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ON LIMIT -POINT AND SEPARATION CRITERIA 
FOR LINEAR DIFFERENTIAL EXPRESSIONS 

by W. N. EVER1TT and M. GIERTZ 

I N T R O D U C T I O N 

This paper is concerned mainly with reporting on some properties of the ordinary 
differential expression M\-\ defined, in terms of two real-valued coefficients p and q, 
on an interval I of the real line R by 

MU}=-(pf')' + qf on / (' = ^ - ) - (0-0 

However some of the properties considered extend in a natural way to the partial 
differential expression J(\^\ given by 

•*[/]= ~An\f\ + qf on G, (0.2) 

where An\-\ is the Laplacian in Rn, G is an open connected domain of Rn and q is 
a real-valued coefficient defined on G. 

The paper is in four sections. 
The first section is concerned with properties of M\-\ and details limit-point and 

separation results. The second section gives some corresponding properties of the 
differential expression Mn\-\ obtained by taking formal powers of M\-\. 

In the third section we give some separation results for the partial differential 
expression Ji\-\. 

Some unsolved problems are listed in the fourth section. 
Finally there is a list of references. 

NOTATIONS 

The real and complex number fields are denoted by R and C; euclidean space of n 
dimensions by Rn. We use [ and (to indicate that an interval of R is closed or open,' 
respectively, at its left-hand end point. Similarly at a right-hand end point. 

For any interval I of R the complex Hilbert function space on I is denoted by L2(I). 
The symbol L2

oc(I) denotes the collection of all complex-valued functions on I which 
are integrable-square (Lebesgue) on every compact sub-interval of L Similarly for the 
function spaces Lr(I) where 1 < r < oo. 

^Qoc(I) denotes the collection of all complex-valued functions on I which are 
absolutely continuous on every compact sub-interval of I. 
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1. T H E D I F F E R E N T I A L E X P R E S S I O N M[] 

Let the coefficients p and q in the differential expression M[*]> given by (0.1), 
satisfy the following basic conditions, here I is a given interval of R, 

p,q:I-+K, qeL2
oc(I) and (1.1) 

peACloc(I), p(x) > 0 (xeI), p' eL,20c(I). 

It then follows, in the sense of NAIMARK [15] section 15.1, that M[-] is regular at 
every point of I, i.e. every initial value problem of the differential equation 

M[y~](x) = 0 (xel) (1.2) 

may be solved at any point of I; see [15] sections 16.1 and 16.2. 
Let the left-hand end point of I be a. We say that this end point is singular for 

M[*] if either a is infinite, i.e. a = — oo, or if a is finite and the initial value problem 
for (1.2) cannot be solved in general at that point. A similar definition holds at the 
right-hand end point of I, say b. 

According to the original definition of HERMANN WEYL, see [19] or [16] sections 
2.1 and 2.19, every singular end point of M[-] is classified as either limit-point or 
limit-circle. If the left-hand end point a of I is singular for M[-] and c is an arbitrary 
interior point of I then M[-] is limit-circle at a if and only if every solution y of (1.2) 
is in L2(a, c); otherwise M[-] is limit-point at a. Similar definitions hold at the right-
hand end point b of I when this point is singular for M[»]. 

To define separation of M[-] in L2(I) we introduce the linear manifold D1 = 
== D{(p, q) c: L2(I) with the definition 

D! = {fe L2(I) : / ' e ACl0C(I) and M[/] e L2(I)}. (1.3) 

(Dj is the maximal set within L2(I) for which M[/] is defined and in L2(I).) The 
differential expression M[«], for which the coefficients p and q satisfy the basic 
conditions (1.1), is said to be separated in L2(I) if 

qfeL\l) for all fsD1 (1.4) 
or, equivalently, if 

(pf')'eL2(I) for all feDt. 

In general, M[-] is not separated, see [14] VI remark 4.1 and also the examples 
in [4] sections 6 and 7. 

