EQUADIFF 6

Jaroslav Haslinger

Shape optimization in contact problems

In: Jaromír Vosmanský and Miloš Zlámal (eds.): Equadiff 6, Proceedings of the International Conference on Differential Equations and Their Applications held in Brno, Czechoslovakia, Aug. 26-30, 1985. J. E. Purkyně University, Department of Mathematics, Brno, 1986. pp. [445]--450.

Persistent URL: http://dml.cz/dmlcz/700125

Terms of use:

© Masaryk University, 1986
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SHAPE OPTIMIZATION IN CONTACT PROBLEMS

J. HASLINGER
Section D
Faculty of Mathematics and Physics, Charles Uninersity
Malostranské nám. 2/25, Prague 1, 11000 (izechoshouakia
\section*{Introduction}
Obtimization of desiqn is a fundamental aoal of every enqineer who strives to create a component, device or svstem to meet a need. Desiqners seek to evolve the "best" desiqn in terms of weight, costs, reliabilitv.This objective is very important especially nowadavs because of resource scarcitv, increasing costs of materials, eneray, etc.

As the analytical solutions of such problems are not available in general,the development of efficient numerical methods for practical applications was necessary.An important progress was made in last 20 years together with development of finite element method and mathematical programming techniques with special reference to the structural design problems.A great number of papers has been already written on this topic. Representative survev of latter results can be found in [1]. Optimal shape design from mathematical point of view has been widely studied by french school of applied mathematics ([2],[3]). In most of papers the case when the physical system is described by elliptic equations is presented. On the other hand there is a lot of problems in mechanics,whose variational forms are inequalities ([4],[5]) so that the study of optimal shapes and their approximations for this kind of state problem is natural.

The present contribution is concerned with the existence and the approximation of a solution to the contour design problem for a planar deformable body unilaterallv supported bv a riaid foundation.We shall discuss the followina phvsical situations:
1° the bodv is elastic, nolfriction;
2° the bodv is elastic, the influence of friction between it and the foundation is taken into account;
3° the bodv is elastic-perfectlv plastic,obeying Henkv's law, no friction.
In all these cases the total potential enerav of the bodv will be minimized. In the enqineering literature,design problems for elastic bodies in contact are discussed ([6],[7]) but a rigorous analysis of
these problems remains to be undertaken.

1. Setting of the problem

First we shall discuss 1° and 2°. Let us assume a plane elastic body $\Omega \subset \mathrm{R}^{2}$ (see fig.l) unilaterally supported by a rigid foundation $\left\{\left(x_{1}, x_{2}\right) \mid x_{2} \leq 0\right\}$ and subiected to a bodv force $F=\left(F_{1}, F_{2}\right)$ and to surface tractions $P=\left(P_{1}, P_{2}\right)$ on a portion of the boundarv.

Let the boundary $\partial \Omega$ be decomposed as
 follows

$$
\partial \Omega=\bar{\Gamma}_{\mathrm{u}} \cup \bar{\Gamma}_{\mathrm{P}} \cup \bar{\Gamma}_{\mathrm{C}}(\alpha)
$$

with Γ_{u}, Γ_{P} and $\Gamma_{C}(\alpha)$ non-overlapping parts of $\partial \Omega, \Gamma_{\underline{u}}$ and $\Gamma_{C}(\alpha)$ non-empty.
Contact part $\bar{\Gamma}_{C}(\alpha)$ will be qiven bv the araph of a function $\alpha \in U_{a d}$ (will be soecified later). As Ω devends on α. we shall write $\Omega(\alpha)$ in what follows. In order to give variational formulation of contact problems we
introduce a Hilbert space $V(\alpha)$ of virtual displacements:

$$
\mathrm{V}(\alpha)=\left\{\mathrm{v}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in\left(\mathrm{H}^{1}(\Omega(\alpha))\right)^{2} \mid \mathrm{v}_{\mathrm{i}}=0 \text { on } \Gamma_{\mathrm{u}}, \mathrm{i}=1,2\right\}
$$

and its closed convex subset $K(\alpha)$ of admissible displacements:
$K(\alpha)=\left\{v \in V(\alpha) \mid v_{2}\left(x_{1}, \alpha\left(x_{1}\right)\right) \geq-\alpha\left(x_{1}\right) \forall x_{1} \in\langle a, b\rangle\right\}$.
The total potential enerav functional $J_{\alpha}: V(\alpha) \rightarrow R^{1}$ is now aiven bv (1.1) $J_{\alpha}(v)=1 / 2\langle\tau(v), \varepsilon(v)\rangle_{\alpha}-\langle L, v\rangle_{\alpha}+j_{\alpha, \alpha}(v)$.
where

