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Otakar Bor�uvka on minimum spanning tree problem
Translation of both the 1926 papers, comments, history

Jaroslav Ne+set+ril ∗, Eva Milkov-a, Helena Ne+set+rilov-a
Faculty of Mathematics and Physics, Department of Applied Mathematics, Malostranske nam 25,

118 00 Prague, Czech Republic

Abstract

Bor�uvka presented in 1926 the /rst solution of the Minimum Spanning Tree Problem (MST)
which is generally regarded as a cornerstone of Combinatorial Optimization. In this paper we
present the /rst English translation of both of his pioneering works. This is followed by the
survey of development related to the MST problem and by remarks and historical perspective.
Out of many available algorithms to solve MST the Bor �uvka’s algorithm is the basis of the
fastest known algorithms. c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

In the contemporary terminology the Minimum Spanning Tree Problem (shortly,
MST Problem) is the following problem:
Given a /nite set V and a real weight function w on pairs of elements of V , /nd a

tree (V; T ) of minimal weight w(T ) =
∑

(w(x; y): {x; y} ∈ T ).
For example when V is a subset of a metric space and the weight function is de/ned

as the distance then a solution T presents the shortest network connecting all points
of V .

Another formulation, which also explains its name, is the following:

MST Problem: Given a connected (undirected) graph G = (V; E) with real weights
assigned to its edges. Find a spanning tree (V; T ) of G (i.e. T ⊆E) with the minimal
weight w(T ).

This problem can be found implicitly in various contexts early in the 20th century
(see the paper by Graham and Hell [23] for the early history of the problem, see also
a follow up by one of the authors in [42]). However, the problem has been solved
only in 1926 by Bor�uvka [1,2]. His formulation given in [2] is as clear as any of the
above contemporary formulations:
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There are n points given in the plane (in the space) whose mutual distances are
di3erent. The problem is to join them through the net in such a way that

1. any two points are joined to each other either directly or by means of some
other points,
2. the total length of the net would be the smallest.

The MST problem is a cornerstone of Combinatorial Optimization and in a sense
its cradle. The problem is important both in its practical and theoretical applications.
Moreover, the recent development places Bor �uvka’s pioneering work in a new and
very contemporary context. One can even say that out of many available MST-algorithms
Bor�uvka’s algorithm is presently the basis of the fastest known algorithms.
This paper presents the /rst English translation of both Bor�uvka’s papers. (The

original papers are written in Czech, the paper [1] has a six page German sum-
mary, the paper [2] is entirely in Czech). We tried to preserve as much of the style
of the original articles as possible. This we did not do just for the purpose of the
historical accuracy. It is perhaps interesting to compare and to think about the ori-
gins and about the style of early years. Rarely we have such a clear and compact
possibility.
We aimed for a typotranslation (in the sense of e.g. [16]). Moreover, we included

copies of two pages from [1] to give the reader better idea about the original.
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This paper is organized as follows:

1. Introduction.
2. O. Bor �uvka: On a minimal problem (a typotranslation),
Pr-ace mor. p+r-Jrodov+ed. spol. v Brn+e III, 3 (1926) 37–58 [1].
3. O. Bor �uvka: Contribution to the solution of a problem of economic construction

of electricity power networks (a typotranslation), Elektrotechnick-y obzor 15 (1926)
153–4 [2].
4. Remarks on O. Bor�uvka: On a minimal problem [1].
5. Remarks on O. Bor�uvka: Contribution to the solution of a problem of economic

construction of electricity power networks [2].
6. Modern version of Bor�uvka’s article [1].
7. Contemporary formulation of Bor�uvka’s algorithms.
8. History, remarks and perspectives.
9. Appendix: O. Bor �uvka — life and work.

In Sections 3 and 4 we give some remarks which aid in understanding of historical
(pre-algorithmic, pre-graph theory age) Bor�uvka’s text and explain some particular
features. Let us just say at this place that Bor �uvka’s rigorous ‘mathematical’ paper
[1] is at some place lengthy and cumbersome and as a result it was nicknamed as
‘unnecessarily complicated’ (also in view of the particularly elegant later algorithms).
However, in preparing his paper [1] Bor �uvka was honoring the style of his time. He was
at the very beginning of his mathematical career and this may help to explain his rather
pedantic style (as he communicated to one of the authors [51]). However, he was both
convinced about the importance of the work and about the essence of the algorithm.
This is documented by his memoirs [3] and, perhaps more importantly, by the fact that
he published simultaneously with [1] a short note [2] which is translated in Section 3.
This note is little known (e.g. the list of his collected scienti/c works [39] does not
refer to it). In this note, written for the Elektrotechnick-y obzor (Electrotechnical News)
he published a lucid description of his algorithms by means of a geometric example
with 40 cities.
In the /nal two sections /rst we give a formulation of Bor�uvka’s papers in contempo-

rary language and then trace the inOuence of his article and MST problem through the
history. Particularly, we outline the reasons for recent revival of interest in Bor�uvka’s
algorithm.
We end the paper with a brief description of Bor�uvka’s life and works. (Just brieOy:

he was not ‘a Czech engineer’ but rather an important and inOuential mathematician.
He died in 1995 at the age of 96.)

2. Typotranslation of ‘O jist�em probl�emu minim�aln��m’

We preserve fully the rather old-fashioned style of this paper. The reader should
consult the remarks in Section 4 for explanations and comments and then he=she should
compare it with the modern version included in Section 6.
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The numbers in brackets ¡ 1¿; ¡ 2¿, etc. which are positioned at the beginnings
of lines refer to our remarks in Section 4.

ON A CERTAIN MINIMAL PROBLEM
OTAKAR BOR �UVKA

In this article I am presenting a solution of the following problem:

Given a matrix M of numbers r� (; �=1; 2; : : : ; n; n¿2), all positive and pairwise
diAerent, with the exception of r = 0 and r� = r�.
¡ 1¿

From that matrix a set of nonzero and pairwise di3erent numbers should be chosen
such that
(1) For any p1, p2, mutually di3erent natural numbers 6n, it would be possible

to choose a subset of the form

rp1c2 ; rc2c3 ; rc3c4 ; : : : ; rcq−2cq−1 ; rcq−1p2 :

(2) The sum of its elements would be smaller than the sum of elements of any
other subset of nonzero and pairwise di3erent numbers, satisfying the condition (1). 1

¡ 2¿

Solution: Let f0 be an arbitrary of the numbers  and let [f0f1] be the smallest of
the numbers [f0�0] [�0 �= f0]. The set of numbers [f1�1] (�1 �= f0; f1) is then either
empty or not. In the /rst case, let us put

F ≡ [f0f1];

in the second case, the smallest of the numbers [f1�1] is either greater than [f0f1]
or smaller. If it is greater, then let us put

F ≡ [f0f1];

if it is smaller, then let [f1f2] be the smallest of the numbers [f1�1]. The set of num-
bers [f2�2] (�2 �= f0; f1; f2) is either empty or not. In the /rst case, let us put

F ≡ [f0f1]; [f1f2];

in the second case, the smallest of the numbers [f2�2] is either greater than [f1f2]
or smaller. If it is greater, then let us put

F ≡ [f0f1]; [f1f2];

if it is smaller, then let [f2f3] be the smallest of the numbers [f2�2]. The set of
numbers [f3�3] (�3 �= f0; f1; f2; f3) is either empty or not. In the /rst case, let us put

F ≡ [f0f1]; [f1f2]; [f2f3];

1 For the sake of brevity I shall use the symbol [�] instead r� from now on.
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in the second case, the smallest of the numbers [f3�3] is either greater than [f2f3]
or smaller. If it is greater, then let us put

F ≡ [f0f1]; [f1f2]; [f2f3];

if it is smaller we shall continue in the same way. Finally, we get a set of numbers

F ≡ [f0f1]; [f1f2]; [f2f3]; : : : ; [fg−1fg]:

Each of the numbers 1; 2; : : : ; n either occurs among the indices f0; f1; : : : ; fg or not.
¡ 3¿

In the /rst case, let us put

F ≡ F;

in the second case, let f(1)
0 be one of the numbers 1; 2; : : : ; n, which does not oc-

cur among the numbers f0; f1; : : : ; fg. Let [f
(1)
0 f(1)

1 ] be the smallest of the numbers
[f(1)

0 �(1)0 ] (�(1)0 �= f(1)
0 ). Considering this number we construct as before a set

F1 ≡ [f(1)
0 f(1)

1 ]; [f(1)
1 f(1)

2 ]; : : : ; [f(1)
g1−1f

(1)
g1 ]:

