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OSCILLATION IN LINEAR DIFFERENTIAL 
EQUATIONS 

by F. N E U M A N 

1. Here a certain geometrical approach to global problems, in particular to oscilla­
tion, in the theory of linear differential equations of the n-th order will be described. 

Studying zeros of solutions, GEORGE D. BIRKHOFF [1] in 1910 introduced a geo­
metrical interpretation of solutions; he dealt, however, with curves in the projective 
plane corresponding to solutions of linear differential equations of the 3rd order 
only. 

More closely to our approach there are investigations of H. GUGGENHEIMER [5]. 
He considered, however, only periodic solutions of linear differential equations of the 
n-th order. 

Our approach is applicable both to general differential equations and those of 
arbitrary order. It makes possible to see the whole situation in behaviour of solutions 
for all differential equations of a given order and not only to consider separate 
simple examples (often with constant coefficients) as a motivation for a possible form 
of theorems. The proposed method is useful mainly for solving problems concerning 
existence or non-existence of differential equations with solutions having some 
prescribed properties. The investigation of oscillation problems can be done for all 
equivalent differential equations at the same time. There is also suggested a new 
canonical form to which every linear differential equation of the n-th order with 
only continuous coefficients can be reduced on its whole interval of definition, 
without any restriction on the interval of transformation or on smoothness of coef­
ficients. 

In the rank of the approach a geometrical interpretation of adjoint equations is 
also given. 

The proposed method of investigation is not restricted to geometry since some 
concepts and theorems from the theory of functional equations (in [13]), topology 
and theory of dynamical systems ([10] and [18] used in [14]) play their important 
role. 

The proposed approach is described in [12] (preliminary communication was 
published in [11]). Here we are going to give some basic ideas of the method. 

2. Hence, consider 

Ln(y) = y(n) + fl-X*)/"-" + ... + an(x)y = 0 on 7, (1) 

where I is an open interval (bounded or unbounded), ateC°(I) for i — 1, ...,n. 
Cn(I) denotes the class of all continuous functions on I having here continuous 
derivatives up to and including the rz-th order, n ^ 0. 

119 



A differential equation is determined knowing its n linearly independent solutions 
yi> •••5yM5 simply written in vector form as y and called a fundamental solution. 
Such the equation will be denoted as Ln\y] == o. Those solutions are all of the class 
Cn(I) that will be briefly expressed as y e Cn(I). Wronski determinant of y(e Cn~\J)) 
will be Wn\y]. 

Two differential equations Ln
l)(y) = 0 on /(1>and 

L(2)(z) = 0 on I(2> are called (positively) equivalent 

if there exist two functions / : L(2) -> R and cp : / (2 ) -> / (1 ) such that / e Cw(/(2)), 
cp e C"(/(2)), / ^ 0 on /(2), dcpfdt > 0 on / (2 ) and 

*(0=/(0.y(<?>(0) 

is a solution of L(2)(z) = 0 on / (2 ) for every solution y of La)(y) = 0 on /(1). Or, in 
other words, 

z(t)=f(t).y(q>(t)) (2) 

is a fundamental solution of Ln
2)(z) = 0 if y is a fundamental solution of L(

n
i)(y) = 0. 

From (2) it can be seen that two equivalent equations have the same behaviour 
of zeros of their solutions. 

Hence, trying to find a suitable representation for the whole class of equivalent 
equations, we have two functions / and cp at our disposal. 

Fortunately, it can be shown (see [16] or [12]) that for our /and cp 

Wn\fy] * 0 iff Wn\y] * 0 and Wn\y(cp)] = Wn\z] * 0 iff WH\y] * 0. 

Hence, instead of an equation Ln\y] = 0 on L we may consider its equivalent equation, 
fundamental solution z of which is the central projection of y on the unit sphere 
£„_! c En (^-dimensional Euclidean vector space), i.e., 

df. 

z(x) = y(x)/\ y(x) |, 

where/(x) = 1/| y(x) |, cp = idj5 and | y(x) | = }fcy?(x). 

Having z(x) on the unit sphere, we may introduce a new parameter s requiring the 
unit tangent vector at every point, i.e., 

| dz(q>(s))Ids | = |dn(s)/ds| = 1. 

This is always possible since cp determined in this way satisfies our conditions cp e C", 
dcpjds > 0. 

Hence we have constructed Ln\u] = 0 on J equivalent to the previous Ln[y] = 0 
on L, where | u(s) | = 1, | dw(s)/ds | = 1 for s e J. 

