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VARIATIONAL METHODS IN MATHEMATICAL 
THEORY OF VISCOELASTICITY 

by J. BRILLA 

1. I N T R O D U C T I O N 

We shall deal with the differential equation 

Kijkl(D)w,ijkl=L(D)q in Q, (IA) 
where 

Km(D) = £ K<i}l,D\ (1.2) 
v = 0 

L(D)= t^D*, (1.3) 
// = 0 

are polynomials in D = -=-. We use the usual indicial notation. Latin subscripts 

have the range of integers 1, 2 and summation over repeated Latin subscripts is 
implied. Subscripts preceded by a comma indicate differentiation with respect to 
corresponding Cartesian spatial coordinates. 

We shall consider following boundary conditions 

w = 4^- = 0 on dQ, (1.4) 
on 

or 
w = 0, Kijkl(D) wtijvknven = 0 on dQ, (1.5) 

where vkn = cos (xk, n) and n is the outward normal to dQ. The initial conditions 
are 

~ = 0 (* = 0 , l , 2 , . . . , p - l ) . (1.6) 
dt 

We assume Q is bounded domain in E2 with Lipschitzian boundary dQ. 
The equation (1.1) is a differential equation of a viscoelastic plate of a material 

of the differential type. In the case of real materials it holds 

*yWfiye*i = 0 (1.7) 

for arbitrary values of e{J, where equality occurs if, and only if, a0- = 0 for all i,j. 
Further, the coefficients KijU are symmetric 

Kijki = Kjiki = KiM = Kkitj 0-8) 

and polynomials (1.2 — 3) have real negative roots. 
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Simultaneously we shall consider the integrodifferential equation 

r 

J Gijkl(t - T) y - W,iJkl(T) dT = q (1.9) 
0 

with boundary conditions (1.4), (1.5) respectively and the first initial condition (1.6). 
This is the equation of a viscoelastic plate of a material of the integral type. In the 
real case it holds 

Gijkl(T) suekl = 0 (1.10) 

and Gijki are symmetric like Kijkl. 

2. G E N E R A L I Z E D POTENTIAL E N E R G Y 

Now we shall assume that q(x, t) belongs to the class of slowly increasing functions 
U(x, t), which fulfil in Q for t > 0 for each 5 > 0 the conditions 

| U ( x , l ) | <M(5)e" , (2.1) 

where M(8) depends on U but does not depend on x. 
Applying Laplace transform to (1.1) and (1.9) one obtains 

Kijki(P) w>ijki = L(p) q (2.2) 
and 

pGijki(p) Wnjhi = q> (2-3) 

Thus in the form of Laplace transform both equations (2.2) and (2.3) are of the same 
type. Exact solutions of the corresponding boundary value problems are as usual 
transcendental functions of the transform parameter p [1—3] involving great dif­
ficulties in inverse transform. Therefore it appears convenient to apply variational 
methods. 

Making double use of the Green formula it is easy to prove that for both types of 
boundary conditions (1.4) or (1.5) it holds 

(Kw, w)a = J J Kljkl(p) w,ijklw dO = j j Kijkl(p) w9iJw9kl dfi, (2.4) 

where p is considered as a parameter. 
Hence for each real p the operator Kijkl(p) is selfadjoint. We have proved [4] that 

for each positive real p 
(Kw, w)fl ^ y2 || w ||2, (2.5) 

where 

Il^ll = ll^(-^)||=(n^2df2)1/2. (2.6) 
Thus || w || Q is a function of p and has for each fixed realp the property of the norm. 

It is obvious that | (Kw, w) | can be equal to zero if, and only if Rep < 0. Thus we 
have 
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Theorem I. IfLq e L2(p)for Re p > 0 then there exists a weak solution w(p) e W\(p) 
of the equation (2.2) with corresponding boundary conditions. This solution minimizes 
the functional 

2V(w) = (Kw, w)n - (Lq, w)Q - (w, Lq)Q = 

= J J Kijkl(p) w, ijw, kldQ-2 J J Lqw dO (2.7) 

for each positive real value of p. 
Then the solution can be sougt in the form 

wn = a*<P* (a = 1, 2, ..., /*), (2.8) 

where <pa are the first n terms of a sequence of coordinate functions {<pa} complete 
in the domain under consideration. 

Then, inserting (2.8) into (2.7) we arrive at 

2V(w) = aaafi(K<pa, <pfi) - 2afi(Lq, <pfi) (a, fi = 1, 2, ..., n) (2.9) 

which can be minimized by determining the coefficients aa from the system 

dV 
— = aa(K<pa, <pfi) - (Lq, <pfi) = 0. (2.10) 
oaa 

(2.11) 

Thus aa are given by the formula 

a - Zs^llA 
* \(K<pa,<pfi)\' 

where 
(K<pa, <pfi) = JJ Kijkl(p) <patij<pfi>kl dQ (2.12) 

and Fafi is the adjoint matrix and | (K<pa, <pp) \ the determinant. As the operators K 
and L are polynomials in p, aa are rational functions of the transform parameter p 
and the inverse transform can be achieved by the method of decomposition into 
partial fractions. 