During the construction of this set we can come across an element with an index,
which occurs among elements of the set F ; in this case if f(1)

h1 is the /rst index among

these indices, we put f(1)
g1 ≡ f(1)

h1 .
¡ 4¿

Each of the numbers 1; 2; : : : ; n either occurs among the indices f0; f1; : : : ; fg;
f(1)
0 ; f(1)

1 ; : : : ; f(1)
g1 or not. In the /rst case, let us put

F ≡ F; F1;

in the second case, let f(2)
0 be one of the numbers 1; 2; : : : ; n, which does not occur

among the numbers f0; f1; : : : ; fg; f
(1)
0 ; f(1)

1 ; : : : ; f(1)
g1 . Let [f

(2)
0 f(2)

1 ] be the smallest of
the numbers [f(2)

0 �(2)0 ] (�(2)0 �= f(2)
0 ). Considering this number we construct as before

a set

F2 ≡ [f(2)
0 f(2)

1 ]; [f(2)
1 f(2)

2 ]; : : : ; [f(2)
g2−1f

(2)
g2 ]:

During the construction of this set we can come across an element with an index,
which occurs among elements of the sets F; F1; in this case if f(2)

h2 is the /rst index

among these indices, we put f(2)
g2 ≡ f(2)

h2 .
Each of the numbers 1; 2; : : : ; n either occurs among the indices f0; f1; : : : ; fg;

f(1)
0 ; f(1)

1 ; : : : ; f(1)
g1 ; f

(2)
0 ; f(2)

1 ; : : : ; f(2)
g2 or not. In the /rst case, let us put

F ≡ F; F1; F2;

in the second case, we shall continue in the same way. Finally, we get a sequence of sets

F ≡ F; F1; F2; : : : ; Fi−1:

Each of the numbers 1; 2; : : : ; n occurs among the indices of the elements of these sets
at least once.
¡ 5¿
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The sequence of sets F contains either just the set F or more sets. In the /rst case,
let us put

G ≡ F;

in the second case, the set F either does not contain an element, the index of which
occurs in some of the remaining sets of the sequence F or it contains at least one
such element. If it does not contain such an element let us put

G ≡ F;

if it does, let j be the index of a certain element of the set F which occurs at the
same time at least in one of the remaining sets of the sequence F ; we may suppose
that it occurs at least in the set F1.
The sequence of sets F contains either just the sets F; F1 or it contains more sets.

In the /rst case, let us put

G ≡ F; F1;

in the second case, the set F; F1 either does not contain an element the index of which
occurs in some of the remaining sets of the sequence F or it contains at least one
such element. If it does not contain such an element let us put

G ≡ F; F1;

if it does, let j1 be the index of a certain element of the set F; F1 which occurs at the
same time at least in one of the remaining sets of the sequence F ; obviously we may
suppose that it occurs at least in the set F2. The sequence of sets F contains either
just the sets F; F1; F2 or more sets. In the /rst case, let us put

G ≡ F; F1; F2;

in the second case, we shall continue in the same way. Finally, we get a set

G ≡ F; F1; F2; : : : ; Fk−1:

This set contains either all sets of the sequence F or not. In the /rst case, let us put

G ≡ G;

¡ 6¿
In the second case, there exists a set Fk of the sequence F which does not contain

an element the index of which occurs in the set G.
The sequence of sets F contains either just the sets G; Fk or more sets. In the /rst

case, let us put

G1 ≡ Fk;

in the second case, the set Fk either does not contain an element, the index of which
occurs in some of the remaining sets of the sequence F or it contains at least one
such element. If it does not contain such an element let us put

G1 ≡ Fk;



J. Ne)set)ril et al. / Discrete Mathematics 233 (2001) 3–36 9

if it does, let j(1) be the index of a certain element of the set Fk which occurs at the
same time at least in one of the remaining sets of the sequence F ; we may suppose
that it occurs at least in the set Fk+1.
The sequence of sets F contains either just the sets G; Fk ; Fk+1 or more sets. In the

/rst case, let us put

G1 ≡ Fk; Fk+1;

in the second case, we shall continue in the same way. Finally, we get a set

G1 ≡ Fk; Fk+1; : : : ; Fk1−1:

¡ 7¿
This sequence of sets G;G1 contains either all sets of the sequence F or not. In the

/rst case, let us put

G ≡ G;G1;

in the second case, we shall continue in the same way. Finally, we get a sequence of
sets

G ≡ G;G1; : : : ; Gl−1:

The sequence G contains all sets of the sequence F and no set of the sequence G

contains an element index of which occurs with an element of another set of this
sequence.
¡ 8¿

Let us put H� ≡ G� (�= 0; 1; : : : ; l− 1).
The sequence of sets G contains either just the set G or more sets. In the /rst case,

let us put

J ≡ G;

¡ 9¿
in the second case, let

 � be any of the indices which occur in the elements of the set H�;
1; �1 be two of the numbers �;
[k1�1k�11 ] be the smallest of the numbers [ 1 �1 ] when 1 �= �1, [k1�1k�11 ] = 0
when 1 = �1;
M1 be the matrix of numbers [k1�1k�11 ] (1; �1 = 0; 1; 2; : : : ; l− 1); 2

¡ 10¿

G1 ≡ G(1); G(1)
1 ; : : : ; G(1)

l1−1 be the sequence of sets which we get from the matrix
M1 in the same way as we got the sequence of sets G from the matrix M .
H

(1)
�1

be a sequence of those and only those sets chosen from the sequence
H;H1; : : : ; H(l−1), which contains at least one element with the index which occurs
at the same time in the set G(1)

�1
(�1 = 0; 1; : : : ; l1 − 1); put H (1)

�1
≡ H

(1)
�1

, G(1)
�1
.

2 The matrix M1 is obviously symmetrical, it does not contain any number from the set G and its order
equals at most to the largest integer 6n=2.
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Then the sequence G1 contains either only one set G(1) or more sets. In the /rst case,
let us put

J ≡ G;G1;

in the second case, let

 �1 be any of the indices which occur in the elements of the set H (1)
�1

;
2; �2 be two of the numbers �1;
[k2�2k�22 ] be the smallest of the numbers [ 2 �2 ] when 2 �= �2, [k2�2k�22 ] = 0
when 2 = �2;
M2 be the matrix of numbers [k2�2k�22 ] (2; �2 = 0; 1; 2; : : : ; l1 − 1);
G2 ≡ G(2), G(2)

1 ; : : : ; G(2)
l2−1 be the sequence of sets which we get from the matrix

M2 in the same way as we got the sequence of sets G from the matrix M .
H

(2)
�2

be a sequence of those and only those sets chosen from the sequence H (1),

H (1)
1 ; : : : ; H (1)

l1−1, which contains at least one element with the index occurring at

the same time in the set G(2)
�2

(�2 = 0; 1; : : : ; l2 − 1);

put H (2)
�2

≡ H
(2)
�2
; G(2)

�2
.

Then the sequence G2 contains either only one set G(2) or more sets. In the /rst case,
let us put

J ≡ G;G1;G2;

in the second case, let

 �2 be any of the indices which occur in the elements of the set H (2)
�2

;
3; �3 be two of the numbers �2;
[k3�3k�33 ] be the smallest of the numbers [ 3 �3 ] when 3 �= �3, [k3�3k�33 ] = 0
when 3 = �3;
M3 be the matrix of numbers [k3�3k�33 ] (3; �3 = 0; 1; 2; : : : ; l2 − 1);
G3 ≡ G(3); G(3)

1 ; : : : ; G(3)
l3−1 be the sequence of sets which we get from the matrix

M3 in the same way as we got the sequence of sets G from the matrix M .
H

(3)
�3

be a sequence of those and only those sets chosen from the sequence

H (2); H (2)
1 ; : : : ; H (2)

l2−1, which contains at least one element with the index occurring

at the same time in the set G(3)
�3

(�3 = 0; 1; : : : ; l3 − 1);

put H (3)
�3

≡ H
(3)
�3
; G(3)

�3
.

Then the sequence G3 contains either only one set G(3) or more sets. In the /rst case,
let us put

J ≡ G;G1;G2;G3;

in the second case, we shall continue in the same way. Finally, we get a set

J ≡ G;G1;G2;G3; : : : ;Gu−1;

which is a solution of the given problem.
¡ 11¿
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Proof: To prove this result it suUces to prove the following theorems:
I. For arbitrary choice of the initial indices of the sets F of the sequence F , the

number [mn] from the matrix M occurs in some set of this sequence if and only if it
is the smallest of either of the numbers [m$]($ �= m) or of the numbers [n%](% �= n).

