EQUADIFF 8

Roman Koplatadze

On asymptotic behaviour of solutions of functional differential equations

In: Pavol Brunovský and Milan Medved' (eds.): Equadiff 8, Czech - Slovak Conference on Differential Equations and Their Applications. Bratislava, August 24-28, 1993. Mathematical Institute, Slovak Academy of Sciences, Bratislava, 1994. Tara Mountains Mathematical Publications, 4. pp. 143--146.

Persistent URL: http://dml.cz/dmlcz/700100

Terms of use:

© Comenius University in Bratislava, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Mathematical Publications

ON ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF FUNCTIONAL DIFFERENTIAL EQUATIONS

Roman Koplatadze

Abstract

Sufficient (necessary and sufficient) conditions are given for a functional differential equation to have properties A and B.

Consider the equation

$$
\begin{equation*}
u^{(n)}(t)+F(u)(t)=0 \tag{1}
\end{equation*}
$$

where $F: C^{n-1}\left(\mathbb{R}_{+} ; \mathbb{R}\right) \rightarrow L_{\text {loc }}\left(\mathbb{R}_{+} ; \mathbb{R}\right)$ is a continuous operator. Everywhere below we shall assume that a nondecreasing function $\sigma: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$exists such that $\lim _{t \rightarrow+\infty} \sigma(t)=+\infty$ and for any $t \in \mathbb{R}_{+}$

$$
F(x)(t)=F(y)(t) \quad \text { if } \quad x, y \in C^{n-1}\left(\mathbb{R}_{+} ; \mathbb{R}\right)
$$

and

$$
x(s)=y(s) \quad \text { for } \quad s \geq \sigma(t)
$$

For any $t_{0} \in \mathbb{R}_{+}$let $M_{t_{0}}$ denote the set of $u \in C^{n-1}\left(\mathbb{R}_{+} ; \mathbb{R}\right)$ satisfying $u(t) \neq 0$ for $t \geq t^{*}$, where $t^{*}=\min \left\{t_{0}, \sigma\left(t_{0}\right)\right\}$. The following assumption will always be fulfilled: either

$$
\begin{equation*}
F(u)(t) u(t) \geq 0 \quad \text { for } t \geq t_{0}, \quad \text { for any } t_{0} \in \mathbb{R}_{+} \text {and } u \in M_{t_{0}} \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
F(u)(t) u(t) \leq 0 \quad \text { for } t \geq t_{0}, \quad \text { for any } t_{0} \in \mathbb{R}_{+} \text {and } u \in M_{t_{0}} \tag{3}
\end{equation*}
$$

[^0]DEFINITION 1. Let $t_{0} \in \mathbb{R}_{+}$. A function $u:\left[t_{0},+\infty[\rightarrow \mathbb{R}\right.$ is said to be the proper solution of the equation (1) if it is locally absolutely continuous up to the order $n-1$ inclusively, there exists a function $\bar{u} \in C^{n-1}\left(\mathbb{R}_{+} ; \mathbb{R}\right)$ such that $\bar{u}(t) \equiv u(t)$ for $t \geq t_{0}$, almost everywhere on $\left[t_{0},+\infty[\right.$

$$
\bar{u}^{(n)}(t)+F(\bar{u})(t)=0
$$

and

$$
\sup \left\{|u(s)|: s \in\left[t , + \infty [\} > 0 \quad \text { for any } \quad t \in \left[t_{0},+\infty[.\right.\right.\right.
$$

DEFINITION 2. We say that the equation (1) has the property A provided any of its proper solutions is oscillatory if n is even and either is oscillatory or satisfies

$$
\begin{equation*}
\left|u^{(i)}(t)\right| \downarrow 0 \quad \text { as } \quad t \uparrow+\infty \quad(i=0, \ldots, n-1) \tag{4}
\end{equation*}
$$

if n is odd.
DEFINITION 3. We say that the equation (1) has the property B provided any of its proper solutions either is oscillatory or satisfies (4) or

$$
\begin{equation*}
\left|u^{(i)}(t)\right| \uparrow 0 \quad \text { as } \quad t \uparrow+\infty \quad(i=0, \ldots, n-1) \tag{5}
\end{equation*}
$$

