Nobuyuki Kenmochi Nonlinear systems of parabolic PDE's for phase change problem

In: Pavol Brunovský and Milan Medveď (eds.): Equadiff 8, Czech - Slovak Conference on Differential Equations and Their Applications. Bratislava, August 24-28, 1993. Mathematical Institute, Slovak Academy of Sciences, Bratislava, 1994. Tatra Mountains Mathematical Publications, 4. pp. 131--142.

Persistent URL: http://dml.cz/dmlcz/700107

Terms of use:

© Comenius University in Bratislava, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

Tatra Mountains Math. Publ. 4 (1994), 131-142

NONLINEAR SYSTEMS OF PARABOLIC PDE'S FOR PHASE CHANGE PROBLEMS

Nobuyuki Kenmochi

ABSTRACT. This paper is concerned with non-isothermal models for phase transitions. The models are described as a system of nonlinear parabolic PDEs with constraints. We discuss them from the viewpoint of abstract theory on timedependent subdifferential operators in Hilbert spaces.

Introduction

We study the following two models for diffusive phase transitions, which are coupled systems of nonlinear parabolic PDEs.

Phase-Field System with Constraint (**PFC**):

$$\begin{split} \left(\begin{split} & \left(\rho(u) + w \right)_t - \Delta u = f(t,x) & \text{ in } Q := (0,T) \times \Omega \,, \\ & \nu w_t - \kappa \Delta w + \beta(w) + g(w) - u \ni 0 & \text{ in } Q \,, \\ & \frac{\partial u}{\partial n} + \alpha u = h_0(t,x) \,, \quad \frac{\partial w}{\partial n} = 0 & \text{ on } \Sigma := (0,T) \times \Gamma \,, \\ & u(0,\cdot) = u_0, \quad w(0,\cdot) = w_0 & \text{ in } \Omega \,. \end{split}$$

Phase-Separation System with Constraint (**PSC**):

$$\begin{split} \left(\rho(u)+w\right)_t - \Delta u &= f(t,x) & \text{ in } Q, \\ \nu w_t - \Delta \left\{-\kappa \Delta w + \beta(w) + g(w) - u\right\} \ni 0 & \text{ in } Q, \\ \frac{\partial u}{\partial n} + \alpha u &= h_0(t,x), \quad \frac{\partial w}{\partial n} = 0 & \text{ on } \Sigma, \\ \frac{\partial}{\partial n} \left\{-\kappa \Delta w + \beta(w) + g(w) - u\right\} \ni 0 & \text{ on } \Sigma, \\ u(0,\cdot) &= u_0, \quad w(0,\cdot) = w_0 & \text{ in } \Omega. \end{split}$$

AMS Subject Classification (1991): 35B40, 35K55, 35K60.

Key words: phase transition process, variational inequality, monotone perturbation.

Here, Ω is a bounded domain in \mathbb{R}^N $(1 \leq N \leq 3)$ with smooth boundary $\Gamma := \partial \Omega$, $0 < T < +\infty$, and we suppose the following conditions (ρ) , (β) and (g):

- (ρ) $\rho \colon \mathbb{R} \to \mathbb{R}$ is an increasing bi-Lipschitz continuous function; we denote by $C(\rho)$ a common Lipschitz constant of ρ and ρ^{-1} and by ρ^{-1} a non-negative primitive of ρ^{-1} .
- (β) β is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$ such that for some numbers σ_*, σ^* with $-\infty < \sigma_* < \sigma^* < +\infty$

$$\overline{D(\beta)} = [\sigma_*, \sigma^*];$$

under this condition, there is a non-negative proper l.s.c. convex function $\hat{\beta}$ on \mathbb{R} such that $\partial \hat{\beta} = \beta$ in \mathbb{R} .

(g) $g: \mathbb{R} \to \mathbb{R}$ is a Lipschitz continuous function with compact support $\operatorname{supp}(g)$ in \mathbb{R} ; under this condition, there is a primitive \hat{g} of g such that \hat{g} is non-negative on $[\sigma_*, \sigma^*]$.

