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ABSTRACT SEMILINEAR EQUATIONS 
WITH SMALL PARAMETER 

by MIROSLAV SOVA 

Given two normed spaces U, X over the real or complex number field, let L be 
a linear operator from U into X, F a (nonlinear) transformation on U into X and S 
an open subset of U. 

In this note, we search for general properties of L, Fand S under which the abstract 
equation 

Lu = 6F(u) [*] 

is solvable in the set S for sufficiently small e > 0. 
To this purpose, we require first certain general regularity properties of L and F: 

the closedness of the null and range sets of L; the boundedness or compactness of the 
quotient inverse of L; the local Lipschitz property or continuity of F. 

Further we require the coincidence property of L and S: the intersection of S 
with the null set of L is not empty. 

The simplest case arises if L is a one-to-one operator and its range set is X. This 
case is sometimes called noncritical In this case, we can transform easily [*] to 
the form u = sL~l(F(u)) which appears solvable for small e > 0 in the set S under 
assumption of the general regularity properties and the coincidence property. In 
fact, the general regularity properties ensure the boundedness or compactness of L"1 

and the local Lipschitz property or continuity of F and the coincidence property 
ensures that S contains zero. Hence we may apply in the first case the Banach fixed 
point theorem and in the second that of Schauder for sufficiently small e > 0 in 
a suitable subset of S. 

Nevertheless, our main purpose is to solve the so-called critical case if the operator 
L is not one-to-one or its range set differs from X. The most basic assumption here is 
the so called bifurcation property which describes the fundamental algebraic relation 
between the range sets of L and F with respect to S: for every u e S, there exists a 
unique u e S so that u — u lies in the null set and F(u) in the range set of L. 

In the noncritical case, the bifurcation property is clearly automatically fulfilled. 
To transform our equation [*], we need the quotient space of U over the null 

space of L, which we denote by U. 
Now, let L be the operator from U into X, naturally associated with L. This 

operator is called the quotient operator to L. It is clear that the quotient operator L 
is one-to-one and that the range sets of L and L are the same. 

Further, let S be the set of all elements of U whose intersections with S are not 
empty. Clearly S is an open subset of U. 
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We see easily that the bifurcation property is equivalent with the existence of 
a unique mapping J on S into S such that J(u) lies in u and F(J(u)) lies in the range 
set of L for u e S. This mapping J will be called the bifurcation mapping. 

Using the quotient operator and the bifurcation mapping, we can put a new 
problem to search for general properties of L, F and S under which the associated 
equation 

Lu = £F(J(u)) [**] 

is solvable in the set Sfor sufficiently small e > 0. 
The decisive importance of the associated equation [**] consists in the easily 

provable fact that u is a solution of the equation [*] if and only if there exists a solution 
u of the associated equation [**] such that u = J(u). This fact is the main conse
quence of the bifurcation property and its proof is based on the above mentioned 
properties of the quotient operator and bifurcation mapping. Hence the solvability 
of the equation [*] in the set S for sufficiently small e > 0 is equivalent with the 
solvability of the associated equation [**] in the set S for sufficiently small e > 0. 

Since the quotient operator is one-to-one, we see that the associated equation [**] 
may be transformed to the form u = sL~1F(J(u)) and consequently, the main 
question is under what conditions the transformed equation may be solved. We use 
of course at the first place the general regularity properties ensuring the boundedness 
or compactness of L~x and the local Lipschitz property or continuity of Fand further 
the coincidence property ensuring that S contains zero. But this does not suffice. 
We must add certain regularity property of bifurcation equivalent with: the bifurca
tion mapping J is locally lipschitzian or continuous on S. In the first case if L"1 is 
bounded and F and J are locally lipschitzian, we can solve the transformed equation 
for sufficiently small e > 0 in a suitable subset of S by means of the Banach fixed 
point theorem, while in the second case if L"1 is compact and Fand J are continuous, 
by means of the Schauder fixed point theorem. The first case is contained in Theorem 
1 and the second in Theorem 3. 

In the noncritical case, it is easy to see that the regularity property of bifurcation 
is always fulfilled since S may be identified with S and J with the identity operator. 