II. In the matrix M there exists at least one set of nonzero and pairwise di3erent
numbers; ful9lling condition (1) and such that the sum of its elements is not big-
ger than the sum of elements of any other group of nonzero and pairwise di3erent
numbers; ful9lling condition (1).
III. If K ′ is one of the sets with these properties; it contains the sequence of

sets G.
IV. If u¿2 and v6(u−1) and if the set K ′ contains the sets G;G1; : : : ;Gv−1, than

K ′ contains the set Gv.
V. The set K ′ does not contain an element which is not contained in the set J .

Indeed, then according to I, the set J is fully determined by the matrix M and
according to III, IV and V it is identical with every set which has properties of the
set K ′; therefore the set J is the solution of the given problem.

?

? ?

1. It follows from the construction that the numbers contained in the set J are
nonzero and pairwise diAerent; their number is n− 1.
2. Let L be a set of nonzero and pairwise diAerent numbers contained in the

matrix M . If and only if the set L contains at least one number from each row of M ,
then I say that L is admissible.

3. It follows from the construction that the set J is admissible.
4. For every choice of the initial indices of the sets F of the sequence F the

construction of the set J determines a certain order of elements in each set of this
sequence. I call a set Fp of the sequence F ordered if and only if its elements have
this order.
5. For every choice of the initial indices of the sets F of the sequence F the

construction of the set J determines a certain order of sets F in the sequence F . I
call the sequence F ordered if and only if sets F have this order.
6. Let

Fp ≡ [f0f1]; : : : ; [fkfk+1]; : : :

be an ordered set of the sequence F with g(¿2) elements. For a /xed k (16k6g−1)
and j (16j6k + 1) it follows from the construction that

[fjf�]¿[f�f�+1]¿[fkfk+1] (�= 0; : : : ; j − 1):

¡ 12¿
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Theorem I: For arbitrary choice of the initial indices of sets F of the sequence F ;
the number [mn] from the matrix M occurs in some set of this sequence if and only
if it is the smallest either of the numbers [m$]($ �= m) or of the numbers [n%](% �= n).

1. Let [mn] be an element of the set Fp. It suUces to consider the case when the
ordered set Fp has the form

[f0f1]; : : : ; [mn]; : : : :

It follows from the construction that [mn] is the smallest of the numbers [m�](� �=
f0; : : : ; m); so according to 6 it is also the smallest of the numbers [m$]($ �= m).

2. Let [mn] be the smallest of the numbers [m$]($ �= m). Let Fp be the /rst set in
the ordered sequence of sets F which contains the element [mp] with the index m. It
suUces to consider the case when the set Fp contains at least two elements. There are
two and only two mutually exclusive cases:
m is not the last index in the ordered set Fp,
m is the last index in the ordered set Fp.
In the 9rst case, the ordered set Fp has the form

[f0f1]; : : : ; [mp]; : : : ;

thus according to the just derived result [mp] is the smallest of the numbers [m$]($ �=
m) and thus it is identical with [mn].
In the second case, the ordered set Fp has the form

[f0f1]; : : : ; [pm]

and the set of numbers [m�](� �= f0; : : : ; m) is either empty or not. If it is empty,
it follows from 6 that the number [pm] is smaller than each of the numbers [mf�]
(f� �= p;m); thus it is the smallest of the numbers [m$] and thus it is identical with
the number [mn]. If it is not empty, then it follows from the construction that the
number [mp] is smaller than the smallest of the numbers [m�] and according to 6 it
is also smaller than the smallest of the numbers [mf�]; thus it is the smallest of the
numbers [m$] and thus it is identical with the number [mn].
¡ 13¿

7. The set J is uniquely determined by the matrix M .
This result follows immediately from the construction of the set J and from

Theorem I.
¡ 14¿

Theorem II: In the matrix M there exists at least one set of nonzero and pairwise
di3erent numbers ful9lling condition (1) and such that the sum of its elements is not
greater than the sum of elements of any other set of nonzero and pairwise di3erent
numbers; ful9lling condition (1).
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Indeed, on the one hand, there is at least one set of nonzero and pairwise diAerent
numbers ful/lling condition (1) in the matrix M , on the other hand the number of
these sets is /nite. 3

¡ 15¿
8. From now on I shall use the symbol K ′ for one of the sets with the properties

given by Theorem II.
¡ 16¿

9. Let L be a set of nonzero and pairwise diAerent numbers of the matrix M . Let
p1 and p2 be two diAerent indices of the elements of the set L. I say that the set L
is complete for the indices p1 and p2 if and only if there is at least one nonempty
subset of the set L of the form

[p1q2]; [q2q3]; : : : ; [qk−1p2]:

¡ 17¿
10. The set L is complete for the indices p2 and p1 if and only if it is complete

for the indices p1 and p2.
11. The set L ful/lls condition (1) if and only if it is admissible and complete for

any two indices.
¡ 18¿

12. Let L be a set of nonzero and pairwise diAerent numbers of the matrix M ,
complete for two indices p1 and p2. Each nonempty subset of the set L, which has at
least one element of the form

[p1q2]; [q2q3]; : : : ; [qk−1p2]:

I shall call the group for the indices p1; p2. If its elements are written exactly in this
order, then I shall call it the ordered group for the indices p1; p2.
¡ 19¿

13. The ordered set for the indices p1; p2 will be denoted by the symbol Lp1p2 . Lpq
is an empty set if and only if p=q. So if [mn] is an element of the set for the indices
p1; p2, then either

Lp1p2 ≡ Lp1m; [mn]; Lnp2 or Lp1p2 ≡ Lp1n; [nm]; Lmp2

and the sets Lp1m and Lnp2 or Lp1n and Lmp2 do not contain the element [mn].
¡ 20¿

14. Let L be a set of nonzero and pairwise diAerent numbers of the matrix M ,
complete for any two indices %%; %%+1 (%= 1; 2; : : : ; n− 1; n¿3).
¡ 21¿

Let p1 ≡ %1; p2 ≡ %n and p1 �= p2. Then the set L is complete for the indices
p1; p2.
Indeed, let us consider a set of numbers

L ≡ Lp1%2 ; L%2%3 ; : : : ; L%n−1p2 ;

3 It is, for example, the set of nonzero numbers in an arbitrary row of the matrix M .
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exactly in this order. Let [p1q2] be the last number of this set which contains
index p1. Then either q2 ≡ p2 or q2 �= p2. In the /rst case, let us put

Lp1p2 ≡ [p1p2];

in the second case, there is at least one element with index q2 in the set L which
follows the element [p1q2]. Let [q2q3] be the last number of the set L which contains
index q2. Then either q3 ≡ p2 or q3 �= p2. In the /rst case, let us put

Lp1p2 ≡ [p1q2]; [q2p2];

in the second case, there is at least one element with index q3 in the set L which
follows the element [q2q3]. Let [q3q4] be the last number of the set L which contains
index q3. Then either q4 ≡ p2 or q4 �= p2. In the /rst case, let us put

Lp1p2 ≡ [p1q2]; [q2q3]; [q3p2];

in the second case, we shall proceed in the same way. After /nite number of steps we
evidently get an ordered set for indices p1; p2 contained in the set L.
15. Let L be a set of nonzero and pairwise diAerent numbers of the matrix M . Let

L∗ be a subset of the set L. I shall use the symbol L− L∗ for the set of all numbers
contained in the set L but not contained in the set L∗.
¡ 22¿

Theorem III: The set K ′ contains the sequence of sets G.

The theorem evidently holds if M is a matrix of order 2 or 3. So let n¿4. To get a
contradiction, assume that the theorem is not true. Indeed, let [mn] be a number of the
matrix M which occurs in the sequence G and does not occur in the set K ′. It follows
from the construction that the set G is identical with the set F . It follows then from
Theorem I that [mn] is either the smallest of the numbers [m$]($ �= m) or the smallest
of the numbers [n%](% �= n). Without loss of generality, we may assume that it is the
smallest of the numbers [m$]. The set K ′ necessarily contains the element [mp] with
the index m. According to the assumption [mp] is not identical with the number [mn];
so it must be greater.
The set K ′ is complete for the indices m; n; so there are two and only two mutually

exclusive cases:
Each subset of the set K ′ for the indices m; n contains the number [mp].
There is at least one set for the indices m; n in the set K ′ which does not contain

the number [mp].
¡ 23¿

In the 9rst case, there is a set for the indices m; n within the set K ′ which according
to 13 can be written in the form

[mp]; Lpn
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and the set Lpn for the indices p; n necessarily contains at least one element. The set
K ′′ ≡ K ′ − [mp]; [mn]
¡ 24¿

of nonzero and pairwise diAerent numbers of the matrix M

1. is admissible;
2. is complete for any two indices p1; p2. Indeed, either there exist at least one set
for the indices p1; p2 in the set K ′ which does not contain the element [mp] and
thus it is also the set for the indices p1; p2 in the set K ′′ or each set for the indices
p1; p2 in the set K ′ contains the element [mp]. But in this case, in a proper notation
of both the indices p1; p2, within the set K ′′ there evidently exist sets (if nonempty)
Lp1m; [mn]; Lnp; Lpp2 and thus according to 14 there exists the set for the indices
p1; p2.
3. the sum of elements of the set K ′′ is less than the sum of elements of the set K ′

— which is a contradiction.

