a uniformizable proximity space and let i be the map-
ping of SP into 9Jt(P*(^, R)) which assigns to each x the fixed maximal ideal of 
functions vanishing at x. Let 7 be the mapping of P*(®l(P*(^', R)), R) into P*(0, R) 
which assigns to each g the function got. Then 

(a) t is a normed algebra-isomorphism. 

(b) i is a proximal projective generating mapping; in particular, if 0 is separated 
then i is a proximal embedding. 

(c) SJ^P*^ , R)) is a uniformizable compact space and Et is dense. 

Proof : t is the mapping with graph {/* - • /} . 
It may be noted that 41 E.4 gives a new proof of existence of compactifications. 

More precisely 
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41 E.5. Corollary. If p is a uniformizable proximity inducing the closure struc-
ture of a space 2P then there exists a compactification X of 9 such that XpY if and 
only if |X| <= \0>\, Y <= \&>\ and Xx n Yx 4= 0, i.e. p is a relativization of the unique 
uniformizable proximity which induces the closure structure of X. 

Proof . Let K consist of all points of \Sf \ and all free maximal ideals of 01 = 
= P*« |^ | , p}, R), and consider the mapping <p of K into 9Jl(52) such that <px = ix 
if x e and cpx = x otherwise. The space J f projectively generated by q> has the 
required properties. 

50* 
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