The regularity of bifurcation may be deduced from the general regularity properties 
and from the so-called coercivity property: there exists a nondecreasing positive 
function n on <0, oo) such that inf || F(u') - F(u") + x || = n(\\ u' - u") 

x in the range set of L 

u', u" e S with u' — u" in the null set of L. If F is continuous, we obtain from the 
coercivity that the bifurcation mapping is continuous, while if Fis locally lipschitzian 
and the function n in the coercivity property is linear, the bifurcation mapping is 
also lipschitzian. The coercivity property is used in Theorems 2 and 4 (cf. also Pro
position 2). 

Let us still remark that in the noncritical case the proofs of Theorems 1 and 3 very 
simplify and Theorems 2 and 4 become irrelevant. 
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In applications of general theory (cf. Examples 1 and 2) the most difficult COOCCmS 
are on the one hand the closedness of the range set of.L and on the other hand the 
bifurcation property which must be decided as the case may be by different technical 
means. 

It seems that most special results may be included in the general theory presented 
here, but in some cases this is not clear definitively (cf. [6] and [8]). 

Our approach to the problem is geometrical. As we see from preceding considera
tions, an important role in this approach is played by the null and range sets of the 
operator L. Besides the closedness of these subspaces which is indispensable as we 
have seen above, one supposes usually also the existence of closed complementary 
subspaces (which is equivalent with the existence of continuous projectors onto 
these subspaces). As well known, these complements exist in finite dimensional and 
Hilbert spaces (more generally, in all spaces isomorphic with Hilbert spaces), but 
they do not exist in general in practically all frequent function spaces, except 
of course square Lebesgue spaces. Hence the assumption of existence of closed 
complements is formally restrictive and may be removed by the use of quotient spaces 
as carried out in this note. 

Geometrical approach to these problems was initiated by Cesari and then used 
or rediscovered by many authors (cf. [1] — [13]). The method of quotient spaces 
was developed in the last time independently by the author [12] and by W. S. Hall 
[13]-

n 

If L is an evolution operator (i.e. Lu(l) = £A , ;u ( t )( l) in an appropriate vector 
i = 0 

valued function space), also other methods may be used, in particular that of Poincare 
based on the solutions of the corresponding initial value problem (cf. [14] — [16]). 

For the sake of simplicity, we shall denote by D(L) the definition set, by R(L) 
the range set and by N(L) the null set of the operator L. Naturally, D(L), N(L) are 
linear subspaces of U and R(L) of X. 

Theorem 1. If 

(I) N(L), R(L) are closed subspaces, 

(II) for every bounded subset K £ X, there exists a bounded complete subset H c; U 
such that for every u e D(L) for which Lu e K, we can find a tie H for which u — ue 
G N(L), 

(III) for every q e U, there exist a neighborhood M and a constant m so that || F(ux) — 
— F(u2) || = m || u! — u2 || for every ux, u2e M, 
then for every open subset S £ U satisfying 

(a) Sn N(L) = 0, 
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(P) for every u e S, there exists a ue S so that u - ue N(L) and F(u) e R(L), 
(?) for every q e S, there exist a neighborhood B and a constant b so that for 

every u* e B, u" e B, u' e S, u' e S fulfilling u - u! e N(L), u" - u" e N(L), 
F(W) e R(L), F(u") e R(L), there is \\ v! - u" || ^ b || u' - u" ||, 

lhere exist a constant & > 0 and a function u on <0, «9> into U such that 

(a) u(e) e S/or every 0 ^ e ^ »9, 
(b) u(e) G D(L) and Lu(e) = eF(u(e)) for every 0 < e ^ 5, 
(c) u (e ) ->u(0) (e -0 + ), 
(d) there exisls a constant c such that || u(cj) — u(e2) || ^ c | eX — e2 | for every 
0 < e1? e2 ^ 9, 
(e) for every constant S > 0 and every function u on <0, 3> into U, satisfying (a) — (c), 
there exis/s a constant 0 < y ^ i 9 , 0 < y ^ 3 s o that u(e) = u(e) for 0 ^ e ^ y. 

The p r o o f may be constructed easily from the second part of the proof of Theorem 
1 [12] with some little changements. A theorem of this type was proved also by 
W. S. Hall [13] by another method. But our theorem is rather general without 
unnecessary restrictions (in particular X = U*). 

