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THE ASYMPTOTIC BEHAVIOR AT THE LARGE 
TIME OF SOLUTIONS OF SOME MATHEMATICAL 
PHYSICS PROBLEMS 

by V. N. M A S L E N N I K O V A 

In this lecture I am going to treat some results concerning asymptotic behavior 
of solutions for three types of equations and systems, recently obtained at the Mathe­
matical Institute of the Academy of Sciences of the USSR in Moscow. 
They are 

1. the hydrodynamics systems of a rotating fluid and magnetohydrodynamics. 
2. the parabolic equations of the second order. 
3. the external boundary value problems for the wave equation. 
The number of questions' we are going to consider in our report, will concern the 

decrease of a solution with this or that velocity when t -> oo or the stabilization of 
a solution. 

Here we shall not touch upon the problems of the periodicity of solutions with 
respect to t9 almost-periodicity and so on. 

1. THE H Y D R O D Y N A M I C S SYSTEMS OF A ROTATING 

F L U I D AND M A G N E T O H Y D R O D Y N A M I C S 

We shall give a series of theorems concerning the velocity of a curl decay in differ­
ent continuous media, the movement in which is described by the systems mentioned 
below. In the first place we consider Sobolev system [1] for linearized equations 
of a rotating fluid 

- | - - [ v , c o ] + g r a d P = 0 , | ( 1 ) 

divv = 0, J 

in the domain {xeE39 t > 0}, where v(x9 t) = (vl9 vl9 v3)9 [., .] denotes the vector 
product, co = (0, 0, oo) is a constant vector of angular velocity. 
For a solution of the Cauchy problem with initial conditions 

v(*,0| t-o « A * ) , divv = 0 (2) 

we obtained in [2] the explicit representation of the solution of (1), by means of 
which we have proved the following 

Theorem 1. If the initial data (2) v°(x) e C°°(E3)9 then on any compact Q c E3, 
xe Q the solution v(x91)9 P(x91) of the Cauchy problem for the homogeneous system (1) 
decreases for t -> oo as 0(1 ft) uniformly over xe Q. 
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If we introduce effect of compressibility in system, i.e. if we consider the system 

dv 
— [v, co] + grad P = 0, 
at 

a dP 
<*q-r- 4- divv = 0, 

ct 

(3) 

(which describes, in particular, the propagation of the acoustic waves) with initial 
conditions 

v(x, t) \t = 0 = v°(x), P(x, t) \t==0 = P°(x) (4) 

then we have the following theorem (see [3], [5], [6]) for a solution of the problem 
(3), (4) 

Theorem 2. If the initial data v°(x), P°(x) e C°°(E3), then the solution of the Cauchy 
problem for the homogeneous system (3) decreases as 0(\\t)for t-> oo uniformly over 
xeQ, where Q is any compact, belonging E3. 

It is possible for the conditions of the finite support and infinite differentiability 
of initial conditions in the theorems 1 and 2 to be replaced by the sufficiently quick 
decrease for | x | -* oo and by some finite smoothness. 

The fundamental solutions of the systems (1) and (3) are expressed by the Bessel 
/ 2 2 2 

function with respect to argument (for the system (1), i.e. as a = 0, 

this argument passes to Qt\r), where r2 = Q2 + xl, Q2 = xl + xl; therefore the 
solutions of the systems (1) and (3) oscillate strongly, and the principal members of a 

asymptotic expansion of solution for a system (1) depend on t as with 

the corresponding coefficients, depending on the initial data; the corresponding 
expansion of solution for a system (3) contains retarded argument V t2 — a2r2 under 
symbols sin and cos. We have also investigated the asymptotic behavior of a solution 
at the large time for system (1) in unbounded domain—half space {x3 = 0} for two 
boundary value problems 

P(x, 0 U = o = 0 (5) 
or 

»3v*,0U = o = 0 (6) 
with initial date (2). 
It has been proved, that function P(x, t) in the problem (2), (5) damps with the same 
velocity as in the case of the Cauchy problem, i.e. as 0(\\t); however vector v(x, t), 
which is not imposed upon by the condition on the boundary, may not damp for 
t -» oo (an example of periodic solution with respect to t has been constructed). 
The boundary condition on v3(x, t) in the problem (2) (6) induces the homogeneous 
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boundary condition on the function P(x, t) : 

ô3P дP 
+ --—! = o, dt2dx3

 CX3 !x3 = 0 

therefore it has been proved, that functions P(x, t) and v3(x, t) in the problem (2), (6) 
decrease as O(l/l) for t -> oo. 