In the second case, there exists at least one set for the indices m; n in the set K ′

which can be written in the form

[mq]; Lqn:

According to the assumption necessarily q �= n, and thus [mq]¿ [mn]. The set Lqn
for the indices q; n necessarily contains at least one element. It suUces to apply the
above-described reasoning for the set

K ′′ ≡ K ′ − [mq]; [mn]:

¡ 25¿
16. Let L be a set of nonzero and pairwise diAerent numbers of the matrix M . The

set L is not complete for every two indices if and only if it is possible to split the
set L into two nonempty subsets L1; L2 whose union is L and such that none of the
subsets L1; L2 contains an element with an index occurring also in the other subset.
¡ 26¿

1. Let L1; L2 be two sets of the above-described properties, let [p1q′2] be an element
of the set L1, let [q′k−1p2] be an element of the set L2 and let us assume that in the
set L there exists at least one set for the indices p1; p2

Lp1p2 ≡ [p1q2]; [q2q3]; : : : ; [qk−1p2]:

Because according to the assumption the set L2 contains no element with the index p1,
the element [p1q2] is necessarily contained in the set L1. In a similar way, we could
show that the set L1 also contains all other elements of the set Lp1p2 , especially the
element [qk−1p2]. Thus, both of the sets L1; L2 contain an element with the index p2

— which is a contradiction.
2. Let [p1q2]; [qk−1p2] be two elements of the set L; p1 �= p2 and let us as-

sume that the set L is not complete for the indices p1; p2. Let us denote L1 ≡
[p1q2]. The set L − L1 either does not contain an element the index of which oc-
curs also in the set L1 or it contains at least one such element. In the /rst case, let
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us put

L1 ≡ L1; L2 ≡ L− L1;

in the second case, let L2 be the subset of the set L − L1 which contains elements
with indices occurring at the same time in the set L1. The set L−L1 −L2 either does
not contain an element with index occurring at the same time in the set L1, L2 or it
contains at least one such element. In the /rst case, let us put

L1 ≡ L1;L2; L2 ≡ L− L1 − L2;

in the second case, let L3 be the subset of the set L−L1−L2 which contains elements
with indices occurring at the same time in the sets L1, L2. The set L− L1 − L2 − L3

either does not contain an element with index occurring at the same time in the sets
L1, L2, L3 or it contains at least one such element. In the /rst case, let us put

L1 ≡ L1;L2;L3; L2 ≡ L− L1 − L2 − L3;

in the second case, we continue as before. We shall evidently get two sets L1, L2 such
that none of them contains an element with index occurring in the other set. The set L1
evidently contains at least one element. The set L2 also contains at least one element.
Indeed, it follows from the construction that the set L1 is complete for any two indices;
thus it does not contain the element [qk−1p2]. Thus the element [qk−1p2] is contained
in the set L2.
¡ 27¿

17. Let L be a set of nonzero and pairwise diAerent numbers of the matrix M . Let
L1; L2 be nonempty subsets of the set L whose union is L and such that none of the
subsets L1; L2 contains an element with an index occurring also in the other subset.
Let L∗ be a nonempty subset of the set L, complete for any two indices. One of the
sets L1; L2 contains the whole set L∗.

This theorem follows immediately from 16.
18. Each set F+ (+ /xed, 6i−1) of the sequence F is complete for any two indices

p1, p2.
It evidently suUces to consider the set F . Let p1 ≡ fhp2 ≡ fk (h; k6g; h �= k).

¡ 28¿
Then either h¡k6g or k ¡h6g.
In the /rst case,

[p1fh+1]; [fh+1fh+2]; : : : ; [fk−1p2]

is the ordered set for the indices p1; p2, in the second case,

[p1fh−1]; [fh−1fh−2]; : : : ; [fk+1p2]

is the ordered set for the indices p1; p2.
19. Each set G� (� /xed, 6l−1) of the sequence G is complete for any two indices

p1, p2.
It evidently suUces to consider the set G. If G ≡ F then the theorem is true

according to 18.
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So let G ≡ F , F1; : : : ; Fk−1 (k¿2). Let us put

F ( −1) ≡ F; F1; : : : ; F −1 ( 6k):

Proof by induction: Let us assume that each set of the sets F , F (1); : : : ; F (m−1) (m
/xed, 6k − 1) is complete for any two indices p1; p2. We shall show that then also
the set F (m) is complete for any two indices.

It suUces to consider the case in which the index p1 occurs only among the indices
of the elements of the set F (m−1), the index p2 occurs only among the indices of the
elements of the set Fm. It follows from the construction of the set G that in the set
F (m−1) there is an element with the index jm−1 which occurs also among the indices
of the elements of the set Fm; so it holds that p1 �= jm−1; p2 �= jm−1: According to the
assumption the set F (m−1) and thus also the set F (m) are complete for the indices p1,
jm−1 and according to 18 the set Fm and thus also the set F (m) are complete for the
indices jm−1, p2. Thus according to 14 the set F (m) is complete for the indices p1; p2.
¡ 29¿

20. Each set H (%)
�%

(% /xed, 6u − 1; �% /xed, 6l% − 1) is complete for any two
indices p1; p2.
¡ 30¿

It evidently suUces to consider the set H (%). If %=0 (H (0) ≡ H ≡ G) then according
to 19 the theorem is true. So let %¿1.

Proof by induction: Let us assume that each set of the sequence H�; H
(1)
�1
; : : : ; H (m−l)

�m−1

(m /xed, 6%; � = 0; 1; : : : ; l − 1; �1 = 0; 1; : : : ; l1 − 1; �m−1 = 0; 1; : : : ; lm−1 − 1) is
complete for any two indices p1; p2 and we shall show that then also the set H (m) is
complete for any two indices.

If the set H (m) would not be complete for any two indices then according to 16 it
would be possible to split it into two nonempty subsets L1; L2 whose union is L and
such that none of the subsets L1; L2 contains an element with an index occurring also in
the other subset. It follows from the construction that H (m) ≡ H (m); G(m); thus one of
the sets L1; L2 would contain at least one element of the set H (m), thus it would contain
at least one element of a certain set of the sequence H (m−l)

�m−1
and thus according to 17

it would contain the whole set; thus according to the construction it would contain at
least one element of the set G(m) and thus according to 19 and 17 it would contain
the whole set; thus according to the construction it would contain at least one element
of each of the remaining sets of the sequence H (m) and thus according to 17 it would
contain this whole sequence of sets; thus the other of the sets L1; L2 would be empty
— which is a contradiction.
21. The set J ful/lls condition (1).
This theorem follows immediately from 3, 20 and 11.
22. It follows from the construction that the sequence of sets H (%)

�%
(% is /xed, 6u−1;

�% = 0; 1; : : : ; l% − 1) contains exactly all numbers which are contained in the sequence
G;G1; : : : ;G% and nothing else.
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23. For u¿2 it follows from the construction that no set of the sequence of sets H (%)
�%

(% is /xed, 6u− 2; �% = 0; 1; : : : ; l% − 1) contains an element with an index occurring
in another set of the same sequence.
¡ 31¿

24. Let u¿2; v6u − 1. If the set K ′ contains sets G;G1; : : : ;Gv−1 then according
to 22 it contains the sequence of sets H (v−l)

�v−1
; thus it has the form

K ′ ≡ H (v−1); H (v−1)
1 ; : : : ; H (v−1)

lv−1−1;M
(v−1):

25. It follows immediately from 23 and 16 that the set M (v−1) is not empty.
26. For each set of the sequence H (v−1)

�v−1
there is at least one element in the set

M (v−1) which contains exactly one index occurring among the indices of the elements
of this set.
Indeed, otherwise it would follow immediately from 23 and 16 that the set K ′ is

not complete for any two indices.
27. Let N (v−1)

�v−1
be the set of all those elements of the set M (v−1) whose exactly one

index occurs among the indices of the elements of the set H (v−1)
�v−1

(�v−1 /xed).

