Jan Mařík

Uneigentliche mehrfache Integrale

Persistent URL: http://dml.cz/dmlcz/502176

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

Als Manuskript gedruckt

Uneigentliche mehrfache Integrale*

Von Jan Mařík, Prag

Es sei A eine beschränkte meßbare Teilmenge des m-dimensionalen Euklidischen Raumes E_m , und es sei \mathfrak{M}_A das System aller Vektoren $v=[v_1,\ldots,v_m]$ mit der folgenden Eigenschaft: v_j sind Polynome in m Veränderlichen und für jedes $x\in A$ besteht die Beziehung

$$\sum_{j=1}^{m} (v_j(x))^2 \le 1. \text{ Wir setzen } ||A|| = \sup_{v \in \mathfrak{M}_A} \int_A \operatorname{div} v(x) dx.$$

Es sei weiter \mathfrak{B}_A das System aller Vektoren, die auf der Grenze A der Menge A stetig sind. Für jedes $v=[v_1,\ldots,v_m]\in\mathfrak{B}_A$ setzen wir $|v|_A=\max_{x\in\dot{A}}\left(\sum_{j=1}^m{(v_j(x))^2}\right)^{\frac{1}{2}}.$

Die Menge aller A mit $||A|| < \infty$ bezeichnen wir mit \mathfrak{A} .

In [1] ist bewiesen: Zu jeder Menge $A\in\mathfrak{A}$ existiert genau ein Funktional P(A,v) $(v\in\mathfrak{B}_A)$, das in bezug auf die Norm $|v|_A$ stetig ist und das für jedes $v\in\mathfrak{M}_A$ die Beziehung $P(A,v)=\int\limits_A \mathrm{div}\ v(x)\ dx$ erfüllt.

Es sei nun G eine offene Teilmenge von E_m ; es sei v ein auf G stetiger Vektor und f eine solche Funktion, daß für jedes kompakte Intervall $I \subset G$ das Lebesguesche Integral $\int\limits_I f(x) \ dx$ existiert und gleich P(I,v) ist. Dann

sagen wir, daß die Funktion f eine Integraldivergenz des Vektors v auf der Menge G ist.

Nach Satz 24 von [1] gilt die folgende Behauptung: Wenn f eine Integraldivergenz von v auf G ist, dann gilt die Beziehung

(*)
$$P(A, v) = \int_A f(x) dx$$

für jedes $A \in \mathfrak{A}$ mit $\overline{A} \subset G$.

Jetzt möchte ich einige Resultate erwähnen, zu denen ich mit meinen Schülern K. Karták und J. Holec gekommen bin.

Man kann verschiedene Bedingungen angeben, die hinreichend dafür sind, daß f eine Integraldivergenz von v ist. Es gilt z. B.:

Wenn die Funktionen v_1, \ldots, v_m in jedem Punkte einer offenen Menge $G \subset E_m$ ein totales Differential haben und wenn die Funktion div v auf G lokal nach Lebesgue integrabel ist, so ist div v eine Integraldivergenz von $v = [v_1, \ldots, v_m]$.

Es entsteht nun die Frage, ob die Beziehung (*) auch dann besteht, wenn v nur auf \overline{A} stetig ist und wenn f auf A-A eine Integraldivergenz von v ist. Es zeigt sich, daß die Antwort unter gewissen Voraussetzungen

über A bejahend ist, wenn wir unter dem Symbol $\int_A f(x) \ dx$ ein passendes uneigentliches Integral verstehen. Damit wir ein solches Integral definieren können, müssen wir einige Bezeichnungen einführen.

Es sei $\mathfrak S$ das System aller meßbaren Teilmengen von E_m . Für $S \in \mathfrak S$ sei |S| das Maß von S. Auf $\mathfrak S$ definieren wir eine Konvergenz \to folgendermaßen: Wenn S, S_1, S_2, \ldots Elemente von $\mathfrak S$ sind, so werden wir mit $S_n \to S$ verstehen, daß $S_n \subset S$, sup $\|S - S_n\| < \infty$ und $\lim_{n \to \infty} |S - S_n| = 0$ ist. Es sei weiter F eine auf einem System $S_n \to S_n \in S_n$ definierte Funktion. Wenn aus den Beziehungen $S_n \in S_n \in S_n$, $S_n \to S_n \in S_n$ immer $S_n \to S_n \in S_n$ folgt,

dann nennen wir die Funktion F auf $\mathfrak N$ stetig. Ein System $\mathfrak N\subset \mathfrak S$ heißt abgeschlossen, wenn aus $S_n\in \mathfrak N$, $S_n\to S$ die Relation $S\in \mathfrak N$ folgt. Für jedes $\mathfrak N\subset \mathfrak S$ sei $\overline{\mathfrak N}$ das kleinste $\mathfrak N$ umfassende abgeschlossene Teilsystem von $\mathfrak S$.