It is of great interest to study the asymptotic behavior of a solution as t -• oo 
for the hydrodynamics systems of a rotatig viscous fluid 

dv 1 
- - [ v , ( o ] - v A v + gradP = 0, I 

divv = 0, J 

with initial conditions (2), where v-viscosity coefficient. In the papers [4], [7] for 
the problem (7), (2) the following has been proved 

Theorem 3. Lel the initial data (2) be v°(x) e Li(F3). Then the solution of the Cauchy 
problem for the homogeneous system (7) decreases uniformly over xeE3 for t -> oo 
in the following way: vector v(x,t) decreases as O(l/t5/2), and function P(x, t)—as 
O(l/t2); at the large t and v, co > 0 we have obtained the following estimates: 

''('•Ois^Klk,*,,, TO 

where Ct — constants, independent on t, x, v°. 
The formulas (8), (9) show, that the decrease of a solution of the order 11 cot takes 

place because of Coriolis term [v, co] and the order l/(vt)3'2 (for vector v(x, t)) — 
owing to viscosity. 

It was of great interest to.investigate in what way the asymptotics might changed 
when changing the dimension of x-space. 

In the case x e E2, if axis x3 is a rotation axis and the functions contained in the 
systems (7) depend on x1 and x3 (or xl and x3), then we have the following 

Theorem 4. Lel the initial date v°(x1, x3) e L1(E2) and div v° = 0. Then a solution 
of the Cauchy problem for the homogeneous system (7) uniformly over x = (xl9x3) eE2 

decreases for t -» oo in the following way: vector v(x, t) decreases as O(l/*3/2), and 
function P(x, t) as 0(\jt); at the large t and v, co > 0 the following estimates 

\v(x,t)\^-^^\\v°\\L^ 

C (10) 
\P(x,t)\S-T^J=\\v°\\Ll(E^ 

yJVtyJcOt 

hold, where C3, C4 — constant, independent on v°? t, x-
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Thus in the case of two space variable the confluence of a curl originates slower 

on •-——===• in a comparison with the three-dimensional case. 
yjvty/(0t 

Ju. N. Drozzinov has considered the solution of system (3) with the initial data 
independent on x3 (at that time of axis x3 remaining a rotation axis) i.e. v°(xx ,x 2), 
P°(xt, x2). He has proved, that if initial data satisfy the additional condition 
rot v° + o>P° = 0 and v°, P° are finite over xt, x2 and sufficiently smooth, then a solu­
tion of the system (3) decreases on compactum as 0(1 It). Or, if rot v° + o>P° ^ 0, 
it approaches the stationary solution with the same velocity. 

He has also considered a linearized system of magnetohydrodynamics in the three 
dimensional space on x (compare with the system (3)) 

dv 
~ - [rot H, to] + grad P = 0, 

rot [v, ц>] = 0, 
dt 

a 2 — + div v = 0, 
ót 

01) 

where all notations are previous and H = (Hx, H2, H3). He has proved 

Theorem 5. Let the initial data 

u(x, t) | ( = 0 = u°(x) = (V°, H°, P°) 6 C°°(E3), 

and fulfil the agreement condition div H° = 0. Then a solution of the Cauchy problem 
for the system (11) decreases as 0(111) for t -> oo on any compactum. 

Thus the movement of a curl described by systems (1), (3) or (11) has the same 
velocity of decay that equals 0(1 jt) for t -» oo. 