Such a fundamental solution u(s) can be considered as a curve on £,._! and the 
corresponding Frenet formulae have the form 
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u'(s) = u[(s) = u2(s) 

u'2(s) = -u^s) + a2(s)u3(s) 
(3) 

U'n(s) = - a^^ s ) ! ! , , , ! ^ ) , 

where u1 = u, u2, ...,«„ form an orthogonal system of unit vectors at each s e J, 
oct G Cn~\J) and could be chosen such that all at = 0. Due to Wn[y] ?- 0 => Wn[u] ^ 
9-0we have also a,- > 0 for all i and all s. 

3. Using the Frener formulae (3) we may naturally derive canonical forms for 
equivalent equations of arbitrary order. For n = 2: 

wiO) = u2(s) 
/ / \ r \ on J 

u2(s) = -Wi(s) 
that gives u"(s) = u2(s) = -i*i(s) 

or 
u" + u = 0 on J (4) 

as a canonical form for all linear differential equations of the 2nd order. We see that 
the form depends only on the interval of definition J, whereas the equation is always 
the same. That gives the known result that every two linear differential equations 
of the 2nd order are locally equivalent. If we want, however, to transform them on 
their whole intervals of definitions, then the condition on the corresponding intervals 
J is only another form of O. BORUVKA'S result of the character of such equations [2]. 

For n = 3 we get 
a-K5) „.// , /i , „2/x\ / a200 

u — «" + (! +a2
2(s))u' -^f{u = 0 on 

a2(s) ' a2(s) 

and similarly for higher orders. 
For a given n the canonical form depends on an interval of definition J and on 

n — 2 positive functions a£ e Cn~l(J), i = 2, ..., n — 1. The form is (generally) not 
unique for a given class of equivalent equations since we might have started from 
another fundamental solution than our y. 

Let us emphasize, however, the fact that for the transformation to the canonical 
form there are neither restrictions on the interval of definition nor on smoothness 
of coefficients. That allows us to study global properties, especially oscillation, only 
considering the mentioned canonical forms. 

Coming to adjoint equation, let us recall that adjoint equation aLn(y) = 0 on / to 
Ai(y) = 0 on I has a fundamental solution (see, e.g. [6]) 

(yxy'x...xy{n~2))IWn-y\ 

if y is a fundamental solution of Ln(y) = 0 on /. Here y x... xy(n~2) denotes the 
vector product of the (n — 1) vectors y, ..., y{n~2). 
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Having in mind the definition of equivalence, flA,(y) = 0 on / is then equivalent 
toL„[yx...x;y(«--2>] = OonL 

4. We have seen that every linear differential equation L„(y) = 0 on / can be 
represented by its fundamental solution y on I considered as a curve in En, i.e., 
with yt(x) as its coordinates. This y e Cn(I) and Wn[y\ ^ 0 on I. Any of equivalent 
equations with the Ln[y\ = 0 is of the form L„[z] = 0 on a suitable interval, where 
z = / • y((p)> Especially z could be a curve on the unit sphere Sn^.1 with or without 
a particular parametrization described above. 

The curve formed by the vector product of y, y', ...,y{n~~2) corresponds to an 
equation that belongs to the class of equations equivalent to the adjoint equation 
aLn(y) = 0 on L The projection of the curve on the unit sphere with a respective 
change of parameter can be also considered. 

Having in mind this geometrical representation of solutions we come to an inter­
pretation of zeros of these solutions. 

For this purpose, hyperplanes in En will be only those passing the origin: for 

ceEn, c = (ci, ..., cn) * 0 let H(c) = {veEn;v.c = "£jvici = 0}. 
i 

Hyperplanes H(ct), ..., H(cj) will be called independent if the rank of the matrix 
(ct,..., cj) is j . 

It can be proved ([12]) that: 
"To every linear differential equation Ln(y) = 0 on I there correspond 
a curve u(s) for se J, 
a mapping cp : J -» /, and 
a linear correspondence h between all solutions of Ln(y) = 0 and all hyperplanes 

H(c) in En such that to linearly independent solutions y1 and y2 there correspond indep­
endent hyperplanes h(yx) and h(y2), and a solution y has a k-multiple zero (0 ^ k ^ 
<̂  n — 1) at x0 iff the corresponding hyperplane h(y) and our curve u(s) have the contact 
of (k — \)-order at s0, cp (s0) = x0. 

The curve u is any of fundamental solutions of any of equations equivalent to the 
given Ln(y) = 0 on I and hence it may be the same for the whole class of equivalent 
equations. It may or may not be chosen such that it lies on the unit sphere Sn^l." 