Moreover, we suppose that $\kappa > 0$, $\nu > 0$ and $\alpha > 0$ are constants and

(f)
$$f \in L^2_{\text{loc}}(\mathbb{R}_+; L^2(\Omega)),$$

 $(h_0) \quad h_0 \in W^{1,2}_{\text{loc}}(\mathbb{R}_+; L^2(\Gamma)).$

This work is concerned with the abstract treatment of systems (PFC) and (PSC); in fact, we show that in an adequate Hilbert space H the above systems can be reformulated in an evolution equation of the form

$$(AU)'(t) + \partial \varphi^t (U(t)) + p(U(t)) \ni \ell(t) \quad \text{in } H, \quad 0 < t < T,$$

 $U(0) = U_0,$

where $\partial \varphi^t$ is the subdifferential of a time-dependent convex function φ^t on H and p is a Lipschitz continuous operator, with bounded range, in H and ℓ and U_0 are given data; further A is a linear, monotone, positive, selfadjoint and continuous operator in H. The basic idea for the reformulation as above is found in [5, 6, 12, 24]. For papers treating the related topics, see the references.

We shall mainly discuss system (PSC), since the abstract treatment of (PFC) is quite similar.

1. Evolution operators associated with (PSC)

Let $V = H^1(\Omega)$ with norm

$$|z|_{V} := |\nabla z|_{L^{2}(\Omega)}^{2} + \alpha |z|_{L^{2}(\Gamma)}^{2},$$

 V^* be the dual space of V, F be the duality mapping from V onto V^* and $\langle \cdot, \cdot \rangle : V^* \times V \to \mathbb{R}$ be the duality pairing. Further let

$$V_0 := \left\{ z \in H^1(\Omega) \, ; \, \int_{\Omega} z \, dx = 0 \right\}$$

be the Hilbert space with norm

$$|z|_{V_0} := |\nabla z|_{L^2(\Omega)};$$

denote by $\langle \cdot, \cdot \rangle_0$ the duality pairing between V_0^* and V_0 , and by F_0 the duality mapping from V_0 onto V_0^* . Note that

$$V_0 \subset L^2(\Omega)_0 := ig\{ z \in L^2(\Omega) \, ; \, \int \limits_\Omega z \, dx = 0 ig\} \subset V_0^st$$

with compact injections. We denote by π_0 the projection from $L^2(\Omega)$ onto $L^2\Omega_0$.

For the initial data u_0, w_0 we suppose that

$$u_0 \in L^2(\Omega), \ w_0 \in L^\infty(\Omega) \quad \text{with } \sigma_* \le w_0 \le \sigma^* \text{ a.e. in } \Omega, \ \int_\Omega w_0 dx = c \,, \quad (1)$$

where c is a constant with

$$\sigma_* < \frac{c}{|\Omega|} < \sigma^*, \quad \text{i.e.}, \ \frac{c}{|\Omega|} \in \operatorname{int} D(\beta).$$
 (2)

For the boundary function h_0 we consider a function $h: \mathbb{R}_+ \to V$ such that for each $t \ge 0$

$$a(h(t),z) + (\alpha h(t) - h_0(t),z)_{\Gamma} = 0$$
 for all $z \in V$;

by assumption (h_0) we see that $h \in W^{1,2}_{loc}(\mathbb{R}_+; V)$, where

$$a(z_1,z_2):=\int\limits_{\Omega}
abla z_1\cdot
abla z_2\,dx$$

and

 $(\cdot, \cdot)_{\Gamma}$ denotes the inner product in $L^{2}(\Gamma)$,

 (\cdot, \cdot) denotes the inner product in $L^2(\Omega)$.

DEFINITION 1. (Weak formulation for (PSC)). Let $0 < T < +\infty$. Then a couple of functions u and w is called a *weak solution* of (PSC) on [0, T], if the following conditions (w1)-(w3) are fulfilled:

$$\begin{array}{ll} (\text{w1}) & \rho(u) \in C\big([0,T];V^*\big) \cap W^{1,2}_{\text{loc}}\big((0,T];V^*\big) \cap L^2\big(0,T;L^2(\Omega)\big)\,, \\ & & u \in L^2_{\text{loc}}\big((0,T];V\big)\,, \\ & & w - \frac{c}{|\Omega|} \in C\big([0,T];L^2\Omega_0)\big) \cap L^2(0,T;V_0)\,, \quad w \in L^2_{\text{loc}}\big((0,T];H^2(\Omega)\big)\,, \\ & & w' \in L^2_{\text{loc}}\big((0,T];V_0^*\big)\,, \quad \hat{\beta}(w) \in L^1\big(0,T;L^1(\Omega)\big)\,, \end{array}$$

