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APPLICATION OF THE RITZ METHOD 
TO THE SOLUTION OF PARABOLIC BOUNDARY 
VALUE PROBLEMS OF ARBITRARY ORDER 
IN THE SPACE VARIABLES 

byKAREL REKTORYS 

Direct variational methods, commonly used to the solution of elliptic boundary 
value problems and based on the minimalization of corresponding functional, 
cannot be used in their classical form to the solution of parabolic problems, because 
functional with similar properties do not exist in this case. In our lecture, we shall 
show a procedure permitting the application of the Ritz method to the solution of 
these problems. The method is rather interesting from the teoretical point of view 
and very effective for numerical solution. 

Let EN be the N-dimensional Euclidean space, xt, x2, ...,xN being Cartesian 
coordinates of the point xeEN. Let A be a bounded region in EN with a Lipschitz 
boundary fl (see e.g. NECAS [2]), let 

Q = flx(0, T). 

Let i = (ij, ..., iN) be a vector (the so-called multiindex) the components of which 
are nonegative integers. Denote 

| 11 = i± + ... + iN, 

n* ? ^U 

Dlu = — — . 
dx'{...dx^J 

Similarly forf = (j\, ...JN) a.s.o. 
Let the following boundary value problem be given: 

Au+-^ = f(x) inQ, (1) 

u(x, 0) = u0(x), (2) 

M = J ^ = ' " = S ^ = o f o n Mo'n (3) 

where v is the outward normal to fl, feL2(Q), u0 eL2(Q) and A is a differential 
operator of order 2k, 

A= z (-ly'M^wn (4) 
\i\.\j\ik 

with a^x) bounded and measurable in Q. 
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Note that the fu nctions atj(x) and f(x) are assumed to be independent of t. See, 
however, Remark 3. 

Denote 
A(v, u) = £ J a{j(x) DlvDju dx, (5) 

the bilinear form associated with the operator A, W(m)(Q) the Sobolev space of 
functions which are square integrable in Q together with their generalized derivatives 
(taken in the sense of distributions) up to the order m including (m being a nonnegative 
integer). W2

m)(Q) is a Hilbert space with the scalar product 

(v, u)w^(Q) = £ J DWu dx. (6) 
\i\<m Q 

If m = 0, we get the well-known space L2(Q) with the scalar product (v, u) = J vu dx. 

Denote, further, 

V = \v; ve W2
k)(Q), v = ~ = ... = g - _^ = 0 on O in the sense of traces1)!. (7) 

Let the form A(v, u) be V-elliptic, i.e. let a constant a > 0 exist such that 

A(v, v) _i a || v \\wfk)(Q) holds for every ve V. (8) 

Let p and r be fixed positive integers. Divide the interval [0, F] into p subintervals 
of the length hx = T\p. Denote, for the sake of symmetry of the notation, u0(x) = 
= zl0(x). Let 

^iiW, z12(x),...,zlp(x) (9) 

be elements of the space V (see (7)), defined, successively, by the following relations: 

A(v> z u ) + y-0>> z u ) = (v> f) + ~j--(v' Zl°)' 
AІP> Z12) + " ^ ( У . Z 1 2 ) = (V, f) + J~(V, Zц), 

Л ( 1 ' ' Z1P) + -"-(»• Z1P) = (»» j) + J~(V> Z l ,p-l)-

(10) 

All these relations should be fulfilled for every ve V. 
In consequence of (8) and of the fact that \lh1 > 0, a unique function zxl e V 

exists satisfying, for all ve V, the first of the relations (10); it is well known (see 
e.g. [2]) that this function is the so-called weak solution of the elliptic problem 

A z + Z ^ Z l ° = / in Q, z = - ^ = ... = - ^ f = 0 on Q. (11) 
hi dv d/-i 

2 ) See e.g. Nečas [2]. 
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The function Z_ t(x) being found, a unique function Z12 e Vexists satisfying the second 
of relations (10) for all v e V and being the weak solution of the problem 

Az + J j l f i i . = f in O, Z = - J - = ... = K~r = 0 on O, 

etc. 
Let us denote tj = fht, f = 0, 1, ..., p and define, in Q = (2 x [0, F], the function 

ux(x, t) in the following way: 

ul(x,t)^zlj(x) + ^^{zlfj+1(x)~~zij(x)} for tj£t£tJ+l9 (12) 

= 0, 1, ...,p — 1. Thus, in Q, this function is piecewise linear in l for every fixed 
x e Q and for t = tj we have uj(x, l,-) = Zi/x). 

Now, instead of dividing the interval [0, F] into p subintervals of the length hx = 
= T[p, let us divide it into 2p subintervals of the length h2 = F/2p. Let 

z 2 l (* )> Z22(X)9 ••• , z 2 , 2 p ( * ) (13) 

be functions determined by relations analogous to relations (10), and let us construct 
the function u2(x, t) in a similar way as we have constructed the function u^x, t), 
with the only difference that we use functions (13) instead of functions (9). In general, 
divide the interval [0, F] into 2n_1p subintervals of the length hn = T[(2n~xp) and 
construct, for every positive integer n = 1, 2, 3, ..., the corresponding function 
u„(x, t). Thus, we get a sequence of functions 

uX(x, t), u2(x, 0 , . . . , un(x, t), .... (14) 

It seems to be plausible that the limiting function of this sequence (if it exists) 
will be a solution, in a certain sense, of our problem. 