Proposition 1. If the spaces U, X are complete (i.e. Banach spaces), then the hypo
theses (I), (II) of Theorem I hold if and only if L is a closed operator with closed 
range set. 

For the p r o o f see [12], Proposition 1. 

Theorem 2. The preceeding Theorem I remains valid if we replace (y) by 
(y) there exists a constant n > 0 so that for every u', u" e S, u' — u" e N(L) 
and for every x e R(L), there is || F(u') — F(u") — x || ^ n || u' — u" ||. 

For the proof, it suffices to verify that (y) of Theorem 1 holds. This was made 
essentially by the author in the first part of the proof of Theorem 1 [12], 

Theorem 3. If 
(\) as in Theorem / , 

(II) for every bounded subset K ^ X, there exisls a compact subset H c U such that 
for every u e D(L), Lu e K, we can find u e H, u — u e N(L), 
(III) for every q e U and p. > 0, lhere exisls a neighbourhood M so that for every 
u 6 M, there is || F(u) — F(q) || ^ p, 
then for every open subset S <= U satisfying 

(a), (/?) as in Theorem I, 
(y) for every q e S and ($ > 0, there exists a neighbourhood B so that for every 
UGB, uGS, qeS fulfilling u - ue N(L), q - q e N(L), F(u) e R(L), F(q) e 
G R(L) there is || u - q || ^ j8, 

there exist a constant 9 > 0 and a function u on <0, #> into U such that 
(a) — (c) as in Theorem / , 
(d) the set {u(e), 0 < e ^ &} is relatively compact in U, 
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(e) for every constant $ > 0 and function it on <0, <9> into U satisfying (a) — (c), 
there is u(e) — u(s) -> 0(e -• 0 + ) . 

The p r o o f may be constructed from the second part of the proof of Theorem 2 
[12]. A theorem of this type was proved also by W. S. Hall [13] by another method. 
But the present theorem is rather general without unnecessary restrictions (e.g. 
X = U*). Moreover, our proof is simpler and more direct without use of Michael 
selection principle based on the axiom of choice. 

Theorem 4. The preceding Theorem 3 remains valid if we replace (y) by 
(y) for every x > 0 there exists a v > 0 so that for every u , u" e S fulfilling 
u' - u" e N(L) and || F(u') - F(u") - x \\ ^ v for some x e R(L), there is 
|| W - u" || = x. 

For the p r o o f it suffices to verify that (y) of Theorem 3 holds. This was made by 
the author in the first part of the proof of Theorem 2 [12]. 

Proposition 2. The condition (y') of Theorem 4 is equivalent to 
(y") there exists a nondecreasing function n on <0, oo), n(a) > 0 for a > 0, 
so that for every u, u" e S fulfilling u' — u" e N(L), there is for every x e R(L) 
|| F(u>) _ F(ul - x || = „(|| U' - U" ||). 

The p r o o f of this equivalence is easy, the condition (y") is technically advanta
geous. 

Remark 1. The condition (a) in Theorems 1 and 3 is obviously the coincidence 
property, while (p) is essentially the bifurcation property without unicity. The condi
tion (y) gives the needed regularity property of bifurcation and simultaneously the 
unicity of bifurtion. 

* * * 

In the following Examples 1 and 2, we shall apply the general theory to the problem 

of periodic generalized solutions for semilinear string equation with small parameter 

utt ~ uzs = e/(t- & u(t, <*)). 

Example 1. Let fbe a real function on (-co, oo) x <0,7r> x (— oo, oo) If 
(X) f(t + 2n, £, r) = f(t, £, r)for every t, £, r andf is continuous in all variables, 
then for every — OO < s < oo andO < co :g oo satisfying 

(x) there exists a convex nondecr easing function c on <0, oo), c(0) = 0, c(a) > 0 
for 0 ^ a < OO so that \f(t9 £,, s)\ < sup c(n) for — OO < t < oo„ 0 ^ 

0^f7<2co 

^ 5 = n, and | /(t , {, rx) - f(t, £, r2)\ = c(| r± - r2 \)for - o o < t < oo, 0 = 

^ ^ ^ 71, | r! - s | < CO, | r2 - s | < CO, 

there exist a constant 5 > 0 and a function u on (—oo, oo) -> <0, 7r> -• <0, &} con
tinuous on (— oo, oo) x <0, ri) for each 0 ^ e ^ S, such that 