$$
\langle\tau(v), \varepsilon(v)\rangle_{\alpha}=\int_{\Omega(\alpha)}^{\int F_{i} v_{i} d x+\int_{\Gamma_{P}} P_{i} v_{i} d s}
$$

with $\mathrm{F} \in\left(\mathrm{L}^{2}(\hat{\Omega})\right)^{2}, \hat{\Omega} \supset \Omega(\alpha), \mathrm{P} \in\left(\mathrm{L}^{2}\left(\hat{\Gamma}_{\mathrm{P}}\right)\right)^{2}, \hat{\Gamma}_{\mathrm{P}} \supset \Gamma_{\mathrm{P}} \forall \alpha \in \mathrm{U}_{\mathrm{ad}}$ and

$$
j_{\alpha, g}(v)=g \Gamma_{\Gamma_{C}(\alpha)}\left|v_{1}\right| d s
$$

where $g \geq 0$ is a given constant, $g=0$ for frictionless case. Above the standard notations and conventions of elasticity are used.

By a variational formulation of the contact problem (with or without friction) we mean the problem

$$
(P(\alpha))\left\{\begin{array}{l}
\text { find } u(\alpha) \in K(\alpha) \text { such that } \\
J_{\alpha}(u(\alpha)) \leq J_{\alpha}(v) \quad \forall v \in K(\alpha) .
\end{array}\right.
$$

Let

$$
\begin{array}{r}
\mathrm{U}_{\mathrm{ad}}^{1}=\left\{\alpha \in c ^ { 0 , 1 } (\langle a , b \rangle) \left|0 \leq \alpha\left(x_{1}\right) \leq c_{0},\left|\alpha^{\prime}\left(x_{1}\right)\right| \leq c_{1}, \forall x_{1} \in\langle a, b\rangle\right.\right. \\
\text { meas } \left.\Omega(\alpha)=C_{2}\right\}
\end{array}
$$

if $g=0$ and
$U_{a d}^{2}=\left\{\alpha \in C^{1,1}(\langle a, b\rangle)\left|0 \leq \alpha\left(x_{1}\right) \leq C_{0},\left|\alpha^{\prime}\left(x_{1}\right)\right| \leq C_{1},\left|\alpha \alpha^{\prime}\left(x_{1}\right)\right| \leq C_{2}\right.\right.$, $\forall x_{1} \in\langle a, b\rangle$, meas $\left.\Omega(\alpha)=C_{3}\right\}$
if $g>0, C_{0}, \ldots, C_{3}$ are positive constants chosen in such a way that $\mathrm{U}_{\mathrm{ad}}^{\mathrm{j}} \neq \phi, \mathrm{j}=1,2$. Now the shape optimization problem reads as follows:
(Pj) $\left\{\begin{array}{l}\text { find } \alpha * \in U_{a d}^{j} \text { such that } \\ E(\alpha *) \leq E(\alpha) \quad \forall \alpha \in U_{a d}^{j}, j=1,2,\end{array}\right.$
where

$$
E(\alpha)=J_{\alpha}(u(\alpha))
$$

and $u(\alpha) \in K(\alpha)$ solves $(P(\alpha))$ on $\Omega(\alpha)$. As the existence of a solution of (Pj), $\mathrm{j}=1,2$ is concerned, it holds

Theorem l.l There exists at least one solution α^{*} of (Pj), $j=$ $=1,2$. For the proof we refer to [8] if $j=1$ and [9] if $j=2$.

Let us pass to 3°. We shall assume that the material of the deformable body is elasto-perfectly plastic, obeving Henkv's law. It is known that the formulation in terms of stresses is more suitable that in displacements. This motivates the definition of optimal shape design problem.

