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THE YANG-MILLS GRADIENT 
FLOW IN FOUR DIMENSIONS 

MICHAEL STRUWE 

ABSTRACT. This paper summarizes the results of [6], as presented at. EQUAD-
IFF 8, 1993. 

Let 7r: rj —> (M,g) be a vector bundle over a compact m-dimensional Rie-
mannian manifold with fibre 7r~1(x) = Kn and structure group G C SO(n). We 
denote g = T-^G the Lie algebra of G. 

Consider G -invariant connections V on r\ and the induced operators 

0° (ad 17)-^n 1 (ad » / ) - • . . . 

acting on differential forms on 77 or its associated bundles. 
Given a reference connection, any such D can be expressed 

D = Drei + A 

in terms of a connection 1-form A E f21(adry). Locally, A is a g-valued differ
ential 1-form. 

The curvature of D is the 2-form 

F(D) = DoDetl2(aidri). 

The Yang-Mills action of D is 

YM(D) = ±J\F(D)\2dx, 
M 

where we define the L2-norm using the base metric g and a G-invariant metric 
on the fibres of 77. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): 35K22, 35K55, 35K65, 53C05. 
K e y w o r d s : Jang-Mills functional, Riemannian, manifold, weak solution. 
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Using the expansion 

F(D + a) = (D + a)o(D + a) = DoD + Da + aAa = F(D) + Da + aAa 

we can compute the first variation 

- | YM(D + ea) | £ = 0 = (F(D), Da) = (D*F(D), a) , 

where D* is the Hodge-adjoint operator of D. 
By definition, D is a Yang-Mills connection, if YM is stationary at D; that 

is, if 
D*F(D) = 0. 

This is a degenerate elliptic system. 
In order to be able to analyze the structure of the set of solutions to the Yang-

Mills equation by Morse theory it is necessary to understand the L2-gradient 
flow for the Yang-Mills functional 

jfD = -D*F(D) (1) 

with initial data 
D(0) = Do = Drei- + Ao. (2) 

Multiplying (1) by Jj-D, we obtain the energy inequality 

T 

/ [\YD 2dxdt + YM(D(T)) < YM(D0) (3) 

0 M 

for any smooth solution of (1), (2); in fact equality holds. 
Our main result is the following local existence result for (1) in dimension 

7n = 4 with initial data (2) of finite energy. 

THEOREM 1. Let ra -= 4, D0 = Drei + A0, A0 e if1'2 (ft1 (ad 77)). Then there 
exists 0 < T < oo and a weak solution D(t) = Dref + A(t) to (1), (2) such that 

AeO^ThH1'2^1^))) 

and satisfying (3). T is maximal with the property that for all T' <T there is 
R > 0 such that 

sup / \F(t)\2<e0, 
XQEM J 

0<t<T' BR(X0) 

where e0 = e0(rj) > 0 is independent of D. D is gauge-equivalent to a smooth 
solution D for 0 < t < T. D is smooth, if D0 is. D is (locally) unique if D 
(respectively, D0) is irreducible in the sense of (7) below. 

R e m a r k s . 
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For ra = 2, 3 R a d e [3] obtained global existence for (1), (2) and exponen
tial convergence of D(t) to a Yang-Mills connection Doo as t —» oo. 

If m > 4, even smooth solutions may blow up in finite time ([2]). 
In the limiting case ra = 4, in case of a holomorphic vector bundle over a 

compact Kahler surface, D o n a l d s o n obtained global existence of solutions 
of (1), (2) for smooth data, and their asymptotic convergence if the underlying 
bundle is stable; see [1]. 

Major open problems are existence and uniqueness of suitable weak solutions 
in dimensions ra > 5 and the possibility of finite-time blow-up in dimension 
ra = 4. There is a rather strong analogy with the evolution problem for harmonic 
maps; see for instance [5] for a survey. 

P r o o f . We sketch the main ideas. 
i) The proof of the local existence part of the theorem - like Donaldson's 

proof—makes use of the gauge-invariance of the Yang-Mills functional and "De 
Turck's trick": If D is a solution of (1), (2) and if 

D = S*(D) = S'1 o D o S = D r e f + A (4) 

is the corresponding family of pull-back connections under gauge transformations 
S(t): 77 —> 77, then there holds 

^-D + D*F(D) = Ds, s = S-1±S. (5) 
at at 

Choosing 
s = - D * A , (6) 

equation (5) becomes a parabolic system for the unknown connection 1-form 
A, which can be solved for small time t > 0. Finally, S — and hence D , via 
(4) — can be recovered from (5) and (6). 

To overcome certain technical difficulties that may arise in the case of data 
which are not smooth we found it useful to work with a time-dependent back
ground connection 

Dbg(t) = Dref + -4bgCt), 

where -4^(0) = An and A^g(t) is smooth for t > 0. 
ii) Observe that uniqueness for the gauge-equivalent problem (5) requires 

kerD fl lQ0(ad77) = {0}. In the smooth case, this condition is equivalent to the 
condition that D , respectively D , is irreducible in the sense that the isotropy 
subgroup 

r = {5 ;S*(D) = D} 

is trivial. In the general case, we require strong irreducibility in the sense 

3C>0 yseQ°(^drf):\\Ds\\L2>C-1\\s\\Hi,2. (7) 
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If (7) holds, by a global analogue of Uhlenbeck's theorem [8] we can achieve 
the following gauge condition 

D = Dhg + A, D*A = 0. (8) 

In view of 
F(D) = F(Dhg) + DA-A A A, 

equations (5), (8) then take the form 

—A + A + --- = Ds, 
at 

where A = D*D+DD* is the Hodge-Laplacian. Using again (7), the uniqueness 
of A, that is, D and hence the uniqueness of D follow. • 

Remark the similarity between the gauge-normalized problem (5), (8) and 
the Navier-Stokes system for the velocity field v and pressure p of a viscous 
fluid 

—v — div(grad v — v <g> v) = — gradp, 
at 

div v = 0 . 
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