(w2)
$$ho(u)(0) =
ho(u_0)$$
 and

$$\langle \rho(u)'(t) + w'(t), z \rangle + a \bigl(u(t) - h(t), z \bigr) + \alpha \bigl(u(t) - h(t), z \bigr)_{\Gamma} = \bigl(f(t), z \bigr)$$

for all $z \in V$ and a.e. $t \in [0, T]$, (3)

(w3)
$$w(0) = w_0$$
, $\frac{\partial w(t)}{\partial n} = 0$ a.e. on Γ for a.e. $t \in [0, T]$,
and there is $\xi \in L^2_{loc}((0, T]; L^2(\Omega))$ such that

$$\begin{aligned} \xi(t) \in \beta\big(w(t)\big) \quad \text{a.e. in} \quad \Omega \quad \text{for a.e.} \quad t \in [0, T], \\ \nu\big\langle w'(t), \eta \big\rangle_0 + \kappa\big(\Delta w(t), \, \Delta \eta\big) - \big(\xi(t) + g\big(w(t)\big) - u(t), \, \Delta \eta\big) = 0 \end{aligned} \tag{4}$$

for all $\eta \in H^2(\Omega) \cap L^2\Omega_0$ with $\frac{\partial \eta}{\partial n} = 0$ a.e. on Γ and for a.e. $t \in [0,T]$.

For an abstract setting of (PSC), we consider a Hilbert space

$$X_0 := V^* \times L^2 \Omega_0$$

with inner product $(\cdot, \cdot)_{X_0}$ given by

$$ig([e_1,v_1],\,[e_2,v_2]ig)_{X_0}:=\langle e_1,F^{-1}e_2
angle+
u(v_1,v_2)\quad ext{for any } [e_i,v_i]\in X_0\,,\;\;i=1,2\,.$$

Now, for each $t \ge 0$ we define a function $\varphi_0^t(\cdot)$ on X_0 by

$$\varphi_{0}^{t}([e,v]) := \begin{cases} \int_{\Omega} \rho^{-1} \left(e - v - \frac{c}{|\Omega|} \right) dx + \frac{\kappa}{2} |\nabla v|_{L^{2}(\Omega)}^{2} + \int_{\Omega} \hat{\beta} \left(v + \frac{c}{|\Omega|} \right) dx - \left(h(t), e \right) \\ & \text{if } [e,v] \in L^{2}(\Omega) \times V_{0} \text{ and } \hat{\beta} \left(v + \frac{c}{|\Omega|} \right) \in L^{1}(\Omega), \\ & +\infty \quad \text{otherwise.} \end{cases}$$

$$(5)$$

134

NONLINEAR SYSTEMS OF PARABOLIC PDE'S FOR PHASE CHANGE PROBLEMS

THEOREM 1. (a) For each $t \ge 0$, φ_0^t is proper, l.s.c. and convex on X_0 .

(b) The subdifferential $\partial \varphi_0^t$ of φ_0^t in X_0 is characterized as follows: $[e^*, v^*] \in \partial \varphi_0^t([e, v])$ if and only if

$$e^* = F\left(\rho^{-1}\left(e - v - \frac{c}{|\Omega|}\right) - h(t)\right),$$
(6)

and there is $\xi \in L^2(\Omega)$ with $\xi \in \beta(v + \frac{c}{|\Omega|})$ a.e. in Ω such that

$$\nu v^* = \kappa F_0 v + \pi_0 \left[\xi - \rho^{-1} \left(e - v - \frac{c}{|\Omega|} \right) \right] \quad \text{in} \quad V_0^* \,, \tag{7}$$

i.e.,

$$u \langle v^*,\eta
angle_0 = \kappa a(v,\eta) + ig(\xi -
ho^{-1}ig(e-v-rac{c}{|\Omega|}ig),\etaig) \quad ext{for all} \quad \eta \in V_0\,.$$