From now on I use the symbol M (v−1)
∗ for the set of pairwise diAerent numbers

occurring in the set N (v−1); N (v−1)
1 ; : : : ; N (v−1)

lv−1−1 and thus also in the set M (v−1).

28. According to 26 the set M (v−1)
∗ contains at least one element.

29. Let [mn] be an element of the set M (v−1)
∗ . Let k1; k2 be arbitrary two indices

which occur as indices m; n in the same two diAerent sets of the sequence H (v−1)
�v−1

. Let
[k1k2] �= [mn]. The number [k1k2] is not an element of the set K ′.
¡ 32¿

Without loss of generality, we can assume that the indices m; k1 occur among the
indices of elements of the set H (v−1), the indices n; k2 occur among the indices of
elements of the set H (v−1)

1 . Let us assume that on the contrary [k1k2] is an element of
the set K ′. The set

K ′′ ≡ K ′ − [k1k2]

1. is admissible;
2. is complete for any two indices p1; p2. Indeed, there is a set for the indices p1; p2

in the set K ′. This set either does not contain the element [k1k2] and thus it is contained
in the set K ′′ or it contains the element [k1k2]. But in this case according to 20 in the
set K ′′ there exist sets (if nonempty) Lk1m, Lnk2 and thus according to 13 in a proper
notation of the indices p1; p2 there are sets (if nonempty) Lp1k1 ; Lk1m; [mn]; Lnk2 ; Lk2p2 ;
thus according to 14 there exists the set for the indices p1; p2 in the set K ′′;
3. the sum of elements of the set K ′′ is less than the sum of elements of the set K ′

— which is a contradiction.
30. The set M (v−1)

∗ is contained in the matrix Mv. Indeed, if we assume the contrary,
we will get a contradiction. Let [mn] be an element of the set M (v−1)

∗ ; without loss of
generality, we can assume that the index m occurs among the indices of elements of
the set H (v−1), the index n occurs among the indices of elements of the set H (v−1)

1 .
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For the sake of simplicity, let [k1k2] be the smallest of the numbers [ 1 2] ( 1, ( 2,
respectively) is any of the indices occurring in elements of the set H (v−1) (H (v−1)

1 ,
respectively)) and let us assume that the number [mn] is not contained in the matrix
Mv; thus [mn]¿ [k1k2].
The set K ′′ ≡ K ′ − [mn]; [k1k2] of nonzero and pairwise diAerent numbers of the

matrix M (according to 29)

1. is admissible.
2. is complete for any two indices p1; p2. Indeed, either there is at least one set for
indices p1; p2 in the set K ′ which does not contain the element [mn] and thus it is also
the set for the indices p1; p2 in the set K ′′ or each set for the indices p1; p2 in the
set K ′ contains the element [mn]. But in this case there exist according to 20 sets (if
nonempty) Lmk1 ; Lk2n in the set K ′′ and thus according to 13 in a suitable notation for the
indices p1; p2 in the set K ′′ there exist sets (if nonempty) Lp1m; Lmk1 ; [k1k2]; Lk2n; Lnp2 ;
thus according to 14 there is the set for the indices p1; p2 in the set K ′′.
3. The sum of elements of the set K ′′ is less than the sum of elements of the set

K ′ — which is a contradiction.

Theorem IV: Let u¿2, v6u−1. If the set K ′ contains the sequence G;G1; : : : ;Gv−1;
than K ′ contains the set Gv.

Indeed, if the setK ′ contains the sequence G;G1; : : : ;Gv−1, then according to 24, 27, 28,
30 it contains the nonempty set of numbers M (v−1)

∗ which is contained in the matrix Mv.
The set M (v−1)

∗ of nonzero and pairwise diAerent numbers contained in the matrix
Mv

1. is admissible for the matrix Mv according to 26;
2. is complete for any two indices. Indeed, otherwise it would be possible (according
to 16) to split it into two nonempty subsets whose union is the whole set and none
of the subsets contains an element with an index occurring also in the other subset. It
would follow immediately from 23 and 16 that the set K ′ is not complete for any two
indices — which is a contradiction;
3. obviously, the sum of elements of the set M (v−1)

∗ is not greater than the sum
of elements of any other set contained in the matrix Mv and ful/lling two preceeding
conditions.
Thus, the set M (v−1)

∗ is the set of numbers of the matrix Mv which have the same
properties as the set of numbers K ′ of the matrix M . Thus by the Theorem III it
contains the set Gv.
31. The set K ′ contains the set J .
This theorem follows immediately from Theorems III and IV.

Theorem V: The set K ′ does not contain an element which is not contained in the
set J .



20 J. Ne)set)ril et al. / Discrete Mathematics 233 (2001) 3–36

Indeed, according to 21, the set J ful/lls condition (1). Thus the sum of its elements
cannot be less than the sum of elements of the set K ′.

32. The set J is the solution of the given problem.
This theorem follows immediately from 7, 31 and Theorem V.
Note: If the numbers [�] of the matrix M ful/ll special conditions, we can interpret

them as distances among n points; with regard to the solution described above the
following problem can be solved:

Let n [¿2] points be given in the plane (generally in the r-dimensional space)
whose mutual distances are di3erent. The problem is to join them by a net such that

(1) every two points are joined either directly or through some other points,
(2) the length of the whole net is minimum.

¡ 33¿
In the following picture one can see the solution of this problem for a special case. 4

¡ 34¿

3. Typotranslation of ‘P1r��sp1evek k 1re1sen�� ot�azky ekonomick�e stavby
elektrovodn��ch s��t��’

A CONTRIBUTION TO THE SOLUTION OF A PROBLEM OF ECONOMIC
CONSTRUCTION OF POWER-NETWORKS

Dr. Otakar Bor �uvka

In my paper On a certain minimal problem I proved a general theorem, which, as
a special case, solves the following problem:

4 It is explained in my paper ‘A contribution to the solution of a problem of economic construction of
power-network’ in Elektrotechnick-y obzor 15, 1926 how (based on the result of this paper) one can /nd
the solution eAectively.
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Fig. 1.

Fig. 2.

There are n points given in the plane (in the space) whose mutual distances are
all di3erent. We wish to join them by a net such that

1. any two points are joined either directly or by means of some other points,
2. the total length of the net would be the shortest possible.

It is evident that a solution of this problem could have some importance in electricity
power network designs; hence I present the solution brieOy using an example. The
reader with a deeper interest in the subject is referred to the above quoted paper.
I shall give the solution of the problem in the case of 40 points given in Fig. 1.
I shall join each of the given points with the nearest neighbour. Thus, for example,

point 1 with point 2, point 2 with point 3, point 3 with point 4 (point 4 with point 3),
point 5 with point 2, point 6 with point 5, point 7 with point 6, point 8 with point 9
(point 9 with point 8), etc. I shall obtain a sequence of polygonal strokes 1; 2; : : : ; 13
(Fig. 2).
I shall join each of these strokes with the nearest stroke in the shortest possible

way. Thus, for example, stroke 1 with stroke 2, (stroke 2 with stroke 1) stroke 3 with
stroke 4, (stroke 4 with stroke 3), etc. I shall obtain a sequence of polygonal strokes
1; 2; : : : ; 4 (Fig. 3). I shall join each of these strokes in the shortest way with the nearest
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Fig. 3.

Fig. 4.

stroke. Thus stroke 1 with stroke 3, stroke 2 with stroke 3 (stroke 3 with stroke 1),
stroke 4 with stroke 1. I shall /nally obtain a single polygonal stroke (Fig. 4), which
solves the given problem.

4. Remarks on Bor5uvka ‘O jist�em probl�emu minim�aln��m’ [1]

For the sake of historical accuracy, we did not try to modernize the original text.
Instead we tried to keep as close to the original as possible. Here are some of very
few linguistic transpositions which were necessary and which we want to mention
explicitly:
The Bor�uvka term ‘+r-adek’ or ‘+rada’ (= Czech for ‘row’, ‘sequence’) is used thorough

out the text. For better understanding we are translating this as

(a) row (in a matrix context),
(b) sequence,
(c) set (when only membership is used).
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Another frequently used word is ‘grupa’ (= group). This we translate as set, se-
quence, collection.
We note that the word set (in the Czech equivalents ‘mno+zina’ or old-fashioned

‘mno+zstv-J’) is never used in the whole of Bor�uvka’s paper.
Here are some critical and explanatory remarks to the text. These refer to the num-

bering ¡ i¿ in the text.
¡ 1¿ In the present interpretation of MST problem we see that the number r�
of the matrix M denote the weight of edge [; �] of complete graph Kn (with ver-
tices 1; 2; : : : ; n). Indices ; � correspond to the vertices of Kn. Thus the word ‘index’
in most cases refers to a vertex of a graph. Bor �uvka assumes from the very begin-
ning that all the weights are distinct. This assumption is not justi/ed. Bor �uvka as
an analyst was aware of perturbation argument [4] and today this is an assumption
which is even easier to satisfy by any tie-breaking procedure (for example we list
all weights and in the case that two weights are equal the /rst weight on our list is
bigger).
¡ 2¿ A remark is needed at the very beginning: Although Bor�uvka’s motivation was
geometric (as clearly documented by [2]), his paper is written in algebraic language.
There are no notions of neighborhood, connectivity, tree, graph. We can also read
the paper [1] as a witness (and an apotheosis) of the eAectivity of graph-theory lan-
guage (which was mostly developed after 1926 and which was then not yet related to
optimization problems).
¡ 3¿ The set F corresponds to a simple path f0f1; f1f2; : : : ; fg−1fg where each
fifi+1 is the edge of the smallest weight incident with fi.
¡ 4¿ Similarly as in the above remark ¡ 3¿ the set F1 corresponds to a simple
path from the vertex f(1)

o to the vertex f(1)
g1 (with the same properties as the set F).