Let $U_{a d}=U_{a d}^{1}$ and $\alpha \in U_{a d} . K(\alpha)$ will have the same meaning as before. We introduce the following notations:
$\begin{aligned} S(\alpha)= & \left\{\left.\tau \in\left(L^{2}(\Omega(\alpha))\right)^{4}\right|_{\tau}{ }_{i j}=\tau_{j i} \text { a.e. in } \Omega(\alpha),\right. \\ & \langle\tau, \varepsilon(v)\rangle \geq\langle L, v\rangle \quad \forall V \in K(\alpha)\},\end{aligned}$
$B(\alpha)=\left\{\tau \in\left(\dot{L}^{2}(\Omega(\alpha))\right)^{4} \mid f(\tau(x)) \leq 1\right.$ a.e. in $\left.\Omega(\alpha)\right\}$
and
$S_{\alpha}(\tau)=1 / 2\|\tau\|_{0, \Omega(\alpha)}^{2}$,
where $f: R^{4} \rightarrow R^{1}$ is convex and continuous,
$\|\tau\|_{0, \Omega(\alpha)}^{2}=(\tau, \tau)_{\Omega(\alpha)}=\int_{\Omega(\alpha)} c_{i j k 1}{ }^{\tau} i j{ }^{\tau} k 1 d x$.
$c_{i j k l}$ are coefficients of inverse Hooke's law.
Let $\widetilde{U}_{a d} \subseteq U_{a d}$ be the set of all α, satisfying
$\alpha \in \tilde{U}_{\text {ad }}$ iff $S(\alpha) \cap B(\alpha) \neq \phi$.
Next we shall suppose that $\tilde{\mathrm{U}}_{\mathrm{ad}} \neq \phi$.
Shape optimization problem for elasto-perfectly plastic bodv is defined as follows:
(P3) $\left\{\begin{array}{l}\text { find } \alpha * \in \tilde{U}_{\text {ad }} \text { such that } \\ E\left(\alpha^{*}\right) \leq E(\alpha) \quad \forall \alpha \in \tilde{U}_{\mathrm{ad}},\end{array}\right.$
where $E(\alpha)=S_{\alpha}(\sigma(\alpha))$ and $\sigma(\alpha)$ is a solution of
$(P(\alpha))_{p 1} \quad \sigma(\alpha) \in S(\alpha) \cap B(\alpha): S_{\alpha}(\sigma(\alpha)) \leq S_{\alpha}(\tau) \forall \tau \in S(\alpha) \cap B(\alpha)$.
It holds:
Theorem 1.2 Let $\tilde{\mathrm{U}}_{\mathrm{ad}} \neq \phi$. Then (P3) has at least one solution α. . For the proof see [10].

2. Approximation of optimal shape design problems

 Here we deal with the approximation of (Pl) only. Let $a=a_{0}<a_{1}<\ldots<a_{N}=b$ be a partition of $\langle a, b\rangle$ and$$
U_{a d}^{l h}=\left\{\alpha \in C(\langle a, b\rangle)|\alpha|_{a_{i-1}} a_{i} \in p_{1}\left(\left\langle a_{i-1} a_{i}\right\rangle\right)\right\} \cap U_{a d}^{1}
$$

where P_{1} denotes the set of linear functions. For any $\alpha_{h} \in U_{a d}^{1 h}$ we define

$$
\Omega\left(\alpha_{h}\right)=\left\{\left(x_{1}, x_{2}\right) \in R^{2} \mid a<x_{1}<b, \alpha_{h}\left(x_{1}\right)<x_{2}<\gamma\right\},
$$

i.e. the variable contact part of the boundary is now approximated by a piecewise linear arc $\Gamma_{C}\left(\alpha_{h}\right)$. By $T_{h}\left(\alpha_{h}\right), \alpha_{h} \in U_{a d}^{1 h}$ we denote the triangulation of $\Omega\left(\alpha_{h}\right)$. Finally let

$$
\begin{aligned}
K_{h}\left(\alpha_{h}\right)= & \left\{v_{h} \in\left(c\left(\overline{\Omega\left(\alpha_{h}\right)}\right)\right)^{2}\left|v_{h}\right|_{T_{i}} \in\left(P_{1}\left(T_{i}\right)\right)^{2} \forall T_{i} \in T_{h}\left(\alpha_{h}\right),\right. \\
v_{h} & \left.=0 \text { on } \Gamma_{u^{\prime}}, v_{2 h}\left(a_{i}, \alpha_{h}\left(a_{i}\right)\right) \geq-\alpha_{h}\left(a_{i}\right) \forall i\right\} .
\end{aligned}
$$

The approximation of (P1) is now defined as follows:

$$
(P l)_{h}\left\{\begin{array}{l}
\text { find } \alpha_{h}^{*} \in U_{a d}^{1 h} \text { such that } \\
E_{h}\left(\alpha_{h}^{*}\right) \leq E_{h}\left(\alpha_{h}\right) \forall \alpha_{h} \in U_{a d}^{1 h},
\end{array}\right.
$$

where $E_{h}\left(\alpha_{h}\right)=J_{\alpha_{h}}\left(u_{h}\left(\alpha_{h}\right)\right)$ and $u_{h}\left(\alpha_{h}\right) \in K_{h}\left(\alpha_{h}\right)$ is usual Ritz-Galerkin aporoximation of $\left(P\left(\alpha_{h}\right)\right)$ on $K_{h}\left(\alpha_{h}\right)$. Under certain regularity assumptions, concerning the family $\left\{T_{h}\left(\alpha_{h}\right)\right\}, h \rightarrow 0+, \alpha_{h} \in U_{a d}^{1 h}$, the following relation between $(P 1)$ and $(P 1)_{h}$ can be established:

