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SOME REMARKS ON THE ASYMPTOTIC 
EQUIVALENCE 

by MARKO SVEC 

We shall be dealing with systems 

x' = Ax +f(t9x)9 (1) 

/ = Ay9 t = 0, (2) 

where x9 j>,fare n-vectors, A = A(t) is continuous nxn matrix for / = 0 andf(t, x) 
is continuous vector function of t and x for / = 0, | x | < oo. (| | denotes any ap
propriate vector norm.) Our aim is to make some observations about the asymptotic 
behavior and asymptotic relationships between the solutions of (1) and (2). Various 
authors such as Weyl [1], LeVinson [2], [3], Wintner [4], [5], Jakubovic [6], 
Brauer [7], [8], Brauer and Wong [9], [10], Onuchic [11]-[13], Svec [14] and 
others have dealt with those problems. We can divide them into two main partial 
problems: 

P 1. Find the conditions which guarantee that for each solution x(t) of (1) there 
exists a solution y(t) of (2) such that 

lim | x(t) - y(t) | = 0. (3) 
t->oo 

P 2. Find the conditions which guarantee that for each solution y(t) of (2) there 
exists a solution x(t) of (1) such that (3) holds. 

Definition. We will say the two systems (1) and (2) are asymptotically equivalent 
if and only if both problems P 1 and P 2 have solution. 

In many papers the problem of asymptotic equivalence is reduced in such a way 
that the condition (3) is replaced by the condition 

\*(t)-y(t)\ =o(|;;(t)|), t -> oo, (4) 

or the asymptotic relationship (3), (4) respectively, is estabilished only between the 
subsets of solutions (e.g. between the bounded solutions). 

The assumptions under which these problems have been studied have concerned 
the matrix A9 or, which is the same, the asymptotic behavior of the solutions of (2) as 
well as the perturbing termf(l, x). There were studied the cases when A is a constant 
matrix, all characteristic roots of which have the real parts negative or zero; those 
with real part zero are simple. This corresponds to the condition that all solutions 
of (2) are bounded. Another way how to describe the behavior of the solutions of (2), 
which can omit the condition that A is constant, is to impose some conditions on the 
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fundamental matrix Y(r)of(2),e.g. | Y(t) \ g Kand | Y(t) Y'^s) \ g is:for 0 ^ s ^ t; 
or| 7(0 | ^ Ke~a,,\ Y(t) Y'^s)] g ^e - a ( ' - s ) fo r0 ^s^ t;or\ Y(t) J1Y~1(s)\ ^ 
g AT for 0 S s £ t, | Y(?) /2Y~ J(s) | S K for 0 £ t g 5 and lim Y(t) Jt = 0, where 

J! and J2 are two supplementary projections and K is constant. Only by Jakubovic 
there is no restriction about the characteristic roots of A (A is assumed to be constant). 

The hypotheses about the perturbing termf(l, x) were also various. At the beginning 
f(t, x) was assumed linear, f(t>, x) = B(t) x, or the norm off(t, x) was assumed to be 
majorized by linear function, \f(t, x) \ g <p(t) \x\. Later, by Bauer and Wong [9], 
[10] and Svec [14], there is the assumption that 

| / (* \*) | ^F(t,\x\), f = 0, | x | < oo, (5) 

where F(t, u) is a continuous scalar function for t ^ 0, u ^ 0 which is non-decreasing 
in u for each t. 

The most frequently used tools for solving the above problems are those of variation 
of constants combined with various types of integral inequalities and comparison 
principle and with the fixed point theorems. In this paper we shall talk about a method 
which we used mainly in the paper [14] and which gives the general results containing 
many of the previous as special cases. This method is based on the fact that we have 
to compare the solutions of two systems, one of which is linear and the other linear 
perturbed. We start with the systems 

x'= A(t)x+f(t), (V) 

y' = A(t)y. (2') 
Then it is very easy to prove 

Theorem 1. The systems (V) and (2') are asymptotically equivalent if and only if the 
system (Y) has a solution x0(t) such that limx0(l) = 0. 

t-+co 

After this the problem of asymptotic equivalence of (V) and (2') can be reduced 
to the problem of existence of at least one solution of (V) which converges to zero as 
t -> oo. The following theorem gives an answer to this problem in the case that A 
is a constant matrix. We assume, without loss of generality, that A has the Jordan 
form and that A = diag (A1, A2) such that Re Xt(A^) ^ — a < 0 and Re Ai(A2) ^ 0. 
(Xi(A) denotes the characteristic root of A.) Let p be the maximum order of those 
blocks in A which correspond to characteristic roots with real part zero and letp = 1 
if there is no characteristic root with real part zero. Let X = max Re Xt(A). Let m 
be the maximum order of those blocks in A which correspond to the characteristic 
roots Xt(A) such that Re Xt(A) = X. 

Theorem 2. If 

]tp'1\f(t)\dt< co, (6) 
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then the equation 
x' = Ax+/(t) (7) 

has at least one solution x0(t) converging to zero as t -> oo. 
We note that the condition (6) is the best in the sense that there are systems of type 

(7) with a solution converging to zero as t -> oo and this fact implies that (6) holds. 