This path F1 can be attached to the path F at the vertex F (1)
h1 .

¡ 5¿ The set F corresponds to i simple paths F; F1; : : : ; Fi−1. Some of them, or all,
can have common vertices. Thus F corresponds to a forest. Bor �uvka now explicitly
and elaborately describes the components G;G1; : : : ; Gl−1 of this forest.
¡ 6¿ If G contains all sets of the sequence F then G corresponds to the spanning
tree of Kn.
¡ 7¿ I.e. G1 is the second component of the forest formed by the paths F; F1; : : : ; Fi−1.
¡ 8¿ This completes the description of the /rst step in Bor�uvka’s algorithm: G is
the forest which we get by joining each vertex to its nearest neighbour.
How diUcult it is to formalize this step without using the word ‘tree’!

¡ 9¿ Thus J is the desired solution.
¡ 10¿ This completes the description of the second step (contraction) in Bor�uvka’s
algorithm.
¡ 11¿ J is the (uniquely determined) /nal tree. This is the end of Bor�uvka’s algo-
rithm. The brevity of the description of sets G1;G2; : : : indicates that the author was
well aware of contraction- and recursive-part of algorithm.
Now Bor�uvka proves the correctness of the algorithm.

¡ 12¿ What follows are introductory remarks and de/nitions.
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Further remarks, de/nitions and propositions accompanying the text are numbered
by 7; 8; : : : ; 25. As always we preserve the author’s style.
Bor �uvka proceeds by stating and proving Theorems I–V (stated at the beginning of

the proof).
¡ 13¿ This ends the proof of Theorem I. It follows a remark.
¡ 14¿ Proof of Theorem II.
¡ 15¿ End of proof of Theorem II. It follows a chain of Remarks 8–15.
¡ 16¿ I.e. K ′ is any solution of the MST problem.
¡ 17¿ Today we would simply say that L connects p1 and p2, or that p1 and p2

belong to the same component of L.
¡ 18¿ I.e. L is connected and spanning iA (1).
¡ 19¿ The set of indices p1p2 is of course a path from p1 to p2.
¡ 20¿ What is meant here is that any path Lp1p2 containing [m; n] can be written in
this way.
¡ 21¿ This should mean: If pairs p1 = q1q2; q2q3; : : : ; qn−1p2 are in the same com-
ponent of L then also p1 and p2 are in the same component.
¡ 22¿ End of remarks and de/nitions. Now the key part of the proof.
¡ 23¿ Recall: complete means connected.
¡ 24¿ Read: K ′′ = (K ′ − [mp]) ∪ [mp].
As everywhere we preserve all author’s types.

¡ 25¿ This ends the Proof of Theorem III.
Twice we have here the exchange axiom in a rudimental form. No bases and circuits

are mentioned, yet the key formula is displayed. What follows is a sequence of remarks
and de/nitions.
¡ 26¿ I.e. any not connected graph has at least two components. What follows is
proof divided into two steps.
¡ 27¿ End of proof of 16.
¡ 28¿ F is the /rst group de/ned at the beginning of the algorithm.
¡ 29¿ So Gi are connected subgraphs of G.
¡ 30¿ So all the sets created in the algorithm are connected (this seems to be
the crucial diUculty in Bor�uvka’s writing: he tries to control connectivity at each
step).
¡ 31¿ Of course the recursive nature of Bor �uvka’s algorithm could not be well
understood (in 1926). What follows is discussion of another minimal spanning tree
denoted by K ′.
¡ 32¿ This is anticipating the statement of Theorem IV.
¡ 33¿ The example given here is the same as the one analyzed in [2]. However, the
example given here is in the correct position while in [2] it is reversed.
¡ 34¿ What follows is six pages of German summary. This is the translation of the
beginning of the article up to statements I–V (which follow our remark ¡ 11¿. We
included here copies of the /rst and the last page of this translation.
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5. Remarks on ‘P1r��sp1evek k 1re1sen�� probl�emu ekonomick�e konstrukce
elektrovodn��ch s��t��’

This is a strikingly diAerent paper written in a nearly contemporary style. Example
given (40 cities) is derived from the original motivation of Bor�uvka’s research and
it is the same example given at the end of [1]: the electri/cation of South-Moravia
district in the early 20th century. (South-Moravia is one of the developed and cultured
parts of Europe. It is and has been for centuries fully industrialized and yet a wine
growing rich and beautiful country.)
In [39, p. 52] Bor �uvka clari/es how he got hold of the ‘minimal problem’. The

problem was communicated to him by a friend Jind+rich Saxel — an employee of
Z-apadomoravsk-e elektr-arny (West-Moravian Powerplants). (Saxel as a Jew was exe-
cuted in Brno by Nazis.) During the war when Czech universities were closed the
company Z-apadomoravsk-e elektr-arny oAered a job to Bor�uvka [39, p. 83].
As well as in the translation of the /rst paper we tried to keep the view of the

original article. A careful reader can observe that the last /gure (Fig. 4) is reversed.
This was noted already by Bor�uvka in 1926 as seen by a copy which he mailed to
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Prof. Byd+zovsk-y, see the following /gure).

6. Modern version of Bor5uvka’s article and algorithm

We now include a modern summary of Bor�uvka’s article [1]:
Bor �uvka begins his proof by joining each vertex (= index) to its nearest neighbour.

By an elaborate discussion of cases in the resulting graph-forest he gets a sequence G

of paths F; F1; : : : ; Fi−1 which cover all vertices.
From this set (by an elaborate discussion) he creates the tree components. These are

denoted by G;G1; : : : ; Gl−1.
If there is only one component he gets the desired spanning tree denoted by J .
If there are more components he performs reduction of the matrix M to a smaller

matrix M1 and he explicitly remarks that the order of M1 is 6 n=2.
Having established the /rst step Bor�uvka proceeds faster and by iterating the both

steps he constructs sets

G;G1; : : : ;Gu−1

which together form the desired set J .
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(Thus u denotes the number of iterations.)
Then he presents four statements which together establish that J is the desired

solution:
Theorem I claims that path covered G contains an edge [mn] if it is the shortest

edge for either m or n.
Theorem II claims that minimal solution exists.
Theorem III claims that any minimal solution K ′ contains G.
Theorem IV claims that if a minimal solution K ′ contains G;G1; : : : ;Gv−1 then K ′

contains Gv as well
(and consequently K ′ contains J ).
Theorem V claims that a minimal solution K ′ does not contain any edge not in J .
Theorem I follows from the construction (after remarks and de/nitions 1–6 which

preceed the proof).
It is remarked in 7 that the solution set J is uniquely determined.
Theorem II is quickly proved by a /niteness argument.
We know by now that Theorem III (and its iterated version Theorem IV) is the key

result.
Bor �uvka insert Remarks 8–15 before proving Theorem III.
Thus in 8 he states that he will denote by K ′ any solution to the MST problem and

in 9 he de/nes a connected set L (which he calls complete). In 12 he de/nes a path
(and ordered path) joining two vertices (which he calls group) and establishes basic
properties.
After this he proves Theorem III. He proceeds by contradiction. Let [mn] occurs

in G (i.e. forest after the /rst iteration) and does not belong to K ′ (a minimal
tree). The key argument is short and is contained between our remarks ¡ 21¿ and
¡ 24¿: Without loss of generality, let [mn] be the shortest edge incident with m
(by Theorem I). Thus K ′ contains a longer edge [mp]. Bor �uvka distinguishes two
cases:

(1) Every path in K ′ from m to n contains the edge [mp].
(2) There exists a path in K ′ from m to n not containing edge [mp].