2. THE P A R A B O L I C EQUATIONS OF THE SECOND ORDER 

Consider a linear uniformly parabolic equation of the second order 

ut = div,, (A(t, x) grad^ u(t, x)) + (B(t, x), grad^ u(t, x)) + 

+ c(t, x) u(t, x), t > 0, x = (x1, ..., xn) e Q, (12) 

where A(t, x)-symmetric matrix, Q an unbounded domain with Ljapunov boundary. 
The coefficients of a equation (12) are sufficiently smooth bounded functions, satisfy­
ing the conditions: 

c(t, x) = 0, 0 ^ divx B(t, x) - c(t, x) ^ M, 

where M a certain constant. 
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Below we shall assume the solutions to be bounded or belonging to the uniqueness 
class in the case of unbounded initial data. At first we shall consider the Cauchy 
problem (i.e. Q = Rn) for heat conduction equation A(t, x) = E, B(t, x) = c(t, x) = 0 
with the initial condition 

u(t,x) | ,=0 = cp(x), (130) 

where (p(x) continuous function of the uniqueness class. It follows from Tauberian 
theorem of Viener [8], that the existence limit 

lim ^ -r- <p(£) dc = a(x) (14) 
R^ mes{|x | <R} J ^ J K J J 

\x-Z\<R 

is necessary and sufficient for stabilization of solution u(t, x) for t -> oo in the class 
of bounded initial functions. In this case it should be emphasized that a(x) in (14) 
may be only constant. 

In this case 
lim u(t, x) = a (15) 

f->00 

In [9] the analogous result was established for semi-bounded initial functions. 
Naturally there appears a problem to find necessary and sufficient condition for 
stabilization of a solution in the case of arbitrary initial function belonging to the 
uniqueness class. 

This problem was solved in [10], where it was proved, that the condition (14) 
was criterion of the uniform in Rn stabilization of a solution as well as in the case 
of unbounded initial functions; moreover a function a(x) was found harmonic and 
u(t, x) -> a(x) for t -> oo. 

We shall also give one of the results [10], relating to uniform stabilization u(x, t): 
on any compact from En : if | cp(x) | ^ C(| x \s + 1) for certain C ^ 0 and s = 0 
then the fulfilment of relation 

R 

p , * +g + 1 I (R ~ c r V " 1 I <p(x + Qco)dodo -> a(x), 
(DnB(a, n)R J J 

0 |o>l = l 

for a > s is necessary and sufficient for the stabilization of solution u(x, t). 
Let us consider now the Cauchy problem for variable coefficients. We shall assume 

the initial function bounded. If the coefficients of equations (12) depend on t only, 
then it is easy to obtain explicit form of the fundamental solution by the method 
of Fourier transform; this gives a possibility to apply the Tauberian theorem of 
Viener. It is more difficult in the case when the coefficients of equations depend on x. 
For the equation (12) with the coefficients depending on x the problem was solved 

only in the simplest case B(t, x) = 0, c(t, x) = 0, A(t, x) = ( -- E. In [11], [12] 
p(x) 
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it was proved: if there is a constant b > 0, satisfying uniformly at x e En the condition 

mes{i*KR}, j l ^ ) - » l d ^ ° - * - » . 
1*-«|<.R 

then (15) is satisfied for some xeEn (uniformly on any compactum or in En) if and 
only if the limit (14) exists at this point x (uniformly on any copmactum or in En 

respectively). In case n = 1, i.e. if we consider the equation p(x) ut = uxx, in [13],[14] 
the analogous results were established for lesser assumption on function p(x). In 
particular it was proved: if the limits 

T o 

H m ^ [p(0<H = b\9 l im-1 fp(«)d{ = b\ 
T~>oo 1 J r->co J J 

0 - T 

exist, then existence of the limit 
T/bt 

T-
-Ť/b2 

is criterion of the existence of the limit (15) uniformly on any compact. Now we 
consider boundary value problem. Let u(t, x) be solution of a equation (12) in an 
unbounded domain Q, satisfying the initial condition (13) and boundary condition 

du(t, x) 
ÔN 

+ q(t, x) u(t, x) = 0 (16) 
єГ 

with the non-negative continuous bounded function q(t, x), for which — q(t, x) + 
+ (B(t, x), v(x)) \xer = 0 where v(x)-unit vector of the exterior normal to F, and N 
be conormal. In [15] in case non-compact boundary F it was established the esti­
mates for Green function G(t, x; T, £) and for solution of the problem (12), (13), (16) 
with the initial function from Lx. If B(t, x) = 0, c(t, x) = q(t, x) = 0 the obtained 
estimates are exact with respect to the order of the tending of a solution to zero for 
t -» oo. In particular under some condition on domain the following inequalities 