(a) | u(t, £, s) - s | < co, 

75 



(b) u(t + 2TT, £, B) = u(t, <J, e), «(t, 0, e) = «(t, TT, e) = 0 

and for every infinitely differ entiable 2n-per iodic function cp on (—00, 00), the function 

J (p(x) I#(T, £, a) dT is lwice continuously differ entiable on <0, 7r> and 
0 

27t 2JT 2JT 

cp"(x) W(T, (J, e) dr - — - <JP(T) J*(T, £, e) dT = ^ ( T ) / ( T , £, «(T, f, e)) dT, 

0 0 0 

(c) «(t, (J, e) -> w(/, £, 0) (e -> 0+) uniformly on (- 00, 00) x <0, 7r>, 
(d) the function u is bounded and the functions u(., ., s), 0 ^ e :g 9, are equicontinuous 
on (—00, 00) x <0, 7T>, 

(e) for every constant 9 > 0 and function u on (—00, 00) x <0, 7r> -> <0, #> con
tinuous on ( — 00, 00) x <0,7r> for each 0 ^ e ^ 3, satisfying (a) — (c), there is 
w(l, (J, a) — w(t, £, e) -> 0(e -> 0+) uniformly on (—00, 00) x <0,7r>. 

The p r o o f is based on Theorem 4 using Proposition 2. We choose U = X = the 
Banach space of all continuous, in t 27r-periodic functions on (—00, 00) x <0, 7r>, 
L is the extended (or generalized) string operator O u = utt — u^ and F is defined 
by/( l , £, u(l, £)) in above spaces. The set S is an open subset of U determined by 
constants s, co. The verification of the hypothesis (y") of Proposition 2 is based on 
some maximum principle and was given by the author (unpublished). To verify (f$) 
of Theorem 4, it is possible to approximate / by a smoother function and then use 
a raisoning known from [5], [6]. 

Remark 2. The simplest case in Example 1 arises if s = 0, co = 00, c(a) = OLQ 

for some Q e {1, 2, . . . } . This ease was studied by Torelli in [7] under additional 
restriction on the growth of / s ince he worked in appropriate Lebesgue spaces, not 
in continuous functions. Also the proof differs from ours and is based on monotone 
mappings theory. See also W. S. Hall [8] and H. Petzeltova [17]. 

Example 2. Let f be as in Example 1. If 
(X) as in Example 1 and f is locally lipschitzian in r uniformly with respect to 
-00 < t < 00, 0 ^ ( ^ ^ 7 r , 
then for every — oo < s < 00 and 0 < co ^ 00 satisfying 

(x) as in Example 1 with c linear, 
then there exist a constant S > 0 and a function u on (—00, 00) x <0,7r> -> <0, #> 
such that 
(a) — (c) as in Example 1, 

(d) u is lipschitzian in 0 < e ^ 9 uniformly with respect to — co < t < co, 0 ^ ^ ^n, 
(e) for every constant 3 > 0 and function u on (—00, 00) -> <0,7r> —> <0, #> con
tinuous on (—00, 00) x <0, n} for each 0 ^ s ^ 3, satisfying (a) — (c), there exisls 
a constant 0 < y ^ # , 0 < y ^ 9 such lhal u(t, £, e) = u(t, £, fi)for — 00 < t < co, 
0 = £ ^ TT, 0 ^ £ ^ y. 
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The p r o o f is based on Theorem 2, the necessary spaces and operators are defined 
as in Example 1. 

Remark 3. Analogous results as in Examples 1 and 2 may be obtained also if/ 
depends also on ut and */<*. See [12]. 

Remark 4. By similar methods, one can also examine periodic solutions of ordinary 
(pendulum) semilinear equations, even in classical sense. For beam equations, the 
technique of Lebesgue or Orlicz spaces must be used. Cf. [9] and [17]. 

Remark 5. The function/(t, f, r) = f(t, 0 + ar | r | p _ 1 + b sin (r | r \q~l) (ab > 0, 
p, a e {1, 2, . . .},fis a continuous function on ( — oo, oo) -> <0, n}, 27i-periodic in t) 
is admissible in Example 1 and with p = q = 1 also in Example 2 if the magnitude 
of sup |f(t, £)\ is conveniently limited. 