$$\begin{aligned} (c) \ & \text{If } [e_i^*, v_i^*] \in \partial \varphi_0^t \big([e_i, v_i] \big) \,, \ i = 1, 2, \ \text{then} \\ & \left([e_1^*, v_1^*] - [e_2^*, v_2^*], [e_1, v_1] - [e_2, v_2] \right)_{X_0} = \\ & = \left(\rho^{-1} \big(e_1 - v_1 - \frac{c}{|\Omega|} \big) - \rho^{-1} \left(e_2 - v_2 - \frac{c}{|\Omega|} \right), (e_1 - v_1) - (e_2 - v_2) \right) + \\ & \quad + \kappa \big| \nabla (v_1 - v_2) \big|_{L^2(\Omega)}^2 + (\xi_1 - \xi_2, v_1 - v_2) \ge \\ & \geq \frac{1}{C(\rho)} \big| (e_1 - v_1) - (e_2 - v_2) \big|_{L^2(\Omega)}^2 + \kappa \big| \nabla (v_1 - v_2) \big|_{L^2(\Omega)}^2 \,, \end{aligned}$$

where ξ_i , i = 1, 2, are the function ξ as in (7).

Next, let A_0 be an operator in X_0 defined by

$$A_0([e,v]) := [e,\kappa F_0^{-1}v], \quad [e,v] \in X_0,$$

and G_0 defined by

$$G_0ig([e,v]ig):=igg[0,rac{1}{
u}\pi_0\Big[gig(v+rac{c}{|\Omega|}ig)\Big]\Big],\quad [e,v]\in X_0$$
 .

Then it is easy to see that A_0 is linear, continuous, selfadjoint in X_0 and

$$ig(A_0([e,v]),[e,v]ig)_{X_0} = |e|_{V^*}^2 + \kappa \nu |v|_{V_0^*}^2 \quad ext{for all} \quad [e,v] \in X_0$$

Hence A_0 is positive in X_0 . Further G_0 is clearly Lipschitz continuous in X_0 .

NOBUYUKI KENMOCHI

COROLLARY to Theorem 1. Let $\{u, w\}$ be a weak solution of (PSC) on [0, T]. Then the function $U(t) := \left[\rho(u(t)) + w(t), w(t) - \frac{c}{|\Omega|}\right]$ satisfies that

$$U \in C([0,T]; X_0), \ U' \in L^2_{\text{loc}}((0,T]; V^* \times V_0^*), \ \varphi_0^t(U) \in L^1(0,T), \quad (8)$$

and

$$\begin{cases} \frac{d}{dt}A_{0}U(t) + \partial\varphi_{0}^{t}(U(t)) + G_{0}(U(T)) \ni \tilde{f}(t) & \text{in } X_{0} \text{ for a.e. } t \in [0, T], \\ U(0) = U_{0} := \left[\rho(u_{0}) + w_{0}, w_{0} - \frac{c}{|\Omega|}\right], \end{cases}$$
(9)

where $\tilde{f}(t) := [f(t), 0]$ for a.e. $t \in [0, T]$. Conversely, if U(t) := [e(t), v(t)]satisfies (8) and (9), then the couple $\{u, w\}$ with $u = \rho^{-1} \left(e - v - \frac{c}{|\Omega|}\right)$ and $w = v + \frac{c}{|\Omega|}$ is a weak solution of (PSC) on [0, T].

The idea for the proof of Theorem 1 is found in V i s i n t i n [24], the theorem can be proved by applying it extensively (see [12; Part II] for a detail proof).

2. Abstract evolution equations in Hilbert spaces

Throughout this section, let H be a (real) Hilbert space with inner product $(\cdot, \cdot)_H$ and norm $|\cdot|_H$, and $\psi^t(\cdot)$ be a proper l.s.c. convex function on H for each $t \in \mathbb{R}_+$. Now, let us consider the abstract Cauchy problem

$$CP(\ell,v_0) \left\{ egin{array}{ll} (Av)'(t)+\partial\psi^tig(v(t)ig)+pig(v(t)ig)
otin H,\ t>0,\ v(0)=v_0\,, \end{array}
ight.$$

where A is a linear operator in H, p is a nonlinear operator in H, $\ell \in L^2_{\text{loc}}(\mathbb{R}_+; H)$ and $v_0 \in \overline{D(\psi^0)}$. This problem is discussed for a family $\{\psi^t\}$ in $\Psi_H(a; K_0)$, specified below by a function $a \in W^{1,1}_{\text{loc}}(\mathbb{R}_+)$ and a constant $K_0 > 0$.