In case (1) he considers the set K ′′ = K ′ − [mp] ∪ [mn] and proves that K ′′ is a
spanning tree of shorter length.
In case (2) there exists a path in K ′ from m to n which avoids [mp] and thus it

starts with [m; q]. But then K ′′ = K ′ − [mq] ∪ [mn] is a shorter minimal spanning tree
again. This proves Theorem III.
Now Bor�uvka continues for four more pages to introduce elaborate constructions

to handle Theorem IV. This is (in his case) necessary as he does not refer to any
topology and the recursive nature of the procedure was in 1926 of course not fully
understood.
Theorem V is then very short one as J is the shortest solution:
‘32. Set J solves the given problem’.
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7. Bor5uvka’s algorithm and proof in the present terminology

Problem (MST). Let G= (V; E) be undirected connected graph with n vertices and m
edges. For each edge e let w(e) be a real weight of the edge e and let us assume that
w(e) �= w(e′) for e �= e′.

Find a spanning tree T = (V; E′) of the graph G such that the total weight w(T ) is
minimum.

Solution (Bor �uvka’s algorithm). 1. Initially all edges of G are uncolored and let each
vertex of G be a trivial blue tree.
2. Repeat the following coloring step until there is only one blue tree.
3. Coloring step (Bor �uvka): For every blue tree T , select the minimum-weight un-

colored edge incident to T . Color all selected edges blue.

Proof (Correctness of Bor�uvka’s algorithm). It is easy to see that at the end
of Bor�uvka’s algorithm the blue colored edges create a spanning tree (in each step
the distinct edge-weights guarantee to get a blue forest containing all
vertices).
Now we show that the blue spanning tree obtained by Bor�uvka’s algorithm is

the minimum spanning tree and that is the only minimum spanning tree of the given
graph G.
Indeed, let T be a minimum spanning tree of G and let T ∗ be the blue spanning

tree obtained by Bor�uvka’s algorithm. We show that T = T ∗:
Assume T �= T ∗ and let e∗ be the /rst blue colored edge of T ∗ which does not

belong to T . Let P be the path in T joining the vertices of e∗. It is clear that at
the time when the edge e∗ gets blue color at least one of the edges, say e, of P is
uncolored. By the algorithm w(e)¿w(e∗). However then T −e+e∗ is a spanning tree
with smaller weight, a contradiction. Thus T = T ∗.

Another description of Bor5uvka’s algorithm

1. Coloring: For each vertex v of the given graph G we color blue the minimum-
weight edge incident to v.
2. Contraction: We replace each blue tree by a single vertex. In this procedure we

eliminate loops (i.e. edges with both ends in the same blue tree) and all the parallel
edges (i.e. edges between the same pairs of blue trees) with the exception of the lowest
weight edge.
3. We apply the algorithm recursively to /nd the blue spanning tree T ′ of the

contracted graph.
The minimum spanning tree T is formed by the contracted blue edges together with

the edges of T ′.
See [12,23,44,47,50] most of the modern textbooks (such as [22,37,40]) for various

descriptions of Bor�uvka’s algorithm.
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8. History, remarks and perspectives

The MST problem was isolated and attacked in the /fties with the vigor and con/-
dence of then newly developing /elds: theory of algorithms and computer science. The
contributions were numerous and illustrious. Among others: K. +Cul-Jk [11], G. Dantzig
[13], E.W. Dijkstra [14], A. Kotzig [34], J.B. Kruskal [35], H.W. Kuhn, H. Loberman,
A. Weinberger, R. Kalaba [26], R.C. Prim [43], E.W. Solomon [45] (see also [38]: it is
only /tting and fortunate that the recently published Bor�uvka’s memorial volume [51]
contains a reminiscence of these early days written by Kruskal [36]). These pioneering
works made the MST problem popular and the further development only contributed
to it. The paper of Graham and Hell [23] described accurately the development until
1985, and our paper [42] contains a historical follow up. Let us list some of the main
features that indicate the role and importance of this problem in contemporary discrete
mathematics along the following key words:

Complexity and Classes of Algorithms, Optimization, Relevance, Axiomatization.

Complexity and classes of algorithms. MST problem may be eUciently solved for
large sets by several algorithms. These algorithms were studied even before the right
complexity measures and problems were isolated. MST became one of the craddles of
structural complexity (see the work of Edmonds in seventies, [17]). Very early attempts
were made to classify the various algorithms according to their basic underlying idea
(see e.g. [12,47]). Basically, all known algorithms make use of the various combinations
of the following two (dual) properties of trees:

Cut rule: The optimal solution T to MST problem contains an edge with minimal
weight in every cut.

Circuit rule: The edge of a circuit C whose weight is larger than the weights of the
remaining edges of C cannot belong to the optimal solution T .

There is a variety of algorithms which solve MST problem eUciently. Among those
the prominent role is played by Kruskal’s greedy algorithm [35]. Greedy algorithm is
perhaps the most thoroughly studied and used heuristic in Combinatorial Optimization.
The greedy algorithm is easy to state:

Greedy algorithm. Sort the edges of our graph by increasing weights and then the
desired set T is de/ned recursively as follows: the next edge is added to T iA together
with T it does not form a circuit.

Optimization. Let us remark that MST problem has a polynomial solution regardless of
the weight function w (e.g. also for negative weights). However, in the most common
model (unit cost and deterministic) the complexity is still not known.
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Relevance. Problems analogous to the MST problem were also solved eUciently, par-
ticularly the directed version of the problem (i.e. minimal branching from a given root,
see [17,44]).
MST problems also appears as a subroutine to heuristic and approximate algorithms

to other combinatorial optimization problems (such as Traveling Salesman Problem),
see e.g. [22], [37,41,44,47].

Axiomatization. The class of problems solvable by Greedy Algorithm were identi/ed
with the class of matroids (no such a similar characterization seems to be known for
other MST algorithms), Greedoids [32], and more recently with ‘jump systems’.

While the greedy algorithm is esthetically pleasing and perhaps easiest to formu-
late it is NOT the fastest known algorithm (if only for the fact we need to sort
the edges according to their weights that leads to a nonlinear n log n lower bound).
These complexity considerations revived the interest in alternative procedures and in
other algorithms for solving MST problem. It seems that this also revived the in-
terest in the history of MST problem. And it appeared that the pre-computer age
history of the problem is as illustrious as the modern development. Particularly, it
appeared that the standard procedure known as Prim’s algorithm [43] was discov-
ered and formulated very clearly and concisely by the prominent number theoretician
Vojt+ech Jarn-Jk in 1930 [24]. (Jarn-Jk and KXossler [25] were also the /rst to formulate
the Euclidean Steiner Tree Problem, see [33] for the history of Jarn-Jk’s contribution
to Combinatorial Optimization.) Consequently also the work of Otakar Bor �uvka was
reexamined.
Bor �uvka formulated in [1,2] the /rst eUcient solution of MST problem as early as

1926. His contribution was not entirely unrecognized (as opposed to Jarn-Jk’s work)
and both standard early references [35,43] mention Bor�uvka’s paper. However, this
reference was later dismissed as the Bor�uvka algorithm was regarded as ‘unnecessarily
complicated’. Well, perhaps a few words of explanation are in order here.
While not so easy to formulate as the greedy algorithm the Bor�uvka algorithm is

easy to formulate as well (see Section 6).
One should stress that a concise description was not available in 1920s (not only

in the pre-computer age but also in the ‘pre-graph theory’ age). One has to see that
the operation ‘contraction’ became appreciated much later (in the context of planar
graphs and theory of matroids) but even the term ‘tree’ is not mentioned in Bor�uvka’s
paper. The later seems to be the main diUculty of [1]. Instead of saying that the
selected edges (in Step 1 of the algorithm) form connected components which are
(obviously) trees, Bor �uvka elaborately constructs this tree: /rst he /nds a maximal
path P containing a given point then starts with a new vertex and /nds a maximal
path P′ which either is disjoint with P or terminates in a vertex of P and so on.
Then he combines these paths to tree-components. As a result of this Step 2 has to
be tediously described and thus the description of the algorithm takes full 5 pages
of [1]!
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Bor�uvka’s approach is a brute force approach par excellence. Not knowing any
related literature and feeling that the problem is ‘new’ he arrived at the key exchange
property at three diAerent places in his article which is in the heart of all ‘greedy’-type
algorithms for MST. He arrived there without referring neither to cycle space and (what
is now) algebraic topology (as Whitney in his pioneering work in [49]) nor to purely
algebraic setting (generalizing Steinitz theorem) as Van der Waerden in [48].
He was just solving a concrete ‘engineering problem’ and in a strike of young genius