We note that the conditions (1.1) onp and q, and the definition (1.3) of D1? imply 
that 

q/GL2
oc(I) for all / G D X (1.5) 

so that whether (1.4) is satisfied or not, i.e. whether M[-] is separated in L2(I) or not, 
depends only on the properties of M[-] at the end points of I. It is for this reason 
that the L2

oc conditions on p, p' and q are introduced into the basic conditions (1.1). 
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This also means that each end point of I may be treated separately in attempting 
to establish separation of M[-] in L2(I). 

The concept of separation is connected with inequalities of the following form, 
here A, B, C and D are non-negative real numbers, 

A\\(pf'y\2+B\p\q\\f'\2 + C\q2\f\2^\\Min\2 + D\\f\2 (1.6) 
I I I I I 

which are to hold for allfe Dx. We give examples of such inequalities below. 
Separation is also connected with the properties of unbounded differential operators 

generated by M[-] in the Hilbert space L2(I); see for example [4] section 1 and [7] 
sections 3, 4 and 5. In particular inequalities of the form (1.6) may be used to obtain 
results in the theory of relatively bounded perturbations of such operators; see [7] 
section 9. However we shall not consider such aspects of separation in this paper. 

We consider now some separation results under various conditions on the coeffi
cients p and q. 

(1) The case when I = \a, oo) for general p and q 
Suppose in addition to p and q satisfying the basic conditions (1.1) we have also 

qe ACl0C\_a, oo) and q(x) ̂ 0 (xe [a, oo)), (1.7) 

and for some e satisfying 0 < e < 1 

{p(x)Yh | q'(x) | g (1 - e) {q(x)}^ (x e [a, co)), (1.8) 

then M[-] is limit-point at oo, since q is bounded below, and so the result in [3] 
chapter XIII, section 6.14 applies; and M[-] is separated in L2(a, oo) from the result 
in [7], (2) of theorem 2. If in addition to (1.1, 7 and 8) the coefficient p is such that 
the following inequality is satisfied 

00 00 00 

{\p\f'\2}2^K\\f\2\\(pf'y\2 (feDt) (1.9) 
a a a 

for some K satisfying 0 < K < oo, then for any <5 e (0, 1) we have an inequality of 
the form (1.6) 

00 00 00 

S\\(pf')'\2 + d + s)\pq\f'\2 + e\\f\2 ^ 
a a a 

00 oo 

^ \ | M[f\ |2 + (1 + jK)2{q(a)}2(l - 5)'1 \ \f\2 (fe D.); 
a a 

for a proof of this result see [7] theorem 3. 
A condition of a seemingly different nature is given by DUN FORD and SCHWARTZ 

in [3] chapter XIII, 9 B5, where it is stated that separation occurs if p is positive, 
q is real and 

limsup {| (pqy | q2} < 1. (1.10) 
00 
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However there appears to be some misprint here, since (1.10) admits the casep(x) = 
= 1, q(x) = — x (xe [0, oo)) for which separation does not occur; see [4] section 7. 

(2) The case when I = [a, oo) and p = 1 
Consider the case when I — [a, oo) and 

p(x)= 1 (xe[a,oo)); (1.11) 

in this case a number of conditions on q are known which result in separation. 
Before stating them it is convenient to make the following definition of a function P(-) 
which maps [0, oo) into sets of the coefficient q, as follows: 

q e P(y), where y = 0, if q e L2y
c[a, oo) n L?oc[a, oo) 

and | q \yfeL2(a, oo) for all fe D1 = Dx(q). 

We note that P(y) 3 P(fi) if 0 ^ y < p and, from (1.4), that M[.] is separated in 
L2(a, oo) if and only if qeP(l). We may note also that if qeP(\j2) then M[«] is 
limit-point at oo; this follows from an argument similar to that given in [4] section 1 
or [12] section 3, lemma 2. 

Assuming (1.1) to hold, i.e. q eL2
oc[a, oo), each of the following additional condi

tions on q implies that M[*] is separated in L2(a, oo) or, equivalently, that qeP(\). 
The method of proof in these cases below are all entirely different in nature. 