Theorem 2.1 Let $\alpha_{h}^{*} \in U_{a d}^{1 h}$ be a solution of $(P l)_{h}$ and let $u_{h}^{*}\left(\alpha_{h}^{*}\right)$ solves the approximate state problem on $\Omega\left(\alpha_{h}^{*}\right)$. Then there exists a subsequence $\left\{\alpha_{h_{j}^{*}}^{*}\right\} \subset\left\{\alpha_{h}^{*}\right\}$, an element $\alpha^{*} \in U_{a d}^{1}$ and $u *\left(\alpha^{*}\right)$ such that

$$
\alpha_{h_{j}}^{*} \rightarrow \alpha^{*} \text { (uniformly) in } C^{0}(\langle a, b\rangle) \text { for } h_{j} \rightarrow 0+
$$

$u_{h}^{*}\left(\alpha_{h}^{*}\right) \rightarrow u_{j}^{*}\left(\alpha^{*}\right)($ weakly $)$ in $\left(H^{1}\left(G_{m}\left(\alpha^{*}\right)\right)^{?}\right.$
for $h_{j} \rightarrow 0^{+}+$and for any $m \geq m_{0}$, where α * is a solution of ($P 1$), $u^{*}\left(\alpha^{*}\right) \in K\left(\alpha^{*}\right)$ is the corresponding state on $\Omega\left(\alpha^{*}\right)$ and

$$
G_{m}(\alpha *)=\left\{\left(x_{1}, x_{2}\right) \in R^{2} \mid x_{1} \in\langle a, b\rangle, \alpha *\left(x_{1}\right)+1 / m<x_{2}<\gamma\right\}
$$

For the proof see [11].
Sensitivitv analvsis for (P 1) , (P 2), (P 3) as well as numerical results can be found in [11], [9] and [10], respectively.

References

[1] New directions in Optimum Structural Design, Edited by E. ATREK, R.H. GALLAGHER, K.M. RAGSDELI, O.C.ZIENKIEWICZ, 1984, John Willey \& Sons Ltd.
[2] CEA,J., Une méthode numërique pour la recherche d'un domaine optimal, Publication IMAN, Université de Nice, 1976.
[3] PIRONNEAU,O., Ontimal Shape Design for Elliptic Systems, Springer Series in Comput. Physics, Springer Verlaq, New York 1984.
[4] DUVAUT,G., LIONS,J.L., Les inéquations en Mécanique et en Phusique, Dunod,paris, 1972.
[5] PANAGIOTOPOULOS.P.D., Inequalitu problems in mechanics and applications. Convex and nonconvex eneralf Functions, Birkhäuser. Boston - Basel-Stuttáart, 1985.
[6] HAUG,E.J., ARORA,J.S., Applied optimal design, mechanical and structural sustems, Willev-Interscience Pub¹., New York, 1979.
[7] BENEDICT,R.L., TAYLOR,J.E., Optimal design hor elastic bodies in contact, in Optimization of Distributed Parameter Structures, Edited by Hauq,E.J. and Cea,J., NATO Advanced Study Institutes Series. Series E. Alphen aan den Rijn, Sijthoff \& Noordhoff, 1981, 1553-1569.
[8] HASLINGER,J., NEITTAANMÄKI,P., On the existence of optimal shapes in contact problems, Numer. Funct. Anal. and Optimiz., Vol 7 (1984), No 3-4, 107-124.
[9] HASLINGER,J., HORÁK,V.. NEITTAANMÄKI.P., Shape optimization in contact problems with friction, Lappeenranta University of Techno-
logy, Dept. of Physics and Mathematics, Preprint No 10/1985 (to appear in Numer. Funct. Anal. and Optimiz.)
[10] HASLINGER,J., NEITTAANMÄKI,P., Shape optimization in contact problems of elasto-perfectly plastic bodies (in preparation).
[11] HASLINGER,J., NEITTAANMÄKI,P., Shape optimization in contact problems, Approximation, numerical realization (to appear).