he isolated the key property of contemporary combinational optimization.
One should regard the diUculties of the paper as technical diUculties. Moreover,

there is an evidence that Bor �uvka had a simple description in mind as he published a
follow up article in an electrotechnical journal [2] where he illustrated his method by
an example (of points in the plane together with their distance as weights).
Although each of the iterations of Bor�uvka algorithm is more involved than the sim-

pler rule in greedy algorithm, we need only log n of these iterations: in each step we
select at least n=2 edges and thus the number of vertices of the contracted graph is at
most half the size of the original graph. It is easy to implement the algorithm so that
its complexity will be bounded by Cm log n (where m is the number of edges and C
is a constant).
The following is another view: although we start with many (i.e. n) components (as

many as there are blueberries in a forest; ‘bor �uvka’ is the Czech word for a ‘blueberry’)
the number of components is halved each time and thus we are quickly done.
The ‘simplicity’ and eAectiveness of Bor �uvka algorithm was recognized much later

and basically during the last 10 years. Contradicting all the earlier evidence, presently
it seems that Bor �uvka algorithm is the best algorithm available. This is based on the
experimental evidence as well as its ‘parallel’ character and its theoretical analysis. Let
us be more speci/c here and let us outline the recent development. It is a spectacular
development as it is related to some of the key problems and advances of the modern
theory of algorithms.
Given a connected undirected graph G=(V; E) we denote as usual n=|V | the number

of its vertices and m= |E| the number of its edges. As G is connected it is n− 16m
and we can identify m with the size of the input of the graph G. To concentrate on
the combinatorial structure of the algorithms we consider the computational model unit
— cost RAM with the additional restriction that the only operation allowed as the size
of the weighted graph, too. This seems to be the most natural model for solving MST
problem. However, one should bear in mind that the detailed complexity analysis is
model-dependent as was also shown for MST e.g. in [19]. The above-mentioned algo-
rithms are very eUcient, for example the naive implementation of Greedy Algorithm is
of order mn (and it is easy to turn the Bor�uvka Algorithm into an m log n deterministic
algorithm). However, this also indicates that for MST problem we can hope for very
fast algorithms. Here is a summary of the results in this direction.
Yao [50] was the /rst to implement Bor �uvka Algorithm and obtained bound m loglog n.

This was further improved by Fredman and Tarjan [18] and /nally by Gabow
et al. [20,21] to the bound m log �(m; n) where �(m; n) is a very slowly growing
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function de/ned as follows:

�(m; n) = min{i; log log · · · log(n)6m=n}:
Until recently, this has been the best-known deterministic algorithm for MST problem.
This algorithm also involved an important new data structure Fibonacci Heaps that
found its way to standard textbooks of Theoretical Computer Science.
But one can hope for even more. For example Tarjan [46] showed that one can

implement the Greedy Algorithm for graphs with presorted edge-weights so that its
complexity is m(m; n) where (m; n) is the functional inverse to the Ackerman func-
tion. This function grows much slower than (already very slow) function �.
Very recently Bernard Chazelle succeeded to make a signi/cant breakthrough: He de-

vised a (presently rather complicated) deterministic algorithm for MST problem whose
worst-case complexity is bounded by Km(n) for a suitable constant K . (His work
seem to cast the problems related to the function  in a new light.) The description of
Chazelle algorithm is beyond the scope of this article, see Chazelle papers [6–9].
However fast (and ‘almost’ linear) the Chazelle algorithm is it is still not linear and

the following seems to be the most important problem in this area:

Problem. Does there exist a linear deterministic algorithm which solves MST
Problem? More precisely, does there exist a deterministic algorithm and a constant
C such that for a given weighted connected graph G with m edges the algorithm /nds
a minimum spanning tree of G in at most Cm steps?

One should note that many combinatorial problems can be solved by a linear de-
terministic algorithm (e.g. shortest path problem or /nding of a planar drawing of a
graph; see [47]). It is a bit surprising that this is still open for perhaps the oldest prob-
lem of Combinatorial Optimization — the MST Problem. However the problem has
been intensively studied. The key role has been played by the following subproblem
of MST:

MST veri?cation problem. Given a weighted graph G = (V; E) and its spanning
tree T , decide whether T is minimal.

Building on the early work of Tarjan [46] and an algorithm of Koml-os [31] it has
been showed by Dixon et al. [29] that the MST Veri/cation problem can be solved by
a linear deterministic algoritm. Recently a simpler procedure has been found by King
[29]. King observed that the Koml-os algorithm is simple and linear for balanced (full
branched) trees. In order to apply this she transformed every tree to a full branch-
ing tree of at most double size with ‘preservation’ of weights. This transformation is
achieved by applying the Bor�uvka algorithm to a tree itself, indeed King calls the
tree produced in this way Bor >uvka Tree. (Bor �uvka tree of a tree (V; T ) has all the
vertices as leaves and internal vertices correspond to components which appear during
Bor�uvka algorithm, the edges represent which components produce in the next step a
new component.)
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This is not the end of story, perhaps rather the beginning of a new interesting period.
The combination of the previously obtained methods yields unexpected results. So
recently, Bor �uvka Algorithm has been combined with the linear veri/cation algorithm
to obtain the /rst linear randomized algorithm for MST problem, see Klein and Tarjan
[30] and Karger et al. [27,28]. Also an optional randomized parallel algorithm has been
recently found by Cole et al. [10]. See also a recent simpli/cation by Chan [5].
In all these results the Bor�uvka Algorithm plays the key role. Indeed, in order to

simplify their complicated parallel algorithm and its analysis Cole et al. [10] call each
iteration of Bor�uvka Algorithm (i.e. each iteration of edge selection and subsequent
contraction) Bor >uvka Step. This seems to be standard by now (see [41]).

The Combinatorial Optimization has gone a long way in its relatively short history.
But it is a bit surprising how persistent are the classical motivation and algorithms.
However, for a (positive) solution of some of the key problems (such as the linearity
of MST problem) perhaps some new combinatorial tricks are needed.

Appendix: Life and work of Otakar Bor5uvka (a brief outline)

Otakar Bor�uvka
Born 10.5.1899, Uhersk-y Ostroh (Austro-Hungary, later Czechoslovakia, now Czech

Republic).



34 J. Ne)set)ril et al. / Discrete Mathematics 233 (2001) 3–36

1910–1916 gymnasium (high school) Uhersk-e Hradi+st+e
1916–1917 military school Hranice and MXodling
1918–1922 study at the Czech Technical University, Brno
1920–1921 assistant at the Institute of Physics
1920–1922 study at the Masaryk University, Brno
1921–1934 assistant at the Masaryk University
1923 RNDr.
1926–1927 Paris
1928 docent
1929–1930 Paris (Rockefeller foundation)
1930–1931 Hamburg (supported by the Rockefeller foundation)
1934 professor at the Masaryk University (since 1946 full professor)
1953 corresponding member of the Czechoslovak Academy (ordinary mem-

ber since 1965)
1956 DrSc.
1959 State Prize of Czechoslovakia
1965 founder and Editor-in-Chief of the Journal Archivum Mathematicum
1969 Dr.h.c., Bratislava
1994 Dr.h.c., Brno
1995 died in Brno (22.7.)

Let us add at the end a few informal remarks related to [1,2]. These are works of the
young mathematician, his opus No. 6, the second outside the local university journal.
Bor �uvka was well read and well informed. The mathematical library in Brno was well
stocked [39, p. 42]. One of his teacher was Maty-a+s Lerch, perhaps the /rst modern
Czech mathematician who obtained the prestigeous Grand Prix de Academie de Paris
in 1900, published over 230 papers and was in contact with leading mathematicians of
its time (and who attended old gymnasium in Rakovn-Jk, a dear place to a subset of the
authors of this article). Lerch selected Bor�uvka as his assistant in 1921. After a sudden
death of Lerch in 1922, Bor �uvka became an assistant to Eduard +Cech (of Stone- +Cech
compacti/cation and one of the founders of topology and diAerential geometry). +Cech
directed his interest to diAerential geometry and arranged his stay with Elie Cartan
in Paris who profoundly inOuenced Bor�uvka future mathematics. [1,2] are the only
articles by Bor�uvka devoted to combinatorial optimization. However he was well aware
of the importance of this work and in fact already during his /rst stay in Paris in the
spring 1927 he lectured about these results in a seminar of J. L. Coolidge. He remarks
that ‘despite (and perhaps because of) this very unconventional topic, the lecture was
received very well with an active discussion’ [39, p. 59].
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