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THE GEOMETRIC THEORY OF VOLTERRA 
INTEGRAL E Q U A T I O N S — A PRELIMINARY 
REPORT 

by GEORGE R. SELL1) 

I. I N T R O D U C T I O N 

In [1] the author and R. K. Miller presented a point of view for imbedding the 
solutions of the Volterra integral equation 

t 

*(0 = At) + j a(t9 s) g(x(s)9 s) ds (V) 
o 

into a semiflow. Specifically we assume f(t) is a continuous mapping of R+ into Rn
9 

the solution x(t) is an n-dimensional vector, g a mapping of Rn x R+ into Rn and 
a(t9 s) an n x n matrix — valued function. If a and g belong to compatible spaces A 
and G, respectively, (see [1] for the definition) andfe C = C(R+

9 Rn) then the semi-
flow on C x A x G is given by 

n(fa9g9x) = (TxfaX9gx)9 (FV) 
where 

gx(x, s) = g(x9 T + s) 

ax(t9 s) = a(x + 1, T + s) 
and 

TJ(S) =f(x + 9) + ] a(x + 3, s) #(x(s), s) ds, 3 = 0, 
o 

where x(.) is the given solution of (V). The mapping FTf actually depends on a(t, s), 
g(x9 s) and x(t)9 as well asf(l), but we shall not include this in our notation. 

The purpose of this report is to present some preliminary results from an investiga
tion into the geometric theory of this semiflow. At this point, the results are some
what fragmentary, so instead of exposing a highly developed theory, my lecture will 
concentrate more on topics that will lead to further research. The proofs of theorems 
as well as applications will appear later. 

Specifically in this lecture we wish to study the fixed points of this flow, that is 
points (f, a, g) with the property that n(f a, g, x) = (f a, g) for all x _ 0. We shall 
see that this gives rise to a study of the solutions of the nonlinear renewal equation, 
as well as the linear renewal equation. 

*) This research was conducted while the author was visiting II Istituto Matematico, Universita 
degli Studi di Firenze under the auspices of the Italian Research Council (C N. R.). Partial support 
was also received from a grant from the U. S. National Science Foundation. 
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II. F I X E D POINTS OF THE FLOW 

We assume now thatfe C = C(R+, Rn) and that a and g belong to compatible 
spaces A and G, respectively. The first theorem characterizes the fixed points of the 
flow (FV). 

Theorem 1. Let (f a, g) be a fixed point for the flow (FV). Then a and g have the 
following form 

a(t, s) = a(t - s) (1) 

g(x, s) = g(x), (2) 

so (V) becomes the nonlinear renewal equation 

x(t) = f(t) + J a(t - s) g(x(s)) ds. (N) 
o 

Furthermore, the corresponding solution x(t) is a constant 

x(t) = xo=f(0), t = 0, 

and the function f(t) is absolutely continuous and satisfies 

f'(t)= - f l ( ^ W , a . e . (3) 

Conversely, if a, g andf satisfy (1), (2) and (3), then the function x(t) = f(0) is a solution 
of(V) and(f a, g) is a fixed point for the flow (FV). 

I II . THE N O N L I N E A R RENEWAL EQUATION 

Let US now turn our attention to the nonlinear renewal equation (N). In this case, 
the flow (FV) reduces to a flow on C given by 

n(f,z) = Txf, (FN) 

where a and g are now fixed in advance. Let 3F denote the fixed points of the flow 
(FN), the one can prove the following result. 

Theorem 2. With a and g fixed, the collection of fixed points £F is an n-dimensional 
manifold in C(R+, Rn). Furthermore, if g is linear, that is g(x) = Gx where G is an 
n x n-matrix, then #" is a linear sub space of C(R+, Rn). 