It should be noted that in these conditions separation still occurs if q is replaced by 
q + k, for any real number k, and the conditions are then satisfied on an interval 
of the form [X, oo) where X ^ a is taken to be sufficiently large. 

Since qeP(l) implies that qeP(l/2) each condition also ensures that M[.] is 
limit-point at oo. 

i) The first condition, given in [4], is 

q'e ACloc[a, oo), q(x) > 0 (xe [a, oo)) 

and J {q-i/4(q-lfy} < oo (1.12) 
a 

(ii) The condition given in (1.8) above may in the case p = 1 be improved to 

qe ACl0C[a, oo), q(x) ^ 0 (xe [a, oo)) 

and for some c e (0, 2) (1.13) 

\q'(x)\^c{q(x)}^ (xe[a,oo)). 

(iii) F. V. ATKINSON gives, in [1], a condition which is less demanding on the 
regularity of q. In the circumstances when q is differentiable this condition takes 
the form 
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q e ACl0C[a, co), q(x) > 0 (x e [a, oo)) 

and -(1/3) [ - C + Vl6 + C2] < q'(x) {qW}"3/2 < C (1.14) 

for some C e (0, 4/^/3). 

An example in [8] shows that the upper bound of 4/^/3 is best possible, 
(iv) The condition 

q e Lr(a, co) for some r e [2, co) (1.15) 

is discussed in detail in [12]. 
We make the following remarks on the conditions (i) to (iv) above. Firstly (i) to (iii) 

essentially restrict the oscilatory behaviour of q; however it may be verified that such 
conditions are satisfied by all reasonable monotonic increasing functions, e.g. xx for 
all T = 0, log x, e*, exp {ex}, log log x, and also by moderately oscillating functions. 
Secondly (iv) above does not restrict the oscillatory nature of q, which may be 
unbounded above and below, but does require q to be globally small at co. 

As to the P(-) classes to which q may belong we record here the following results 
(again note the basic condition (1.1) on q, i.e. qeL\0C[a, co)): 

(i) if q is bounded below on [a, oo) then q ePy — J; see [4] section 1. 

(ii) if (1.12) holds and if, in addition, q(x) = (\ogx)p (for all sufficiently large x) 
where ft > 0, and for K satisfying 0 < K < co, 

q"3/4|(q"1/4r| <K on [a, co), (1.16) 

then qeP(l) but q£P(l + S) for any 8 > 0; see [4] section 5; note that (1.16) is 
satisfied by all the examples listed in the previous paragraph. 

(iii) given any /? > 0 it is possible to co nstruct a coefficient qfi which is bounded 

below on [a, co) (i.e. qeP(— 1 from (i) above) such that qfiePl— + /?) but 

q0 $ PI — + ft + 8) for any 8 > 0; see [4] sections 1 and 6. 

(iv) from results in [12] it is shown that if (1.15) is satisfied for some index r e [1, co) 

then qePl — r) and that this result is best possible; we note that with the index r 

in this range we have qePI — ) and so M[«] is limit-point at co. 

(v) if 
q(x) = -xx (x 6 [a, co), a ^ 0) 

where 0 < T ̂  2 then q e P(0) but q £ P(S) for any 8 > 0; see [4] section 7; in this 
case M[«] is limit-point at oo. 
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Finally in this case when I = [a, oo) and p = 1 we mention that there are many 
interesting inequalities of the form (1.6); some of these may be found in [7] but 
a more detailed account is given [9]. 

(3) The case when I = (— oo, oo) andp = 1 

Again (1.1) is to be satisfied but now on (— oo, oo). 
We give here some of the number of inequalities of the form (1.6) taken from the 

detailed account in [9]. 
Suppose that 

qeACIoc(~~ oo, oo) and q(x) ;> 0 (xe(— oo, oo)) (1.17) 

and also satisfies 
| q'(x) | = c{q(x)Yh (x e ( - oo, oo)) (1.18) 

where the number ce(0, 2); then we have the following inequalities (where the 
constants appearing on the left-hand side are best possible, from [9] section 2) 

( l - | / ) « f l / |U | |M[ / ] | | {feDl{q)), 

(2 - c) || q'T || 52 || M[f] || (fe DL(q)) (1.19) 

min {1, 4c-2 - 1} \\f || g || M [ / ] || ( / e £.(<-)). 