Let us illustrate the theorem on examples of known results. 

Example 1. Separation theorem for linear differential equations of the 2nd order. 
Any such equation y" + ax(x) y' + a2(x)y = 0 on / can be transformed to 

u" + u = 0 on J. Take a fundamental solution of the last, e.g., u(s) = (cos s, sin s), 
se / . Now, hyperplanes here are straight lines passing the origin, and two linearly 
independent solutions yt, y2 are mapped into different lines h(yi), h(y2)-

It is evident that the contacts of h(y) with u could be only simple intersections and 
that between any two successive intersections of h(yi) with u (sx < s3) there is just 
one (s2) intersection of h(y2) with u. This corresponds to the known fact that solutions 
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of linear differential equations of the 2nd order have only simple zeros and zeros 
of linearly independent solutions separate each other. 

Let us note that, e.g., our equation of the 2nd order is both-side oscillatoric iff 
J = ( — 00, oo), i.e., the unit circle is encircled by u infinitely many times both for 
s -> — co and for s -> + oo. 

Example 2. For linear differential equations of the 3rd order there were questions 
whether there exist 

(i) an equation all solutions of which are oscillatoric (solved by G. SANSONE [15] 
in 1948) 

(ii) an example of an equation such that all solutions of it at the same time as 
all solutions of its adjoint equation are oscillatoric (proposed by J. M. DOLAN [4] 
in 1970). 

From the point of view of our approach it is not difficult to give the affirmative 
answers to both questions, since only a curve n(s) on the unit sphere S2 <-= E3 should 
be considered, u e C3

9 W3[u] # 0, such that 

(i) it is intersected infinitely many times by every plane going through the origin 
(ii) the above requirement (i) is satisfied together with the property that the vector 

product u x u' satisfies also (i). 

Example 3. Recently V. SEDA [17] and Z. MIKULIK [9] dealt with differential 
equations with zero invariants (or locally equivalent to y(n) = 0, or often called 
iterated equations) and the following result for these equations of the 3rd order 
was established: "There always exists a nonvanishing solution. If a solution has 
a zero, then 
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either all zeros of the solution are simple, 
or all zeros of the solution are double." 

The situation described by the theorem becomes very descriptive using our ap­
proach since it can be shown that a curve u corresponding to any iterated differential 
equation of the 3rd order can be written as u(s) = (cos2 s, 2 cos s. sin s, sin2 s), 
which is (a part of) a circle in the plane ux + u3 = 1 (not going through the origin). 
Hence, really, 

there exists a plane (passing the origin) which does not intersect u, 
if a plane (passing the origin) intersects u, then either all intersections are simple, 

or all contacts are of the 1st order always at the same point on the circle (with dif­
ferent parameters). 

5. The proposed approach is not only suitable for illustrating theorems like in 
above examples, or e.g., theorems of M. HANAN [6] concerning zeros of solutions 
of linear differential equations of the 3rd order of the class CY or Cn as it was shown 
in [12]. 

In [13] you can find the necessary and sufficient condition for the existence of 
only periodic solutions of linear differential equations of the w-th order. This condition 
is expressed in terms of distribution of zeros of solutions, and besides the described 
geometrical approach, some results (M. KUCZMA [8] and B. CHOCZEWSKI [3]) from 
theory of functional equations play their role in the proof of the condition. 

Topology and some concepts from dynamical systems are used in [14] when 
answering the second problem proposed by J. M. DOLAN [4] in the negative way. 
The problem was whether there exists an example of a linear differential equation 
of the 3rd order with the property that to every couple y1, y2 of linearly independent 
solutions of it there exist constants cll9 c129 c21, c22

 s u ch that 

c ny i + ci2y2 is an oscillatoric non-trivial solution and 
c2iyi + ^22y2 1s a non-oscillatoric non-trivial solution. 

The non-existence of such an equation is based on proving the non-existence of a 
curve on the unit sphere having the property that can be easily formulated using 
our geometrical interpretation. The compactness of S2 plays here its important role. 

The last mentioned problems seem to be interesting not only from the point of 
view of differential equations, but they lead to results in geometry and topology. 

Then applying our geometrical approach to differential equations, we may either 
answer the proposed problem if the corresponding theorems in geometry, topology, 
theory of functional equations or theory of dynamical systems are known, or we 
get new interesting problems in those theories that lead to new investigations, maybe 
to new methods suggested by the previous problem in the theory of differential 
equations. Possibly we may succeed in solving the correspoding problems in both 
theories. 
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