We denote by $\Psi_H(a; K_0)$ the class of all families $\{\psi^t\}_{t\geq 0}$ of proper l.s.c. convex functions on H which satisfy the following conditions $(\Psi_1) - (\Psi_3)$:

- $(\Psi 1)$ $\psi^t(z) \ge K_0 |z|_H^2$ for all $z \in H$ and $t \ge 0$.
- $(\Psi 2)$ $D(\psi^t) = D(\psi^0)$ for all t > 0, and

$$\left|\psi^t(z)-\psi^s(z)
ight|\leq \left|a(t)-a(s)
ight|ig(1+\psi^s(z)ig) \quad ext{for all } s,t\geq 0 ext{ and } z\in D(\psi^0)\,.$$

(Ψ 3) For each $r \ge 0$, the set $\bigcup_{t\ge 0} \{z \in H; \psi^t(z) \le r\}$ is relatively compact in H.

NONLINEAR SYSTEMS OF PARABOLIC PDE'S FOR PHASE CHANGE PROBLEMS

Further we suppose that p is a Lipschitz continuous operator in H, the range R(p) of p is bounded in H and there is a non-negative potential $P: H \to \mathbb{R}$ such that $\nabla P = p$; in this case, if $v \in W^{1,2}(0,T;H)$, then $P(v) \in W^{1,1}(0,T)$ and

$$\frac{d}{dt}P(v(t)) = \left(\nabla P(v(t)), v'(t)\right)_{H} \quad \text{for a.e. } t \in [0, T].$$

Also, we suppose that A is a linear, continuous, positive (i.e., $(Az, z)_H > 0$ if $z \neq 0$) and selfadjoint operator in H; in this case, the fractional power $\frac{1}{2}$ of A, denoted by $A^{\frac{1}{2}}$, is defined as a linear, continuous, positive and selfadjoint operator in H again, and A is the subdifferential of the continuous convex function $j_A(z) := \frac{1}{2} |A^{\frac{1}{2}}z|_H^2$ for $z \in H$.

For uniqueness of a solution to $CP(\ell, v_0)$ we require the following condition (*):

(*) For each $\varepsilon > 0$ there is a number $C(\varepsilon) > 0$ such that

$$\begin{aligned} |z_1 - z_2|_H^2 &\leq \varepsilon (z_1^* - z_2^*, \, z_1 - z_2)_H + C(\varepsilon) \left| A^{\frac{1}{2}}(z_1 - z_2) \right|_H^2 \\ & \text{for all} \quad z_i \in D(\psi^t), \, \, z_i^* \in \psi^t(z_i), \quad i = 1, 2, \quad \text{and} \quad t \geq 0 \,. \end{aligned}$$

DEFINITION 2. Let $0 < T < +\infty$, $\ell \in L^2(0,T;H)$ and $v_0 \in \overline{D(\psi^0)}$. Then a function $v: [0,T] \to H$ is a solution of $CP(\ell, v_0)$ on [0,T], if $A^{\frac{1}{2}}v \in C([0,T];H) \cap W^{1,2}_{loc}((0,T];H)$, $\psi^t(v) \in L^1(0,T)$, $(A^{\frac{1}{2}}v)(0) = A^{\frac{1}{2}}v_0$ and

$$\ell(t)-pig(v(t)ig)-(Av)'(t)\in\partial\psi^tig(v(t)ig) ext{ for a.e. } t\in[0,T]$$
 .

R e m a r k 1. In Definition 2, note that $(Av)'(t) = A^{\frac{1}{2}} \left[(A^{\frac{1}{2}}v)'(t) \right] \in H$ for a.e. $t \in [0,T]$, since $(A^{\frac{1}{2}}v)'(t) \in H$ for a.e. $t \in [0,T]$.

Now the solvability of $CP(\ell, v_0)$ is mentioned in the following theorem.

THEOREM 2. Assume that $\{\psi^t\} \in \Psi_H(a, K_0)$ and p is as above. Let $0 < T < +\infty$, $\ell \in W^{1,2}(0,T;H)$ and $v_0 \in \overline{D(\psi^0)}$. Then $CP(\ell, v_0)$ admits one and only one solution v on [0,T] such that

$$t^{\frac{1}{2}}(A^{\frac{1}{2}}v)' \in L^2(0,T;H), \quad t\psi^t(v) \in L^{\infty}(0,T).$$

In particular, if $v_0 \in D(\psi^0)$, then

$$A^{\frac{1}{2}}v \in W^{1,2}(0,T;H), \quad \psi^t(v) \in L^{\infty}(0,T).$$

137

NOBUYUKI KENMOCHI

A solution of $CP(\ell, v_0)$ is constructed as the limit of the solutions v_{λ} of approximate problems with parameter $\lambda > 0$ as $\lambda \to 0$:

$$CP_{\lambda} \left\{ egin{array}{ll} [Av_{\lambda} + \lambda v_{\lambda}]'(t) + \partial \psi^t_{\lambda}ig(v_{\lambda}(t)ig) + pig(v_{\lambda}(t)ig) = \ell(t), & 0 < t < T\,, \ v_{\lambda}(0) = v_0\,, \end{array}
ight.$$

where ψ_{λ}^{t} is the Yosida-approximation of ψ^{t} . See [12] for a detail proof of Theorem 2.