Also if in (1.18) we have c e (0, ^2) and if 5 e —- c, c _ 1 then 

(1 - 8c) || qf||2 + (2 - C5-1) || ?' '*/' ||2 4- | | / ' ||2 £ || M[f] ||2 (feDx(q)). 
(1.20) 

It is clear that in all such cases M[«] is separated in L2(— oo, oo); we note also 
that (1.17) implies M[-] is limit-point at both — oo and oo. 

(4) The case when I is bounded and p = 1 
Separation and limit-point results are also available in the case of bounded in

tervals and such problems are considered in detail in [9] and [10]. Many inequalities 
of the type (1.19 and 20) are given in [9] thus yielding separation results. In [10] 

results are proved which lead to establishing qePI —- J in the case of finite intervals 

with singular behaviour in q at the end points. 

2. THE CASE OF POWERS OF M[.] 

Separation and generalised limit-point results for the formal powers M"[-], where 
n is a positive integer, of the differential expression 

M[f] = - / ' + qf on [a, oo) (2.1) 

are given in [5] and [6]. 
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We write, inductively, AT[-] = Af[A/"-1[-]] and then put 

M ' [ / ] = I amkf™ on [a, oo) (« = 2, 3, ...), (2.2) 
k = 0 

where f ( k ) denotes the k-derivative off and the coefficients ank depend on the powers 
and derivatives of q. We shall assume here, given the integer n, that 

a(2""3)eACloc[a, oo) (2.3) 

in which case all the coefficients ank are defined almost everywhere on [a, oo). As an 
example we have 

M\n = / ( 4 ) - 2qf(2) - 2qf + (a2 - a(2>)f (2.4) 

Roughly speaking separation in L2(a, oo) for M"[-] is the property that f and 
M"[f] in L2(a, oo) should imply that every term on the right-hand side of (2.2) 
should separately also be in L2(a, oo). 

When (2.3) is satisfied the power M"[-] exists as a differential expression and is 
formally symmetric on [a, oo). As an example we may rewrite (2,4) above in the 
symmetric form 

M2[f]=fW-(2qfT + ( q 2 - q ( 2 ) ) f on [a, oo). (2.5) 

Thus in the general case Mn[f\ may be used to generate self-adjoint, unbounded 
differential operators in L2(a, oo). Separation and the generalisation of the limit-
point/limit-circle classification for Mn[f\ are connected with the properties of these 
operators and their relatively bounded perturbations but we shall not be concerned 
with such matters in this paper; however some details may be found in [5]. 

We state two separation results here. The first is the partial separation result as 
given in [5] and the second is the complete separation result from [6]. As in the 
case when n = 1 some control on the coefficient a is necessary in order to obtain 
these separation results. 

(1) Partial separation for M"[-] 

From [5] we have the following result: 

if (i) q(2"-3)eACloc [a,oo), 

(ii) q(x) = d > 0 (x e [a, oo)), (2.6) 

(hi) a^q^yeLfooo), 

then for allfe L2(a, co) for whichp2"'1) e ACloc[a, oo) awd Mw[f] e L2(a, oo) we have 

M'[f] eL2(a, oo) (r = 1, 2, ..., /i - 1). (2.7) 

Thus all the in-between powers Mr[f] are in L2(a, oo) when both f and Mw[f] are 
in L2(a, oo). 
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It is somewhat remarkable that this result requires only the control condition (iii) 
on q, q' and q" and no restriction on the behaviour of the higher derivatives of a. 