= — ^ — = sup G(t, x; 0, 0 ^ ~ ^ V (17> 
0o(VO vt(\Jh xeQ *>o(V0 

are true, where v$(R) = mes {(| x — £ \ < R) n Q}, constant C0 depends on elliptic 
constant only, and c0, cx depends on point t; as well. For example, in case Q = 
= {*_> Xil *i >f(xi)} c : E2 wheref(xi) is arbitrary smooth even function with the 
monotonically non-decreasing derivative, the estimates (17) have form 

const. max {t~~^V^Z-iCVO)"1} = SUP G(f> x> °? 0 = 
xeQ 

g const. max { t '^V t ' f-^VO)"1}' 

where/_i(R) is inverse for/Or:) function. 
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3. T H E E X T E R N A L B O U N D A R Y V A L U E P R O B L E M S 

F O R T H E WAVE E Q U A T I O N 

Let Q be exterior of compact in E3 or in E2 with the boundary f c C 2 and u(x, t) 
be solution in Q x (0 < t) of a wave equation 

d2ujdt2 = Au (18) 
satisfying initial data 

Gu(x, t) 

ct 
= /0(x) , H ( * , . ) I , = O = / I ( * ) (19) 

r = 0 

and one of the boundary conditions 

u(x, t) \xer = 0 (20) 

du(x9t)jdn\xer=0 (21) 

du(x9 O/5/i + g(x) u(x, 0 |xer = 0 (22) 

where « is the exterior (relatively Q) normal at F, function g(x) is non-negative and 
continuously differentiable on F. 

In [16] in case three space variables it was established the exponential decrease 
uniformly on any compact Kcz D for t -> oo of the solutions of the problems (18) to 
(22) in the assumption that initial functions f0,fi are finite and the boundary has the 
positive gaussian curvarute. The asymptotic behavior for t -> oo of the solutions of 
the problem (18) —(21) and (18) —(22) in the case of two space variables was investi­
gated in [17—19]. Let ua(x, t)9 a = 0, 1 be a solution of the problems (18), (19), 
(21) or (18), (19), (22) atfx _ a = 0. In the above writings it was proved the following 

Theorem 6. Let F be convex boundary and functions fa(x) e C1+*(Q) for a = 0, 1 
have the bounded support and satisfy the agreement conditions df(x)jdn + 
+ g(x)fa(x) \r = 0, a = 0, 1*. Then for any x e Q for t -> oo for the problem (18), 
(19), (21) there takes place the equality 

( - 1 ) ' [t(^A„ ± ,_xV+.n a. „\i ^(E2V>). 
2ntx «-(*»0 = ^& juy)*y + (-')1+* (2 + «)! 

lnf f 

í 3 + ' J 
N 

Uy) *y + I !/.?-(*) -~L + o U2—±). (23) 
n=i w = o r \ * / 

For the solution of the problem (18), (19), (22) there holds the equality 

".(*.0 = ( - z r£f# vW f f/'OO/.GOdy + Z "ZC«WX 
7rt In ? J J »=i w=o 

x
 lnW< + y yV> r») <-(f) + o f J ^ O a4> 

X ? ^ + . ? . J/m '" (x ) f2—!„-» + % - * + 3 + . | <24> 
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Here the functions c(£n(x) and d(

n*\(x) are continuous in D (in the equality (23) c("\ = 0). 
The functions v(x) and fi(x) are harmonic in Q and are continuous in D. 

The functions (pa(t) and (p(^n(t) have the finite limits different from zero for t-> oo. 
The estimates of the remaining terms in the equalities (23), (24)for xeD n {| x \ ̂  R] 
(where R is an arbitrary sufficiently big number) are uniform up to boundary F and 
depend on F, K,fa and N, where N is any natural number. 
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