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FREE BOUNDARY PROBLEMS FOR 
STOKES' FLOWS AND FINITE ELEMENT 
METHODS 
J. A. NITSCHE 
Institutfilr angewandte Mathematik, Albert-Ludungs-Universitdt 
Freiburg im Breisgau, West Germany 

Abstract: 
In two dimensions a Stokess flow is considered symmetric to the abscissa 
n = 0 and periodic with respect to F. On the free boundary Inl = S(F) the 
conditions are. (i) the free boundary is a streamline, (ii) the tangential 
force vanishes, (iii) the normal force is proportional to the mean curvature 
of the boundary. By straightening the boundary, i. e. by introducing the var
iables x = F, y = rj/5(F) , the problem is reduced to one in a fixed domain. 
The underlying differential equations are now highly nonlinear: They con
sist in an elliptic system coupled with an ordinary differential equation for 
S. The analytic properties of the solution as well as the convergence of the 
proposed finite element approximation are discussed. 

L in accordance to the restrictions formulated in the abstract the problem under consid

eration is: We ask for the free boundary r\ = S(F), 1-periodic in F, such that there exists a 

solution pair U = (Ui,U2) and P with the properties: 

( i | ) In the domain ft = { (F,n) | |ni < s(y) } the system of differential 

equations 

(1.1) 6ik|k = Fi 

hold true with 

(1.2) 6ik = Ui,k+ Ukii - P&ik. 

( i 2 ) In the domain ft the incompressibility condition 

(1.3) V-U = U n - ^ m = 0 

holds true. 
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(1i|) The free boundary r\ = + S(f) is streamline, i. e. 

(1.4) U2-S'Ui = 0 fo rq = + S(F). 

(112) On the free boundary the shear-force vanishes, i. e. 

(1.5) 6iktink =. 0 

with t = (ti,t2) and n = (m,n2) being the tangential resp. normal 

unit vectors. 

(113) The normal-force is proportional to the mean curvature, i. e. 

(1.6) 6ikmnk = K H . 

We will consider fluid motions only "not too far" from U° = (1,0). Together with P° = 0 and 

S° = 1 the triple {y°,P°,S0} is a solution to the problem stated above with F° = 0. - The 

main idea of our analysis is the "straigthening" of the free boundary, quite often used. This 

consists in introducing new variables 

(1.7) x = F , y = q / S ( f ) . 

Since we are looking for solutions {U,P,S} near to {y°,P°,S0} we replace U, P and S - de

pending on F,rj - by (1+ui,U2), p and 1+s depending on x,y . This leads to a nonlinear problem 

in the new variables but now in the fixed domain 

(1. 8) Q± = {(x,y) I lyl < 1} . 

Because of our setting all functions are assumed to be 1-periodic in x. For functions F resp. 

in the new variables f symmetric with respect to y = 0, i. e. fi(x,-y) = fi(x,y) and f2(x,-y) = 

-f2(x,y), the solution also will be symmetric to y = 0 . Hence we can restrict ourselves to 

the unit square 

(1.9) Q = { (x,y)| 0 < x , y < 1 } . 

The condition of symmetry implies the boundary conditions 

U2(X,0) = 0 
(1.10) 

Ul|y(X,0) = 0 

By linearizing, i. e. by spitting into linar and nonlinear terms, we get from (1.1) the system 

dx(2ui|X-p) + ay(uiiy + U2iK) = dx-Sn + dySi2 + f i , 
(1.11) 

3*(Ul|y + U2|x) + dy(2U2|y-p) = dxX21 + 5y-?22 + U • 
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Here Zik = Zik(u,p,s) are at least quadratic in their arguments, for example it is 

(1.12) Z12 = -2ys,ui,x + 2(1+s)",(l + y2s,2)u2iy-(1+s)"1ys,U2iy+ ys !p. 

In the new variables condition (1. 3) becomes 

Ul|x + U2|y =: D 
(113) 

= (Hsr^ys'uuy + SU2|y) 

The boundary condition (1. 4) may be used as defining relation for s = s(x): 

s1 = ( l + Ul)-1U2 
(1.14) 

=: U2 + P . 

(1. 5) leads to a boundary condition of the type 

(1.15) Ul|y + U2|x = Tl . 

The mean curvature H of the free surface depends on the second derivative S" resp. s11. 

This quantity may be computed from (1.14). In this way (1. 6) leads to the second boundary 

condition of the type 

(1.16) 2U2ly " P + KU2|x = T2 -

The Ti = Ti(u,p,s) are at least quadratic in their arguments. Similar to the Zik they depend 

only on the functions themselves and their first derivatives. Since s is assumed to be 

1-periodic we have / s ' = 0 . Here / w resp. later J / w are abbreviations defined by 
1 

(1.17) Jw = Jw(x,1)dx, JJw = JJw(x,y)dxdy 
0 Q 

In view of the boundary condition (1.10) we get from (1.13) SSD = -Ju2 . Therefore the 

quantity 

Y = SSD - SP 
(1.18) 

=: *(u,p,s) 

will be zero. Hence we may replace in (1.13) the right hand side D by 

(1.19) D = D - Y . 

