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FREE BOUNDARY PROBLEMS FOR
STOKES’ FLOWS AND FINITE ELEMENT
METHODS

J. A. NITSCHE
Institut fiir angewandte Mathematik, Albert-Ludwigs-Universitdt
Freiburg im Breisgau, West Germany

Abstract:

In two dimensions a Stokes' flow is considered symmetric to the abscissa
n = 0 and periodic with respect to f. On the free boundary Inl = S(§) the
conditions are: (i) the free boundary is a streamline, (ii) the tangential
farce vanishes, (iii) the normal force is proportional to the mean curvature
of the boundary. By straightening the boundary, i. e. by introducing the var-
iables x = §, y = n/S(§) , the problem is reduced to one in & fixed domain.
The underlying differential equations are now highly nonlinear: They con-
sist in an elliptic system coupled with an ordinary differential equation for
S. The analytic properties of the solution as well 8s the convergence of the
proposed finite element approximation are discussed.

1. In accordance to the restrictions formulated in the abstract the problem under consid-

eration is: We ask for the free boundary n = S(§), 1-periodic in §, such that there exists a

solution pair U = (U1,U2) and P with the properties:

(ip
(v
(1.2)

(ip)
(1.3)

In the domain 2 = { (§,n) | Ml < S(5) } the system of differential

equations
6ik|k. = F
hold true with
6ik = Uik + Ukji - Pbix.

In the domain €2 the incompressibility condition

v.u = Ung + Uz = 0

holds true.
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(i) The free boundary n = + S(f) is streamline, i. e.
(1.4) Uz-S'Uy = 0 forn=25(5).
(ii2) On the free boun&arg the shear-force vanishes, i. e.
(1.5) 6iklink = O
with t = (ti,t2) and n = (m,n2) being the tangential resp. normal

unit vectors.

(ii3) The normal-force is proportional to the mean curvature, i. e.

(1.6) 6ikNink = KH.

We will consider fluid motions only "not too far” from U% = (1,0). Together with P® = 0 and
% = 1 the triple {U°,P®,5%} is & solution to the problem stated above with F® = 0. - The
main idea of our analysis is the "straigthening” of the free boundary, quite often used. This
consists in introducing new variables

(1L ?) X = §F o, 4y = n/sp

Since we are looking for solutions {U,P,S} near to {U%P®,5°} we replace U, P and S - de-
pending on §,n - by (1+us,u2), p and 1+s depending on %,y . This leads to a nonlinear problem
in the new variables but now in the fixed domain

(1.8) Q. = {&xw] gt}

Because of our setting all functions are assumed to be I-periodic in %. For functions E resp.
in the new variables { symmetric with respect to y= 0, i. e. fi(x,-y) = f1{x,y) and f2(x,-y) =
-f2(x,y), the solution also will be symmetric to y = 0 . Hence we can restrict ourselves to
the unit square

(1.9) Q = { ] oexyct}

The condition of symmetry implies the boundary conditions

u2(x,0) 0
(1.10)

U"y(X,O) = 0
By linearizing, i. e. by spltting into linar and nonlinear terms, we get from (1.1) the system
Ax(2uyx-p) + Oylung+uzix) = OxEn+dyZ12 +f1

(L1
Ax(unytuzix) + Oy(2u2iy-p) = 3xE21+ yZ22+ f2 .



Here Zik = Zix(u,p,s) are ot least quadratic in their arguments, for example it is
(1.12) Tiz = -2yslune + 2(1+8) " {1+y2s2)uzyy - (1+5) ysluzy + ys'p .
In the new variables condition (1. 3) becomes

Unx + U2y = D
(1.13) ~
= (1+9) ysluny + suzy)

The boundary condition (1. 4) may be used as defining relation for s = s(x):

s! (1+u) w2

(1.14)
= U2 o+ P

(1. 5) leads to & boundary condition of the type
(1.15) Uty + U2 = Ti.
The mean curvature H of the free surfsce depends on the second derivative ' resp. s'.

This quantity may be computed from (1.14). In this way (1. 6) leads to the second boundary

condition of the type
(116) 2uzy-p+kuzix = T2.
The Ti = Ti(u,p,s) are at least quadratic in their arguments. Similar to the Zik they depend

only on the functions themselves and their first derivatives. Since s is assumed to be

1-periodic we have ['s' = 0 . Here [w resp. later Jfw are abbreviations defined by
1

(1.17) Fw = Jwi(xNdx, SIfw = [fw(x,ydxdy
0 Q
In view of the boundary condition (1.10) we get from (1.13) JSD = -fuz . Therefore the
quantity
Yy = Jfjp -JP
(1.18)
= y(u.p.s)
will be zero. Hence we may replace in (1.13) the right hand side D by
(1.19) b = b - y.