if n is even and either is oscillatory or satisfies (5) if n is odd.
Conditions for an ordinary differential equation to have the properties A and B are studied well enough (see [1, 2] and references therein). The analogous problems for the equations with deviating arguments are investigated in $[3,4]$.
Theorem 1. Let (2) ((3)) hold and let for any $t_{0} \in \mathbb{R}_{+}$

$$
\begin{equation*}
|F(u)(t)| \geq \sum_{i=1}^{m} \int_{\sigma_{i}(t)}^{\bar{\sigma}_{i}(t)}|u(s)| d_{s} r_{i}(t, s) \quad \text { for } t \geq t_{0}, \quad u \in M_{t_{0}} \tag{6}
\end{equation*}
$$

where the measurable functions $r_{i}(t, s)(i=1, \ldots, m)$ are nondecreasing in s, $\sigma_{i}, \bar{\sigma}_{i} \in C\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right), \sigma_{i}(t) \leq \bar{\sigma}_{i}(t)(i=1, \ldots, m)$ for $t \geq 0$ and

$$
\begin{equation*}
\varliminf_{t \rightarrow+\infty}^{\lim } \frac{\sigma_{i}(t)}{t}>0 \quad(i=1, \ldots, m) \tag{7}
\end{equation*}
$$

Suppose, moreover, that there exists $\varepsilon>0$ such that for any $l \in\{1, \ldots, n-1\}$ and $\lambda \in[l-1, l[$ where $l+n$ is odd (even) the inequality

$$
\underline{l i m}_{t \rightarrow+\infty} t^{l-\lambda} \int_{t}^{+\infty} \xi^{n-l-1} \sum_{i=1}^{m} \int_{\sigma_{i}(\xi)}^{\bar{\sigma}_{i}(\xi)} s^{\lambda} d_{s} r_{i}(\xi, s) d \xi \geq \prod_{i=0, i \neq l}^{n-1}|\lambda-i|+\varepsilon
$$

holds. Then the equation (1) has the property $A(B)$.

ON ASYMPTOTIC BEHAVIOUR OF FUNCTIONAL DIFFERENTIAL EQUATIONS

THEOREM 2. Let (2), (6), (7) ((3), (6), (7)) hold. Suppose, moreover, that there exists $\varepsilon>0$ such that for any $\lambda \in \bigcup_{k=0}^{(n-2) / 2}\left[2 k, 2 k+1\left[\left(\lambda \in \bigcup_{k=1}^{(n-2) / 2}[2 k-\right.\right.\right.$ $1,2 k[)$ if n is even and for any $\lambda \in \bigcup_{k=1}^{(n-1) / 2}\left[2 k-1,2 k\left[\left(\lambda \in \bigcup_{k=0}^{(n-3) / 2}[2 k, 2 k+1[)\right.\right.\right.$ if n is odd the inequality

$$
\underline{l i m}_{t \rightarrow+\infty} t \int_{t}^{+\infty} \xi^{n-\lambda-2} \sum_{i=1}^{m} \int_{\sigma_{i}(\xi)}^{\bar{\sigma}_{i}(\xi)} s^{\lambda} d_{s} r_{i}(\xi, s) d \xi \geq \prod_{i=0}^{n-1}|\lambda-i|+\varepsilon
$$

holds. Then the equation (1) has the property $A(B)$.
Corollary 1. Let (2), (7) ((3), (7)) hold and let for any $t_{0} \in \mathbb{R}_{+}$

$$
|F(u)(t)| \geq \sum_{i=1}^{m} p_{i}(t)\left|u\left(\sigma_{i}(t)\right)\right| \quad \text { for } \quad t \geq t_{0}, \quad u \in M_{t_{0}}
$$

where $p_{i} \in L_{\text {loc }}\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right), \sigma_{i} \in C\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right), \sigma_{i}(t) \leq t \quad(i=1, \ldots, m)$. Suppose, moreover, that there exists $\varepsilon>0$ such that for any $\lambda \in[n-2, n-1[$ (for any $\lambda \in[n-3, n-2[\cup[0,1[$ if n is odd and for any $\lambda \in[n-3, n-2[$ of n is even) the inequality