In the new variables we have the 

Problem: 

Given the vector f defined in Q (1. 9) and Vperiodic in x. Find u, p, s 1-periodic in 

x, fulfilling the differential equations (1.11), (1.13) in Q, and the boundary condi

tion (1.10) on y=0 as well as (1.14), (1.15), and (1.16) on y=l. 
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2^ The ideo of proving the existence of o solution of the problem os well os deriving o fi

nite element method in order to opproximote this solution is os follows: We consider 

the quodruple m = {ui,U2,p,s} os on element of o Mneor spoce Til equipped with on oppropri-

ote norm. The geometric boundory condition (l.lOi) hos to be imposed on U2. Obviously ui os 

well os s ore defined up to o constont only. Therefore we nomolize ui, s occording to JJui = 

0 , Js = 0. The correspondent restriction of the spoce Til will be denoted by 'Til . Similor-

ily we consider the octuple n = {Zn,Z12,£21,£22,D,P,Ti,T2} os on element of 0 Mneor 

spoce Tl, olso equipped with o norm. By (1.12), (1.13) etc. the mopping fl : 1TI »-> Tl is de

fined. The mopping B . Tl »-> "TH which ossociotes the solution of the boundory volue 

problem to the right hond sides is constructed by the noturol weok formulotion of the 

problem: If m e 'TT1 is the solution then with ony \i = {y,q, r} e 'TT1 the voriotionol equo-

tions hold: 

o(m,i i) + b(m,i i) = Li(n,j i) • F(f,| i) 

(2.2) b(|i,m) = L2(n,|i) 

c ( m , n ) - J u 2 r l = jPr 1 

Here Li, F, 0, b, c ore bilinear functional, especially a(.,.), b(.,.), and c(.,.) are defined by 

a(m,|l) =JX[2Ul|xVl|X+(Ul|y + U2|x)(Vl|y + V2|x)'»'2U2|yV2|y]-KjU2|xV2 , 

(2.3) b(m,ji) =J7 q{ui|X + U2iy} 

c(m,i i) = S s1 r1 

The standard inf-sup condition is valid for the form b(.,.), because of Korn%s second ine

quality a(.,.) may be extended to a bounded and coercive bilinear form in the Sobolev space 

Hi(Q)xHi(Q). In connection with the normalisation of ui and s uniqueness of the mapping B 

is guaranteed. 

3. Since the mapping fl is nonlinear we will work with Holder-spaces: We equip the spaces 

"TO and Tl in the following way with norms, in these topologies they are Banach-spaces: 

For [i = {y,q,r} e 'Til we define 

M-= lul-m 
(3.1) 
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Hвre 1 II 
' Ck.ҳ(.) denote the usual Hölder-norms with л є ( 0 , 1 ] , l is the unlt tnterval. 

f0!r y = \î"Лìz,І2\,І22,Ь,P,J\,Jг} є l l wedefine 

M-- lvlц 
(3.2) 

= ľ- lklCo.„(Q) + lбlCo-,.<l) + ' P B C x ( Q ) + ľ ^ W l ) 

Now we consider elements ц in the b ll ßбЄИl) :-{џ\ џ e "TП л ПцП < 6} with б < бo < 1 

and 6o fixed. Obviously the two estimates are valid: 

fflflИIл < cбliilrn 
(3.3) 

lя^-яц2!., < cбl^-^и^ 

Here "c" denotes numeric l const nt depending only on бo which m y differ t different 

pl ces. 

It c n be shown: The m pping B is bounded, i. e. for m = Bn the estim te 

(3-4) 1 m«| < c | n | • -ŁИfíйco^(Q) 

is v lid. Thus the B n ch Fixed Point Theorem le ds to: For йf.ll sufficiently sm ll nd 6 

chosen ppropri tely the m pping 

(3.5) T := Bifl 

possesses n unique fixed point in the b ll BбCTП) . It turns out th t the qu ntity ү (1.18) 

v nishes. This implies th t the fixed point corresponds to the solution of the origin l 

problem. 

4L Now let "TÎÌҺ be n ppropri te finite element pproxim tion sp ce. By restricting in 

(2.2) the elements |i = |ІҺ e "TПҺ nd looking for the solution mh e "TПҺ the m pping BҺ nd 

consequently lso TҺ (see (3.5)) is def ined. 

It c n be shown: Under cert in conditions concernìng the pproxim tion sp ces. especi lly 

the Brezzi condition is needed. the m pping BҺ ís bounded. i. e. n inequ lity of the type 

(3.4) holds true. This fin lly le ds to lmost best error estim tes: Let m e 'ïïl nd mh e 
ШTTÌҺ be the solution of the n lytic problem resp. the finite element solution then 

(4J) | m - m h | -- Cinf{ l m - | i h | | | І Һ Є " T П Һ } . 
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