Now we shall study the smoothness of solutions in a very general setting. 
To this purpose, let us first define an auxiliary notion. A linear operator G from 

a Banach space E into itself will be called exponential if there exists a function 2T 
on <0, oo) into bounded linear operators on E into itself such that (1) ^'(d1 + <52) = 
= ^(SJ F(b2) for O^ e (0, oo), (2) £T(5) x -* x(S -» 0+) for every xeE, (3) 
xeD(G) if and only if lim d~1(^'(d) x - x) exists, (4) for xeD(G) , Gx = 

<5->0 + 

lim 8'1 (&~(S) x — x). The function ST is called the semigroup generated by G and is 
<5->0 + 

uniquely determined. 
Let us now have U, X, L, F as above and, moreover, two fixed operators A from U 

into U and B from X into X. 

Theorem 5. If 

(I), (II) as in Theorem 1, 
(III) for every u e D(A) such that Au e D(L), there is u e D(L), Lu e D(B) and BLu = 
= LAu, 

(IV) F is continuously differentiable in Frechet sense on U, 
(V) for every u e D(A) there is F(u) e D(B) and the transformation u -> BF(u) — 

— F'(u) Au is uniformly continuous on relatively compact subsets ofue D(A), 
(VI) the operators A, B are exponential, 
then for every constant $ > 0 and function u on <0, #> into U satisfying 

(a) u(e)eD(L) and Lu(e) = eF(u(e))for every 0 < e ^ S, 

(P) u(8)->n(0)(f i-+0+) . 
(y) the set {u(e) : 0 < e ^ p} is relatively compact in U, 
(5) for every 0 <: e ^ p and h e N(L) such that F(u(e)) h = 0, there is h = 0, 
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(e) {F'(u(e)) h + y :hj N(L), y e R(L)} = X for ever;; 0 = e = S, 
there exisls a constant 0 < # = S such that 

(a) u(e)eD(A) and L(u(e))eD(B) for every 0 = e = 9, 
(b) Au(e) -> Au(0) and BLu(e) -> BLu(O) (e - 0+) , 
(c) the sets {Au(e) : 0 < e ^ 9} and {BLu(e) : 0 < e ^ $} are relatively compact 

in U and X resp. 

The p r o o f was given by the author (unpublished) and is based on the method 
of finite differences constructed by means of semigroups generated by the operators 
A,B. 

Remark 6. If the function u in Theorem 5 is continuous, then we obtain easily 
also the continuity of Au and BLu. 

Example 3. Let f be as in Example 2 andn e {0, 1, . . . } . If 
(X) as in Example 2, 
(XX)/(., £, .) is n-times differentiable on ( - c o , oo) x ( - c o , oo)for every 0 = £, = n 
and all these derivatives are continuous in all variables, 
then for every — co < s < oo and 0 < a> = oo satisfying 

(x) as in Example 2, 
there exist a constant S > 0 and a function u on (— oo, oo) x <0,7i> x <0, #>, 
continuous in —oo<t<oo,0 = ^ = n for every 0 = e = $ such that 
(a) — (e) as in Example 2, 

(f) u is n-times continuously differentiable on (— oo, oo) x <0, n) for every 0 = e — #, 
(g) all above derivatives are continuous in all variables. 

The p r o o f is based on Example 2 and Theorem 5 using Remark 5. Let first 
n = 1. We choose U, X, L, Fas in Example 1 and A, B as first derivatives in t which 
generate translation groups in U, X. Now it is possible to verify the hypotheses 
(I) — (VI). The existence of 9 and u satisfying (a) — (e) follows from Example 2 
from where we obtain immediately (a) — (y). The remaining conditions (S) — (e) 
follow from (x) by the same method as in [5]. Using Theorem 5 we obtain the 
existence of continuous derivative in t. This result may be extended by induction to 
order n. The differentiability in both variables t, £ follows then as a special property 
of solutions of (generalized) linear string equation. 

Remark 7. It is clear that for n = 2 the function u in Example 3 fulfils the classical 
string equation 

utt(t, £, e) - u^(t, £, e) = ef(t, f, u(t, £, e)). 

Remark 8. All preceding theorems and propositions may be extended without 
serious difficulties to the case where F depends also on a general parameter. 
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