3. Asymptotic behaviour as $t \rightarrow 0$

Let p be as in the previous section and $\{\psi^t\} \in \Psi_H(a; K_0)$ and further suppose that

a

$$\ell' \in L^1(\mathbb{R}_+; H); \ \ell^{\infty} := \lim_{t \to +\infty} \ell(t) \quad \text{in } H,$$
(10)

$$L' \in L^1(\mathbb{R}_+), \tag{11}$$

 $\psi^t \to \psi^\infty$ (in the sense of Mosco) as $t \to +\infty$, (12)

where ψ^{∞} is a non-negative proper l.s.c. convex function, with $D(\psi^{\infty}) = D(\psi^0)$, on H. Here, by " $\psi^t \to \psi^{\infty}$ (in the sense of Mosco) as $t \to +\infty$ " we mean that the following two conditions (M1) and (M2) are fulfilled:

(M1) if $t_n \to +\infty$ and $z_n \to z$ weakly in H, then

$$\liminf_{n\to+\infty}\psi^{t_n}(z_n)\geq\psi^\infty(z)\,.$$

(M2) For any $z \in D(\psi^{\infty})$ there is a function $w : \mathbb{R}_+ \to H$ such that

$$w(t) \to z \quad \text{in } H, \quad \psi^t \big(w(t) \big) \to \psi^\infty(z) \quad \text{as } t \to +\infty \,.$$

From the definition of the convergence in the sense of Mosco we immediately see that

 $\psi^\infty(z) \geq K_0 |z|_H^2 \quad ext{for all } z \in H \, ,$

that is, ψ^{∞} is coercive on H, and for each r > 0 the set $\{z \in H; \psi^{\infty}(z) \leq r\}$ is compact in H. Therefore, the stationary problem

$$\partial \psi^{\infty}(v_{\infty}) + p(v_{\infty}) \ni \ell^{\infty} \quad \text{in } H$$
 (13)

has at least one solution v_{∞} and the set of all solutions is compact in H; a solution of (13) is not unique in general, since p is not monotone in H.

THEOREM 3. Let p be as in Section 2 and $\{\psi^t\} \in \Psi_H(a; K_0)$, and suppose that $v_0 \in \overline{D(\psi^0)}$ and (10)–(12) hold. Then, for the global solution v of $CP(\ell, v_0)$,

(i) $(A^{\frac{1}{2}}v)' \in L^2(t_0, +\infty; H)$ for each finite $t_0 > 0$. Moreover, the ω -limit set

 $\omega(v) := \{ z \in H; \ v(t_n) \to z \text{ in } H \text{ for some } t_n \text{ with } t_n \to +\infty \}$ satisfies that

- (ii) $\omega(v)$ is non-empty, connected and compact in H,
- (iii) any point $v_{\infty} \in \omega(v)$ is a solution of (13),
- (iv) for any $v_{\infty} \in \omega(v)$,

$$\lim_{t \to +\infty} \left\{ \psi^t (v(t)) + P(v(t)) - \left(\ell(t), v(t) \right)_H \right\} = \psi^\infty(v_\infty) + P(v_\infty) - (\ell^\infty, v_\infty)_H.$$

Applying a modified technic in [19], we can prove Theorem 3. See [12] in details.

4. Application to (PSC)

Applying Theorems 2, 3 to system (PSC), we obtain not only an existenceuniqueness result, but also an asymptotic stability result for it.