Before clarifying this question, let us investigate more thoroughly the case when 
the coefficients of the operator A are symmetric, 

au(x) = aji(x)-

It is well known (see [2]) that in this case zlt(x), ..., zip(x) are functions, minimizing, 
in V, functional 

1 2 
Gx(z) = A(Z, Z) + j-(z, z) - 2(f Z) - - i~( z io , z)> 

G2(z) = A(z, z) + J - ( z , z) - 2(f, z) - А ( Z n , z ) , 

GДz) = A(z, z) + ±-(z, z) - 2(/, z) - А ( Z l p _ 1 ; z ) . 

(15) 
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Let us use the Ritz method to this minimalization. Thus let 

<Pi(x),<p2(x), .-.,<Pr(x) (16) 

be the first r terms of a base in V and let us minimize the first of functional (15) 
in the subspace Vr of the space V, produced by the functions (16). Denote by zn(x) 
the function minimizing, in Vr, this functional, and by G2(z) the second of functionals 
(15) in which z n is substituted for z n . Let us again minimize this functional in Vr 

by the Ritz method. Denote the minimizing function by z12(x), the third of functionals 
(15), in which z12 stands for z12, by G3(z), and repeat the process again, etc. In this 
way, we get the functions 

zii(x),z12(x),...9zlp(x), (17) 

minimizing, in Vr, subsequently the functionals 

Glvz) = A(z, z) + J-(z, z) - 2(f z) - - i - f r 0 f z), 

G2(z) = A(z, z) + ~(z9 z) - 2(f z) - ~ ( 5 n , z), 

(18) 

1 2 ~ 
Gp(z) = A(z, z) + j-(z, z) - 2(/, z) - j - (zítP.lг z). 

(For the sake of symmetry of the notation we write z 1 0 , or Gx instead of z 1 0 , or G1, 
respectively; note, further, that the function z 1 0 = z 1 0 = u0 is given.) 

It is to be noted that functions (17) differ from functions (9) not only because of 
using the Ritz method (and thus because of minimizing the functionals in the subspace 
Vr instead of in the space V), but also because of the difference between functionals 
(15) and (18), caused by substituting z n for z n , etc. 

Having found the functions (17), let us construct the function ^(JC, t)9 analogous 
to the function (12), using functions (17) instead of functions (9). In a similar way 
let us construct the functions u2(x91)9 ur

3(x91)9...9 corresponding to the division of the 
interval [0, T~] into 2p, 22p, ... subintervals. We thus get a sequence of the "Ritz 
functions" 

u\(x91)9 ur

2(x91)9 . . . 9 u r

n ( x 9 1 ) 9 .... (19) 

Now, two questions arise: 

1. Does the sequence (14) converge, in an appropriate functional space, to a function 
u(x91) which can be declared, in a certain sense, as a solution of problem (1) —(3)? 

2. Can ur

n(x91) be made arbitrarily close (in an appropriate metric) to this solution 
if r and n are sufficiently large ? 
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Each of these questions is positively answered in the author's work [1]. It is not 
possible to present here corresponding theorems in full extent —those, who are 
interested in details, are referred to the work [1]. We shall prefer to introduce here 
some remarks concerning these questions: 

Remark 1. Existence of solution of parabolic boundary value problems of higher 
order has been proved by several authors (LIONS, BROWDER, LADY2ENSKAJA, IBRAGI-

MOV, etc.). The concept of the solution is slightly different in their works, according 
to problems in question and to methods used by individual authors. An analogy 
of the "Rothe sequence" (14) has been used, to prove an existence theorem, in the 
LADYZENSKAJA paper [3]. However, our concept of the solution is also rather 
different. Note that in our case no symmetry of the operator A is required (this 
requirement appears but when the Ritz method is applied). As to the course of the 
proof of our existence theorem, it is such that it could find use also for the proof of 
the main result of our paper, i.e. for the proof of convergence of the "Ritz sequence" 
(19) to the solution u(x, t). 

If the initial function u0(x) is sufficiently smooth (if, for example, u0 e W(
2
2k)(Q) n V, 

then u eL2([0, F], V), i.e., for almost all t e [0, F] we have u e V (and this mapping 
is square integrable in the interval [0, F]). In this sense, the boundary conditions (3) 
are fulfilled. Moreover, this mapping is continuous (even absolutely) as mapping into 
the space L2(Q), i.e. u e C([0, F], L2(-2)), and we have u(0 = u0 in this metric. Thus, 
in this sense, the initial condition (2) is fulfilled. 

For other properties of the solution see [1]. 

Remark 2. To the minimalization of functional (15), or (18), we have used the Ritz 
method. Let us note that whichever method can be applied which produces a mini
mizing sequence with similar properties as that produced by the Ritz method. In 
general, convergence of sequence (19) to the solution u(x, t) is ensured only inL2(Q). 
If the given data of the problem (1) —(3) are sufficiently smooth, then, as is shown 
in [1], the solution is also sufficiently smooth. In this case, the convergence of the 
"Ritz sequence" (19) can by examined in a finer metric than in L2(Q). To improve 
the convergence, a "finer" method than the Ritz method (for example, the Courant 
method) can then be applied. 

Remark 3. In our work [1], the just explained method has been developped to the 
construction of an approximate solution of the problem (1) —(3). The method can 
be applied to more general problems. Especially, the assumption that coefficients atJ 

of the operator A and the right hand side f of the given equation do not depend on t 
and are functions of x only, is not essential. 

Remark 4. The method is very effective for numerical solution of the given problem. 
Note that the "quadratic" terms are the same in each of functionals (18), so that, 
applying the Ritz method to the minimalization of these functionals, the left hand 
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sides of the corresponding Ritz systems remain unchanged. Thus, the numerical 
procedure and also the programme for its realization if automatic computers are 
applied, are very simple. For a numerical example see author's monography [4]. 
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