Example. The system 
Xl = X2 5 

*2 = / 2 ( 0 
has the general solution 

t 

*2 = c2 + J/2(s) ds, 
0 

t 

Xl = ct + c2l + J (r - s)/2(s) ds. 
0 

OO 

If xt(t) -> 0, x2(t) -» 0 as t ~> oo, then it must be c2 = — J/2(s) ds, and 
o 

00 t 

c1 — t J/2(s) ds — J s/2(s) ds -> 0 as t -> oo. If we assume that /2(l) = 0, then the 
t o 

oo 

last condition implies that Js/2(s)ds < oo. 
o 

Now applying theorems 1 and 2 we can prove easily the two following theorems. 
Theorem 3. Let F(t, u) be a continuous scalar function for t ^ 0, u ^ 0 which is 

non-decreasing in u for each t. Let (5) be valid and let 

00 

J tp~1F(f, c) dt < oo for each c = 0. (8) 
o 

Let A be a constant matrix. Then to each bounded solution x(t) of (1) there exists 
a solution y(t) of (2) such that (3) holds. 

In fact, it is sufficient to consider the system 

z' = Az + f(t, x(t)). (9) 
Then 

00 00 

J tp~x |/(l , x(0) I dt ^ J t^Ffa c) dt < oo. 
0 0 

Thus by theorem 2 the system (9) has a solution z0(l) converging to zero as t -> oo. 
Setting y(t) = x(t) — z0(t) we have that y(t) is a solution of (2) and x(t) — y(t) = 
= z0(l) -> 0 as t -> oo. 

We note that theorem 3 is a generalization of theorem 3 of Jakubovic [6]. 
In the same way can be proved 
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Theorem 4. Let A be a constant matrix. Let x(t) be a solution of (I) such that 

\x(t)\ ^ Ke'V, t = 0. 
Let (5) be valid and let be 

00 

j ^ - 1 F ( f , K e ' V ) d t < oo. 
o 

Then there exists a solution y(t) of (2) such that (3) holds. 
Theorems 2 and 3 are valid also in the ease that A = A(t) is a nonconstant matrix 

such that it can be transformed into a constant matrix B by using the Ljapunov 
transformation. 

Now suppose that (1) and (2) are asymptoticaly equivalent. Then necessarily the 
asymptotic behavior of the solution x(t) of (1) must be the same as that of the cor
responding solution y(t) of (2). We still assume that A is constant. Let Y(t), Y(0) = F, 
be the fundamental matrix of (2). Then 

\Y(t)\^c0c
x'Xm(t), f = 0 (10) 

and 
I y(t) | = | Y(t)y(0) | = c0 | y(0) \ tx,

Xm(t), t = 0, (11) 

where 
í í m - \ í = i, 

XmK) \l 0 = í = 1. 
(12) 

Therefore, if (1) and (2) are asymptotically equivalent, the solutions x(t) of (1) satisfies 
the estimate 

| x ( 0 | = DeAr
Zm(0 + o(l), for f = /0, 

where D and t0 are suitable constants. 
Now it is desirable for our considerations to establish the conditions which 

guarantee that for the solutions x(t) of (1) the estimates 

\x(t)\^Dt*t
Xm(t), l = t0 (13) 

are valid. The following theorem deals with this. 

Theorem 5. Lel be satisfied (5), let be 

oo 

J Q~XtF(t, c eAf
Zm(t)) dt < oo for each c = 0 (14) 

o 
and let t0 be such that 

00 

sup 1 I z~XtF(t,ctx'Xm(t))dt = S < ^ . (15) 
[l,oo) C J Co 

to 

Then for the solutions x(t) of (1) the estimate (13) holds. 
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It is evident that the condition (15) can be substituted by the condition 

OO 

s u p l f e^ r F( f , ce^ m (0 )d r< oo. (16) 
[Loo) C J 

0 

We note that the hypotheses of theorem 5 guarantee that each solution x(t) of (1) 
which exists in some right neighborhood of t0 can be continued to the whole interval 
[t0, oo). 

Theorem 5 gives us the main tool for proving 

Theorem 6. Let be satisfied (5). Let be 

00 

J tp~ lF(t, c extxm(t)) dt < oo for each c = 0 (17) 
o 

if 1 ^ 0 and 
00 

j e~A'F(l, c eArxw(0) dt < oo for each c = 0 (18) 
o 

if X < 0. Let be satisfied (16). Lel A be constant. Then the systems (1) and (2) are 
asymptotically equivalent. 

The proof of the first part of this theorem, that is, of the part that to each solution 
x(t) of (1) there is a solution y(t) of (2) such that (3) holds, consists in application 
of the theorem 5 and then of the theorems 3 and 2. The proof of the second part is 
more difficult. If y(t), y(t0) = y0, is a solution of (2), then the solution of the integral 
equation 

x(t) = y(t) + Y,(t) I Yr l(s)f(s, x(s)) ds - Y2(t) J Y2 \s)f(s, x(s)) ds (19) 
o t 

is the solution of (1) and it satisfies (3). Here 

Y,(t) = diag (eMl, 0), Y2(t) = diag (0, otA2), Y(t) = Y,(t) + Y2(t). 

The existence of the solution x(t) of (19) can be proved via the Schauder fixed point 
theorem. 

Theorem 6 contains as special cases the theorem 2 of JAKUBOVIC [6], the theorm 
of Levinson and its extension due to BRAUER and WONG [10] and others. 
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