THEOREM 4. Assume that (ρ) , (β) , (g), (f), (h_0) , (1), (2) hold and

$$f'\in L^1ig(\mathbb{R}_+;L^2(\Omega)ig); \qquad f^\infty:=\lim_{t o+\infty}f(t) \quad in \quad L^2(\Omega)\,;$$

and

$$h_0'\in L^1ig(\mathbb{R}_+;L^2(\Gamma)ig); \qquad h_0^\infty:=\lim_{t
ightarrow+\infty}h_0(t) \quad in \quad L^2(\Gamma)\,;$$

let h^{∞} be the function in V such that

$$a(h^\infty,z)+(lpha h^\infty-h^\infty_0,z)_\Gamma=0 \quad ext{for all} \quad z\in V\,.$$

Then (PSC) admits one and only one global (in time) weak solution $\{u, w\}$. Moreover, the following statements hold. (a) For every finite T > 0,

$$\begin{split} t^{\frac{1}{2}}\rho(u) &\in L^{\infty}\big(0,T;L^{2}(\Omega)\big)\,, \quad t^{\frac{1}{2}}\rho(u)_{t} \in L^{2}(0,T;V^{*})\,, \\ t^{\frac{1}{2}}(w-\frac{c}{|\Omega|}) &\in L^{\infty}(0,T;V_{0})\,, \quad t^{\frac{1}{2}}w_{t} \in L^{2}(0,T;V_{0}^{*})\,, \\ t^{\frac{1}{2}}\xi &\in L^{2}\big(0,T;L^{2}(\Omega)\big)\,, \quad t^{\frac{1}{2}}\hat{\beta}(w) \in L^{\infty}\big(0,T;L^{1}(\Omega)\big)\,, \end{split}$$

where ξ is the function as in (w3) of Definition 1.

(b) For every finite T > 0,

$$egin{aligned} &
ho(u)\in L^\infty(T,+\infty;L^2ig(\Omega)ig)\,,\quad w-rac{c}{|\Omega|}\in L^\infty(T,\infty;V_0)\,,\ &\hateta(w)\in L^\inftyig(T,+\infty;L^1(\Omega)ig)\,,\ &
ho(u)_t\in L^2(T,+\infty;V^*)\,,\quad w_t\in L^2(T,+\infty;V_0^*) \end{aligned}$$

(c) $u(t) \to u_{\infty}$ in $L^{2}(\Omega)$ as $t \to +\infty$, where $u_{\infty} \in V$ is the solution of

$$a(u_\infty-h^\infty,\eta)+lpha(u_\infty-h^\infty,\eta)_\Gamma=(f^\infty,\eta) \quad ext{for all} \quad \eta\in V\,.$$

(d) The
$$\omega$$
-limit set $\omega(w)$ of w as $t \to +\infty$, i.e.,

 $\omega(w) := \left\{ z \in L^2(\Omega) \, ; \, w(t_n) \to z \ \text{ in } L^2(\Omega) \text{ for some } t_n \text{ with } t_n \to +\infty \right\},$

is non-empty, connected, and compact in $L^2(\Omega)$, and furthermore any $w_\infty\in\omega(w)$ satisfies the system

$$\left\{egin{array}{l} \kappa a(w_\infty,\eta)+ig(\xi_\infty+g(w_\infty)-u_\infty,\etaig)=0 & ext{for all }\eta\in V_0, \ w_\infty-rac{c}{|\Omega|}\in V_0\,, \ \xi_\infty\in L^2(\Omega)\,, \quad \xi_\infty\in eta(w_\infty) ext{ a.e. in }\Omega. \end{array}
ight.$$

For a complete proof of Theorem 4, see [12].

In the one-dimensional case, we see further results on the ω -limit set $\omega(w)$ with the structure of the corresponding stationary problem for the isothermal phase separation model (Cahn-Hilliard model with constraints) (see [3]).