$$
\underline{\lim }_{t \rightarrow+\infty} t \int_{t}^{+\infty} \xi^{n-\lambda-2} \sum_{i=1}^{m} p_{i}(\xi) \sigma_{i} \sigma_{i}^{\lambda}(\xi) d \xi \geq \prod_{i=0}^{n-1}|\lambda-i|+\varepsilon
$$

holds. Then the equation (1) has the property $A(B)$.
Corollary 2. Let (2) ((3)) hold and let for any $t_{0} \in \mathbb{R}_{+}$,

$$
|F(u)(t)| \geq \frac{c}{t^{n+1}} \int_{\alpha t}^{\bar{\alpha} t}|u(s)| d s \quad \text { for } t \geq t_{0}, \quad u \in M_{t_{0}}
$$

where $0<\alpha<\bar{\alpha}$, and

$$
\begin{align*}
& c>\max \left\{-(\lambda+1) \lambda(\lambda-1) \cdots(\lambda-n+1)\left(\bar{\alpha}^{\lambda+1}-\alpha^{\lambda+1}\right): \lambda \in[0, n-1]\right\} \\
&\left(c>\max \left\{(\lambda+1) \lambda(\lambda-1) \cdots(\lambda-n+1)\left(\bar{\alpha}^{\lambda+1}-\alpha^{\lambda+1}\right): \lambda \in[0, n-1]\right\}\right) \tag{8}
\end{align*}
$$

Then the equation (1) has the property $A(B)$.

ROMAN KOPLATADZE

Corollary 3. Let $\alpha>0$ and $c \in] 0,+\infty[(c \in]-\infty, 0[)$. Then the condition

$$
\begin{gathered}
c>\max \left\{-\alpha^{-\lambda} \lambda(\lambda-1) \cdots(\lambda-n+1): \lambda \in[0, n-1]\right\} \\
\left(c<-\max \left\{\alpha^{-\lambda} \lambda(\lambda-1) \cdots(\lambda-n+1): \lambda \in[0, n-1]\right\}\right)
\end{gathered}
$$

is necessary and sufficient for the equation

$$
u^{(n)}(t)+\frac{c}{t^{n}} u(\alpha t)=0
$$

to have the property $A(B)$.
COROLLARY 4. Let $0<\alpha<\bar{\alpha}$ and $c \in] 0,+\infty[(c \in]-\infty, 0[)$. Then the condition (8)

$$
\left(c<-\max \left\{(\lambda+1) \lambda(\lambda-1) \ldots(\lambda-n+1)\left(\bar{\alpha}^{\lambda+1}-\alpha^{\lambda+1}\right)^{-1}: \lambda \in[0, n-1]\right\}\right)
$$

is necessary and sufficient for the equation

$$
u^{(n)}(t)+\frac{c}{t^{n+1}} \int_{\alpha t}^{\bar{\alpha} t} u(s) d s=0
$$

to have the property $A(B)$.

REFERENCES

[1] KIGURADZE, I. T.-ČANTURIJA, T. A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Moskow, 1990. (Russian)
[2] KONDRAT́EV, V. A.: On oscillation of solutions of the equation $y^{(n)}+P(x) y=0$, Trudy Moskov. Mat. Obshch. 10 (1961), 419-436. (Russian)
[3] KOPLATADZE, R. G.-ČANTURIJA, T. A.: On Oscillatory Properties of Differential Equations with Deviating Argument, Tbilisi, 1977. (Russian)
[4] KOPLATADZE, R. G.: On differential equations with deviating argument having properties A and B, Differentsialnye Uravneniya V25 N11 (1989), 1897-1909. (Russian)

Received October 7, 1993

```
I. N. Vekua Institute of Applied Mathematics University str. 2 380043 Tbilisi REPUBLIC OF GEORGIA
E-mail: kig@imath.kheta.georgia.su
```


[^0]: AMS Subject Classification (1991): 34K15.
 Key words: functional differential equations, properties A and B, oscillation of solutions.