Usually, the first step in the analysis of a nonlinear problem is to try to "linearize" 
the problem. In our case, if one assumes that g is a C1-function, then it is possible 
to compute the Frechet derivative of Txf Let us denote the derivative by KT(f). 
Then if he C and h = Lx(f) h one has 

h(9) = *(T + ») + J a(T + 3 - s) gx(x(s))y(s) ds (4) 
0 
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where x(t) is the solution of 
t 

x(t) ~f(t) + ja(t - s)g(x(s))ds, 

and y(t) is the solution of 
t 

y(t) - h(t) + J *(f - *) gx{*(s)) y(s) ds. (5) 
o 

In the special case where x(t) == x0 > Equation (5) becomes 
t 

y(t) = h(t) + \a(t ~ s) gx(x0) y(s) ds, 
o 

which is, of course, the linear renewal equation. Furthermore, the formula for h 
given by Equation (4) can also be written in terms of the translation operator T by 
h - Txh, where now Tx depends on the terms given in Equation (5). 

The problem of linearization of Volterra integral equations has been studied by 
several authors, see for example H. ANTOSIEWICZ [2], C. CORDUNEANU [3], [4] and 
R. K. MILLER [5] and [6]. 

The basic idea here is to use the theory of admissibility to show that if the linearized 
equation is "admissible" then the nonlinear equation has some appropriate geometric 
property, such as stability or boundedness. This theory should be pursued further 
in the context described above, but rather than do that here let us turn our attention 
to a study of the linear renewal equation. 

IV. THE LINEAR RENEWAL EQUATION 

We now study the linear equation 

x(t) - f(t) + J a(t - s) x(s) ds. (L) 
o 

For this equation the associated flow 

TJ(S) = f(T + S) + j a(x + $ - s) x(s) ds (FL) 
o 

is linear in f and continuous in f and T. Furthermore the solution x(t) of T(L) can 
be written in the form 

x(t)=f(t)-lr(t~s)f(s)ds (6) 
o 

where the resolvent kernel r(t) is a solution of 
t 

r(t) = -a(t) + \a(t - s) r(s) ds, (R) 
o 
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or equivalently, 

r(t) = t r„(t) 
7 1 = 1 

where rx(t) = a(t) and 
t 

rn + i(*) = J«( t - s)rn(s)ds, 
o 

« = 1,2, . . . 

Since we can represent solutions of (L) by Equation (6) we see that the asymptotic 
behavior of solutions of (L) is determined by the asymptotic behavior of the solutions 
of the resolvent equation (R). 

In this sense, the study of the asymptotic behavior of (L) reduces to a study of 
the asymptotic behavior of (R). This observation was used by R. K. MILLER [7] when 
he studied scalar-valued equations (n = 1) where the kernel a was nonpositive. 
We shall discuss this observation further in a subsequent paper. Let us now examine 
the question of eigenvectors for the flow (FL). 

V. E I G E N V E C T O R S F O R T H E F L O W (FL) 

A functionfe C is said to be an eigenvector for the flow Tx / i f there is a continuous 
function X(i) such that 

TJ=X(x)f. (7) 

If X(x) = 1, then we see that the eigenvectors associated with A(T) are precisely the 
fixed points of Tx. Equation (7) can be rewritten as 

A ( T ) / ( 3 ) = / ( T + 3) + J a(T + 3 - s) x(s) ds. (8) 
o 

If we set 9 = 0 in Equation (8), then we see that 

x(T) = A(T) / (0 ) , 

that is A ( T ) / ( 0 ) is a solution of (L). 
Let us now look for eigenvectors with A(T) assuming a special form, say k(z) = eVT. 
One can then prove the following interesting result, which includes the linear 

version of Theorem 1 as a special case. 

Theorem 3. A function extx0 is a solution of (L) if and only if the function f(t) has 
the form 

f(t) = evt[x0 - J e-"a(s) x0 ds]. (9) 
o 

Furthermore, in this case f is an eigenvector satisfying 

TJ-=e"f. (10) 
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Conversely, iffis an eigenvector satisfying Equation (10), then f also satisfies Equation 

(9) and evrf(0) is a solution Of(L). 

In addition for each v, the collection of vectors f satisfying Equation (10) forms an 

n-dimensional linear sub space of C(R+, Rn). 
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