 $n \to \infty$

Es sei nun f eine in $E_{\pmb{m}}$ definierte Funktion. Das System aller $T\in\mathfrak{S}$, für die das Lebesguesche Integral $L(T,f)=\int_T f(x)\ dx$ konvergiert, bezeichnen wir mit $\mathfrak{F}(f)$ und setzen $\mathfrak{A}_0(f)=\mathfrak{A} \curvearrowright \mathfrak{F}(f)$. Für jedes $A\in\mathfrak{A}$ sei \mathfrak{A} (A) das System aller $B\in\mathfrak{A}$ mit $B\subset A$.

Wir bilden jetzt das System $\mathfrak{A}_1(f)$ aller $A \in \overline{\mathfrak{A}_0(f)}$ mit der folgenden Eigenschaft: Es existiert eine auf $\mathfrak{A}(A)$ stetige Funktion F, welche für jedes $T \in \mathfrak{A}(A) \cap \mathfrak{F}(f)$ die Beziehung F(T) = L(T,f) erfüllt. Man kann beweisen, daß die Funktion F dadurch eindeutig bestimmt ist. Wir können also auf dem System $\mathfrak{A}_1(f)$ ein Funktional K(A,f) mittels der Vorschrift K(A,f) = F(A) definieren, wobei F eine Funktion mit der erwähnten Eigenschaft ist.

Für das Funktional K gilt der folgende Transformationssatz:

Es sei φ eine schlichte reguläre Abbildung einer offenen Menge $G \subset E_m$ nach E_m ; ψ sei die inverse Abbildung. Es sei f eine auf G definierte Funktion; für $t \in \varphi(G)$ setzen wir $g(t) = f(\psi(t))$. $|D_{\psi}(t)|$, wobei D_{ψ} die Funktionaldeterminante von ψ ist. Wenn $A \in \mathfrak{A}_1(f)$, $\bar{A} \subset G$ ist, so gelten für die Menge $B = \varphi(A)$ die Beziehungen $B \in \mathfrak{A}_1(g)$ und K(A, f) = K(B, g).

Für jedes $B \subset E_m$ sei weiter H(B) das (m-1)-dimensionale äußere Hausdorffsche Maß der Menge B. Das System aller kompakten $B \subset E_m$ mit $H(B) < \infty$ bezeichnen wir mit \mathfrak{H} ; es sei \mathfrak{H}_{σ} das System aller $\bigcup_{n=1}^{\infty} B_n$, wo $B_n \in \mathfrak{H}$ für jedes n ist. Jetzt kann man beweisen:

^{*} Vortrag, gehalten während der Freundschaftswoche Moskau-Prag-Warschau-Berlin im Mai 1960.

Es sei A eine beschränkte Teilmenge von E_m ; es sei G offen, $G \subseteq A$, $A \in \mathfrak{H}$, $\overline{A} - G \in \mathfrak{H}_{\sigma}$. Es sei v ein auf \overline{A} stetiger Vektor, und f sei eine Integraldivergenz von v auf G. Dann ist $A \in \mathfrak{A}_1(f)$, und es gilt P(A, v) = K(A, f).

Daraus ergibt sich der folgende Satz:

Es seien G, U offene Teilmengen von E_m , $G \subset U$, $U - G \in \mathfrak{H}_{\sigma}$. Es sei v ein auf U stetiger Vektor und f eine Funktion, die auf U lokal integrabel und auf G eine Integral-divergenz von v ist. Dann ist f eine Integraldivergenz von v auf U.

Das Funktional K(A, f) ist im allgemeinen keine Erweiterung von L(A, f). Wir haben nämlich $\mathfrak{A}_1(f) \subset \overline{\mathfrak{A}_0(f)} \subset \mathfrak{A}$; dagegen gilt die Beziehung $\mathfrak{F}(f) \subset \mathfrak{A}$ nur in trivialen

Fällen. Das Funktional K(A,f) kann aber folgendermaßen erweitert werden: Es sei $\mathfrak{F}_1(f)$ der kleinste Mengenring, welcher $\mathfrak{A}_1(f)$ und $\mathfrak{F}(f)$ umfaßt. Zu jedem $T \in \mathfrak{F}_1(f)$ gibt es ein $A \in \mathfrak{A}_1(f)$ mit $(A-T) \hookrightarrow (T-A) \in \mathfrak{F}(f)$. Man kann beweisen, daß die Zahl $K^*(T,f) = K(A,f) + L(T-A,f) - L(A-T,f)$ von der Wahl der Menge A unabhängig ist und daß das auf diese Weise definierte Funktional $K^*(T,f)$ bei festem f eine in der Veränderlichen T stetige Erweiterung von L(T,f) ist.

LITERATUR

[1] J. Mařík, The surface integral, Czech. math. j., 6 (81), 1956, 522-558.
(Eingegangen: 30. 5. 1960)