(2) Complete separation for M"[-] 

From [6] we have the following result: 
ifq satisfies (i), (ii) and (iii) of (2.6) and, in addition, (iv) there exist positive numbers Ck 

such that 
| q(k) | ^ Ckq

1+k* on [a, co) (k = 2, 3, ..., 2// - 3) (2.8) 

then for allfe L2(a, co) for which f(2n~1) e ACloc[a, co) and Mn[f] e L2(a, co) we have 

(a) ankf
(k) eL2(a, co) (k = 0, 1, 2, ..., In) 

(where the coefficients ank are given in (2.2)) 

(b) whenever miim2, ...,mk and lx, i2, ..., 4 

are atz>> non-negative integers satisfying 
k 

£ (mr + Zr) g 2w, rhen 
r = l 

{ £ } " WS''{^}"' •{^}"{v'W-/^(«,*>. (2.9) 
The result (a) shows that separation in L2(a, co) is complete; no separate term of 

Mn[f] escapes membership of L2(a, co). Result (b) is an even more detailed separation 
result and contains (a) as a special case. 

The proofs of these results may be found in [5] and [6], We remark here only 
that it was found essential to prove partial separation as a stage in the proof of 
complete separation. 

If q is infinitely differentiable and satisfies conditions very much like (2.6) and (2.8), 
then any polynomial in d/dx and yjq maps Di(q) into L2(a, co). This means that we 
have a limiting complete separation result in the sense that (2.9) holds true without 
any restriction on the exponents mt and lt. We refer to [13] § 4 for further details. 

3. THE PARTIAL D I F F E R E N T I A L E X P R E S S I O N Ji\f\ 

Separation results and inequalities of the type discussed in section 1 hold true for 
partial differential expressions of the form Ji\f\, as given by (0.2), in higher dimen
sions. In fact, they extend in a natural way to functions which posses derivatives in 
a generalised sense as detailed below: see also the book by KATO, [14] chapter V, 
section 5.2, and the book by YOSHIDA [18] chapter I, section 8. 

Given an open, connected domain G in w-dimensional euclidean space Rn, with 
points x = (xl9 x2> •••>*«)> we define the generalised differential operators Dk 

(k = 1, 2, ..., n) as follows: 
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the domain of Dk consists of allfeLi0C(G) for which there exists a geLXoc(G) such 
that 

m-\ {gh}, (hєCŠ(G)): (3.1) 

here C0(G) is the set of all complex-valued functions with compact support in G 
which are infinitely differentiable, in all variables, in the classical sense. For all such 
fwe then put Dkf=g. Iff is locally absolutely continuous in xk then we have Dkf = 

3f 
dxk 

The differential expressions -#[•] we are concerned with here are of the form 

•*[/] = -A„[f] + qf (3-2) 
n 

where now A„[-] = £ D\ is the generalised Laplacian and the real-valued coefficient 

qeL2
oc(G) in analogy with (1.1). 

As in the one-dimensional case we say that «/#[•] is separated in L2(G) if 

qfeL2(G) for all fe Dx(q), (3.3) 

where the set Dx(q) is defined by 

^i(q) = (jeL2(G) : An\f\ exists as above and J/\f\ eL2(G)} (3.4) 

Assume now that G = Rn and that q : Rn -> (0, co) is such that Dkq (k = 1, 2, ... ,n) 
n 

exists and, for some real numbers ck with £ c\ = c2 < 4, satisfies the conditions 
j t=i 

I Dkq(x) | = ck{q(x)}3/> (x e R"; k = 1, 2, ..., n) (3.5) 

Then inequalities of the form 

' «o 1 ?f||2 + «.+ i « A„[f] I2 + £ a, || ql'Wkf\\
 2

 = [| ̂ [ / ] ||2 ( / 6 /).(«)) 
ft=l 

(3.6) 

hold true with a0,al9..., an+1 non-negative and not all zero. Explicit values for the 
numbers ak in terms of c = (cl9 c2, ..., cn) and some parameters are given in [11]; 
in particular the inequalities in (1.19) generalise to 