REFERENCES

- ALT, H. W.—PAWLOW, I.: Existence of solutions for non-isothermal phase separation, Adv. Math. Sci. Appl. 1 (1992), 319-409.
- [2] BLOWEY, J. F.—ELLIOTT, C. M.: Curvature dependent phase boundary motion and parabolic double obstacle problems, to appear in the proceedings of the IMA (Minneapolis) workshop "Degenerate Diffusions" (Wei-Ming Ni, L. A. Peletier and J. L. Vazquez, ed.), Springer-Verlag, New York.
- [3] BLOWEY, F. E.-ELLIOTT, C. M.: The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy, Part I: Mathematical analysis, European J. Appl. Math. 2 (1991), 233-280.
- [4] CAGINALP, G.: An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal. 92 (1986), 205-245.
- [5] DAMLAMIAN, A.—KENMOCHI, N.—SATO, N.: Subdifferential operator approach to a class of nonlinear systems for Stefan problems with phase relaxation, in Nonlinear Anal. TMA (to appear).
- [6] DAMLAMIAN, A.—KENMOCHI, N.—SATO, N.: Phase field equations with constraints, Nonlinear Mathematical Problems in Industry, Gakuto Inter. Ser. Math. Sci. Appl., Vol 2, Gakkōtosho, Tokyo, 1993, 391–404.
- [7] ELLIOTT, C. E.: The Cahn-Hilliard model for the kinetics of phase separation, in Mathematical Models for Phase Change Problems (J. F. Rodrigues, ed.), Vol. 88, ISNM, Birkhäuser, Basel, 1989, pp. 35–73.
- [8] ELLIOTT, C. M.—ZHENG, S.: On the Cahn-Hilliard equation, Arch. Rational Mech. Anal. 96 (1986), 339-357.
- [9] ELLIOTT, C. M.—ZHENG, S.: Global existence and stability of solutions to the phase field equations, Free Boundary Problems Internat. Ser. Numer. Math., Vol. 95, Birkhäuser, Basel, 1990, 48-58.
- [10] FIX, G. J.: Phase field models for free boundary problems, Free Boundary Problems: Theory and Applications, Pitman Research Notes Math. Ser. 79, Longman, London, 1983, 580-589.
- HORN, W.—SPREKELS, J.—ZHENG, S.: Global existence of smooth solutions to the Penrose-Fife model for Ising ferromagnets, preprint, Univ. GH, Essen, 1993.
- [12] KENMOCHI, N.: Systems of Nonlinear PDEs Arising from Dynamical Phase Transitions, in: Lecture Notes Math., Springer, Berlin, (to appear).
- [13] KENMOCHI, N.—NIEZGÓDKA, M.: Systems of variational inequalities arising in nonlinear diffusion with phase change, Free Boundary Problems in Continuum Mechanics, Internat. Ser. Numer. Math., Vol. 106, Birkhäuser, Basel, 1992, 149–157.
- [14] KENMOCHI, N.—NIEZGÓDKA, M.: Evolution systems of nonlinear variational inequalities arising from phase change problems in Nonlinear Anal., TMA, (to appear).
- [15] KENMOCHI, N.—NIEZGÓDKA, M.: Systems of nonlinear parabolic equations for phase change problems, Adv. Math. Sci. Appl. 3 (1993), 89–117.
- [16] KENMOCHI, N.—NIEZGÓDKA, M.: Nonlinear system for non-isothermal diffusive phase separation, in J. Math. Anal. Appl. (to appear).
- [17] KENMOCHI, N.—NIEZGÓDKA, M.: Large time behaviour of a nonlinear system for phase separation, Progress in partial differential equations: the Metz surveys 2, Pitman Research Notes Math., Vol. 296, Longman, Essex, 1993, 12–22.

NOBUYUKI KENMOCHI

- [18] KENMOCHI, N.--NIEZGÓDKA, M.: A perturbation model for non-isothermal diffusive phase separations, preprint, Chiba Univ., 1993.
- [19] KENMOCHI, N.--NIEZGÓDKA, M.-PAWLOW, I.: Subdifferential operator approach to the Cahn Hilliard equation with constraint, in J. Math. Anal. Appl. (to appear).
- [20] LAURENCQT, Ph.: A double obstacle problem, in J. Math. Anal. Appl. (to appear).
- [21] PENROSE, O.—FIFE, P. C.: Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Physica D 43 (1990), 44-62.
- [22] SHEN, W.--ZHENG, S.: On the coupled Cahn-Hilliard equations, preprint.
- [23] SPREKELS, J.--ZHENG, S.: Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions, in J. Math. Anal. Appl. (to, appear).
- [24] VISINTIN, A.: Stefan problems with phase relaxation, IMA J. Appl. Math. 34 (1985), 225-245.
- [25] ZHENG, S.: Asymptotic behaviour of the solution to the Cahn-Hilliard equation, Appl. Anal. 23 (1986), 165-184.
- [26] ZHENG, S.: Global existence for a thermodynamically consistent model of phase field type, Differential Integral Equations 5 (1992), 241-253.

Received January 26, 1994

Department of Mathematics, Faculty of Education Chiba University, Inage-ku Chiba, 263 JAPAN E-mail: kenmochi@cu.e.chiba-u.ac.jp