In the new variables we have the

Problem:
Given the vector { defined in Q (1. 9) and I-periodic in X. Find y, p, s I1-periodic in
%, fulfilling the differential equations {1.11), (1.13) in Q, and the boundary condi-
tion (1.10) on y=0 as well as (1.14), (1.15), and (1.16) on y=1.
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2. The ides of proving the existence of a solution of the problem as well as deriving 6 77-
nite element methad inorder to approximate this solution is as follows: We consider
the quadruple m = {u,u2,p,s} as an element of a linear space T equipped with an appropri-
ate norm. The geometric boundary condition (1.101) has to be imposed on uz. Obviously u 8s
well as s are defined up to a constant only. Therefore we nomalize uy, s according to S Suj =
0, J's = 0. The correspondent restriction of the space T will be denoted by *M . Similar-
ily we consider the octuple n = {Zn,%12,221,222,0,P,T1,T2} as en element of a linear
space M, also equipped with a norm. By (1.12), (1.13) etc. the mapping A: T » T is de-
fined. The mepping B: M = °“M which associstes the solution of the boundary value
problem to the right hand sides is constructed by the natural weak formulation of the

problem: If m € "M is the solution then with any p = {v,q, r} € *M the variational equa-

tions hold:
alm,p) +b(m,p) = Liln,p)+F({,p) )
(2.2) b(p,m) = Lzln,p) )
c(m,p) - Suzr! = Jpr

Here Li, F, 8, b, c are bilinear functionals; especially a(.,.), b(.,.), and c(.,.) are defined by
alm,p) = F{2unxvix + (ung+uzidvig+vai) + 2uzigvaig) -« fuzievz
(2.3) b(m,u)  =5I q{unx+ uz}
clm,p) =S s'r!
The standard inf-sup condition is valid for the form b(.,.), because of Korn's second ine-
quelity a(.,.) may be extended to & bounded and coercive bilinear form in the Sobolev space
Hi(Q)X H1(Q). In connection with the normalisation of u and s unigueness of the mapping B

is guarenteed.

3. Since the mapping R is nonlinear we will work with Holder-spaces: We equip the spaces
“Th and N in the following way with norms, in these topologies they are Banach-spaces:
For p={v,q,r} € "M we define
Bull = Bull-m
(3.1
= Zhvilgy, @ * Mgea@ * lezam
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Here i1l
Ci-a(.) Qenote the usual Holder-norms with a € (0,11, 1 is the unit interval.

For v = {211,212,221,222,5,P.T!.T2} e T we define

Hivlﬂ = l+liq

(3.2)
= ZM2ilgy,(q) * igg,q) * IPIgy () * 28 TilCon()
Now we consider elements jt in the ball Bs("M) = {p| p e "M A Nl < 6} with 6< 6o <!

and bo fixed. Obviously the two estimates are valid:

Inuly < colulp

(3.3)

Iaw'-Ap2ly ¢ ool - w2l
Here "¢ denotes a numerical constant depending only on 6o which may differ at different
places.
It can be shown: The mapping B is bounded, i. e. for m = Bn the estimate
(3.4) fimil ¢ cllnll o+ SMfilgy, )
is valid. Thus the Banach Fixed Point Theorem leads to: For Hfill sufficiently small and 6
chosen appropriately the mapping
(3.5) T = B=AR
possesses an unique fixed point in the ball Bs(*M) . It turns out that the quantity y (1.18)
vanishes. This implies that the fixed point corresponds to the solution of the original

problem.

4. Now let "Tx be an appropriate finite element approximation space. By restricting in
(2.2) the elements p = ph € "M and looking for the solution my € *“Mnr the mapping Bh and
consequently also Th (see (3.5)) is defined.

It can be shown: Under certain conditions concerning the approximation spaces, especially
the Brezzi condition is needed, the mapping Bn is bounded, i. e. an inequality of the type
(3.4) holds true. This finally leads to aimost best error estimates: Let m € " and mp €

“Th be the solution of the analytic problem resp. the finite element solution then

(4,1 Im-mnl < Cinf{ fm-pnll | pre mn} .
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