(1 - c2/4) || qf\\ = || ̂ [ /] || {feDM)) 

(2 - ck) || q
lhDkf\\ g || M\J\ || (fe D^q); k = 1, 2, . . . , n) (3.7) 

min {1, 4c"2 - 1} I A„[/] || g || ̂ [ / ] || ( / 6 p.(9)). 
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As another example we have the following generalisation of (1.20): for any 6 = 
1 " 

= (O\, <52, ..., (5„) with Sk ^ — cfc and <5c = £ <5fcc* g 1, 
z k= i 

(1 - 8c) || a/||2 + £ (2 - c,A) || ̂ Z U f + || A„/||2 ^ || .*[/] ||2 (/e DM)). 
/ c = l 

(3.8) 

These results clearly imply that J(\-\ is separated in L2(Rn); in fact D2/ and 
q,/2D*f (k = 1, 2, ..., /i) all belong to L2(K") for allfe D,(q). 

The proofs of results of which (3.7) and (3.8) are special cases will be found in [11]; 
they depend in part on a result given in the book [17] by TITCHMARSH. 

Similar results hold for other open subsets G of Rn; details will be found in [11]. 
As in the case of ordinary differential expressions, separation for partial differential 

expressions is connected with the properties of the unbounded differential operators 
generated by J(\-\ in L2(G). We do not consider this aspect here but some details 
may be found in [11]. 

4. SOME UNSOLVED PROBLEMS 

We list here some unsolved problems in the limit-point classification and separation 
areas for the ordinary differential expression M [.]; also for the partial differential 
expression JK\-\. 

(A) The ordinary case 

(1) When M[f] = -(pf)' + q/on 7, and it is known that M[-] is separated in 
L2(J), is it the case that there is always an inequality of the form (1.6) valid on D^p, q) ? 

In particular when I = [a, oo), p = 1 and q e U(a, oo) for some r e [2, oo) (so 
that from (2) (iv) of section 1 above, M [.] is separated in L2(a, oo)) is there an ine
quality of the form 

* II Iff + B\\\q | V II2 + C ||/" ||2 £ I M[/] ||2 + D | | /«2 (fe Dl(a))? 
(4.1) 

The proof of separation in this case, given in [12], throws no light on this problem. 
(2) When M\f\ = —f" + qf on I we may define the non-negative number V(q) 

as follows (recall the definition of P(.) from (2) of section 1 above) 

V(q) = sup {y :qeP(y)} 

i.e. qeP(V(q) — e) for all e > 0; but does qeP(V(q))? All the available examples 
give an affirmative answer to this question. 

(3) There are many interesting problems associated with the inequalities of the 
form (1.6) given in [7], [8], [9], and [10]. If M\f\ = - / " + q/on (-oo, oo) and 
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a ^ 0 satisfies the condition, see (1.18), | q' | = cq3/2 on (-co, oo) do we obtain 
an inequality of the form (4.1) when c e [2, 4/^/3]? If there is no inequality do we 
still obtain separation in L2 (— oo, oo)? It is known from the example given in [8], 
which is technically complicated, that the answer to these questions is in the negative 
when c ^ 4/^/3 . 

(4) When M[/] = —/" + q/on [a, oo) there is detailed information about the 
range of the P(.) mapping; see the examples in [4]. Is it possible to construct similar 
examples when I is bounded and q has a singularity at one or both end points? 

(5) When M[f] = —/" + q/on [a, oo) and M[.] is limit-circle at oo is it the case 
1 

that q e P(0) but q £ P(d) for any S > 0? In this case it is known that a e P. 

(6) When M[/] = - / " + q/on [a, oo) and q e Lr(a, oo) with r e (0,1) what may 
be said of the limit-point/limit-circle classification of M[.] ? Is M[.] separated in 
L2(a, oo)? 

(B) The partial case 

We mention only one problem; is the differential expression *#[ / ] = — A„[/] + 
+ q/on Rn separated in L2(K") when a e U(Rn) and the index r e [2, oo) ? 
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