Particularly we shall analyze the case when 

Kijkl(p) = K$, + pK\)k\, L = 1. (2.13) 

Then the differential equation (2.2) assumes the form 

(K^k\ + pK\)^w,iju = q (2.14) 

and the coefficients of the approximate solution (2.11) are given by 

^-^H-ZM(?,4 (2.15) 
I (K<pa, <pfi) | y=ip + p7 

where — py are the roots of the determinantal equation 

A(p) = | (K(px, (p„)\=0 
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assumed to be distinct and 

л (ÐЛ- F*ß(~Pr) д<%Л ______ 
A^P)- д ( 1 ) ( _ } . A ( P ) - _p 

Then 

" n = Z ^ ^ ( ^ ) < P « (2-16) 
y_ 1 P -h py 

and the inverse transform is given by the convolutional product 

t 

wn=t <P* f («W, ^)-4 a /,(P y)e-M f-T )dT. (2.17) 
y = l J 

0 

In the case when the load q is constant in time 

q = q(xl, x2) H{f) 
and ' 

w„ = £ 4-4*(PrK«> ^)*_(1 " e"Pvf) ' (2'18) 
y = l Py 

It is easy to prove that py are real and positive, thus the character of the solution 
is in agreement with what is expected from the physical point of view. 

3. CONVOLUTIONAL VARIATIONAL PRINC IPLE 

Applying the convolutional theorem to the functional (2.7) one obtains 

2V(w) = [(KW(T), w(t - T)) - 2(Lfl(T), w(t - T))] dt, (3.1) 

or 
t 

2V(w) = J j j j w Jt - T ) K m ( j ^ j w)l7(T) -

o n 

- 2w(t - T ) L ( ~ - \ _(T) dQdr. (3.2) 

Thus we can formulate the convolutional variational principle. 

Theorem II. The first variation 5XV of the functional V, defined by (3A) or (3.2) 
vanishes if and only if the differential equation (1.1) ^boundary conditions (1.4) or (1,5) 
and initial conditions (1.6) are satisfied. 

TO prove this theorem we begin with the variation of w as being given by w(i) + 
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+ (Sjtt̂ T). Then the resulting first variation making use of the commutativity property 
of the convolutional product can be written as 

t 

5- K = J (Kw(T) - Lq(x), 5,w(t - 0) dt. (3.3) 
o 

As 5xw(t — T) is arbitrary, according to Titchmarsh theorem on convolutional 
product 8XV vanishes if, and only if Kw(T) — Lq(0 = 0. 

Similarly as in the case of variational principles we can use the convolutional 
variational principle for the approximate solution of equations of viscoelastic plates. 

In agreement with the form of functional (3.1) we shall assume that the right hand 
side function Lq and the solution belong to the class of functions 991 given by 

9W = { u(x, t) | || u(. ,t)\\Q< M e*, V5 > 0}. (3.4) 

Then the solution can be sought in the form 

w„ = tfa(0<P« (a = 1,2, ...,n), (3.5) 

where (pa are the first n terms of a sequence of coordinate functions complete in 
W2

2(Q). 
Inserting (3.5) into (3.1) we arrive at 

2V(w) = J [ £ #>(-) aß(t - т) (K"ęx, ęß) -
0 v = 0 

-2(Lq(x), aß(t - т) ç>,)] dт, (3.6) 

where we have denoted 

^ = I ^ ( v ) f ; - (3-7) 
v = 0 Ct 

Then the variation dxwn(t — T) is given by S^^t — T) and from 3{V = 0 one 
obtains 

S1V = \\_£at;Xz)(K^<px,cPl))-
0 v = 0 

- (Lq(x), cpn)-] 5Lap(t - T) dT = 0, (3.8) 
Hence 

£ <£>(-)(K^cpx, <p3) - (Lq(x), <pf) = 0. (3.9) 
v = 0 

Thus we have arrived at the system of ordinary differential equations for unknown 
functions aa(t) with the initial conditions 

aiv)(0) = 0 (v = 0, l , . . . p - 1). (3.10) 

This is a Cauchy problem and has a unique solution. Inserting this solution in 
(3.5) we obtain the n-th approximation of the considered problem. 
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Applying Laplace transform to the system (3.9) we arrive at the algebraic system 
(2.10) for the determining the Laplace transform aa(p) of aa(t). Thus the problem 
of convergence of the n-th approximation transforms into the well analysed problem 
of convergence of the Ritz method for the Laplace transform of the problem [5]. 
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