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ORDINARY LINEAR DIFFERENTIAL 
EQUATIONS - A SURVEY OF THE GLOBAL 
THEORY 
F. NEUMAN 
Mathematical Institute of the Czechoslovak Academy of Sciences, branch Brno 
Mendlovo nam. I, 603 00 Brno, Czechoslovakia 

I, Historv 

Investigations of linear differential equations from the point 

of their transformations, canonical forms and invariants started in 

the last century. In 1834 E.E. Kummer [6] studied transformations of 

the second order equations in the form involving a change of the 

independent variable and multiplication of the dependent variable. 

Till the end of the last century several mathematicians dealt also 

with higher order equations. Let us mention at least E. Laguerre, 

A.R. Forsyth, F.Brioschi, G.H.Halphen from many others. Perhaps the 

most known result from this period is the so called Laguerre-Forsyth 

canonical form of linear differential equations characterized by the 

vanishing of the coefficients of the (n - l)st and (n - 2)nd 

derivatives. 

However as late as in 1892 p. Stackel (and one year later 

independently S.Lie) proved that the form of transformation conside

red by Kummer (as well as all his successors) is the most general 

pointwise transformation that converts solutions of any linear homo

geneous differential equation of the order greater than one into 

solutions of an equation of the same kind. In fact, only this result 

justified backwards the whole previous investigations. 

Already in 19-10 G.D. Birkhoff [ll pointed out that the investig

ations, considered in the real domain, were of local character. He 

presented an example of the third order linear differential equation 

that cannot be transformed into any equation of the Laguerre-Forsyth 

canonical form on its whole interval of definition. 

The local nature of methods and results is not suitable for 

dealing with problems of global character, as boundedness, periodicity, 

asymptotic or oscillatory behavior and other properties of solutions 

that necessarily involve investigations on the whole intervals of 

definition. 

Only to demonstrate that even in the middle of this century there 
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were just isolated results of a global character and no systematic 

theory, let me mention G. Sansone's example of the third order linear 

differential equation with all oscillatory solutions. This result 

occured as late as in 1948 in spite of the fact that the question 

about the existence or nonexistence of such an equation is as old as 

the problem of factorization of linear differential operators. 

It is now some 35 years ago that 0. Boruvka started the systema

tic study of global properties of the second order linear differential 

equations. He deeply developed vhis theorv and summarized his original 

methods and results in his monograph [3] that apneared in 1967 in Ber

lin and in an extension version in 1971 in London. 

For linear differential equations of the second and higher orders 

there have occurred results of a global character in papers of several 

mathematicians. Let me mention at least N.V.Azbelev, J.H.Barrett, 

E. Barvinek, L.M.Berkovi£, T.A.Burton, Z.B.Caljuk, T.A.Chanturija, W.A. 

Coppel, W.N.Everitt, M.GreguS, H.Guggenheimer, G.B.Gustafson, M.Hanan, 

Z.Husty, I.P.Kiguradze, V.A. Kondratjev, M.K. Kwong, M.Laitoch, A.C. 

Lazer, A.Ju.Levin, W.T.Patula, M.Rah, G.Sansone, S.Stanek, J.Suchomel, 

C.A.Swanson, V.Seda, M.Svec, M.Zl^mal from several others. However, 

there was still no unified and systematic theory of global properties 

of linear differential equations of an arbitrary order enabling us to 

fortell what can and what cannot happen in global behavior of solu

tions. 

In the last 15 years we discovered enough general approach and 

methods, we introduced new useful notions and derived results giving 

answers to substantial questions and solving basic problems in the 

area of global properties of linear differential equations of an 

arbitrary order. 0.Boruvka's methods and results for the second order 

equations were at the beginning of our approach to equations of 

arbitrary orders and they still play an important role in the whole 

theory. We cannot see the possibility how to handle the general situ

ation without having had his results at our disposal. 

Algebraic, topological, analytical and geometrical tools together 

with methods of the theory of dynamical systems and functional equ

ations make it possible to deal with problems concerning global pro

perties of solutions by contrast to the previous local investigations 

or isolated results. Theory of categories, Brandt and Ehresmann grou-

poids, Cartan's moving-frame-of-reference method among other differen

tial geometry methods, and functional equations are some of the means 

used in our approach. 
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The theory in question includes also effective methods for sol

ving several special problems, e.g. concerning the global equivalence 

of two given equations, or from the area of questions on distribution 

of zeros of solutions, disconjugacy, oscillatory behavior, etc. 

II. Global Transformations 

For n > 2, let P (y,xjl) denote a linear homogeneous ordinary 

linear differential equation 

(n) , / N (n-1) , , t \ Y + Pn_x(x)y +...+ PQ(x) = 0 , 

where p^ £ C (I)/ i = 0,1,...,n - 1, are real continuous functions 

defined on an open interval I of reals. Similarly, Q (z,tjj) denotes 

z ( n ) + qn_1(t)z
(n-l) +...+ qQ(t) = 0 , q. G C°(J) , 

i = 0,1,...,n - 1, J C R being an open interval. 

We say 

there exist 

We say that P (y,x?I) is globally tuanh£oumabId into Q (z,t;J) if 
n n 

a function f G Cn(J), f(t) 4= 0 on J, and 

a C -diffeomorphism h of J into I, 

such that 

z(t) = f(t) . y(h(t)), t e J 

is a solution of Q (z,t?J) whenever y is a solution of P (y,x;I). 

This definition complies with the most general form of a pointwise 

transformation derived by Stackel. The bijectivity of h guarantees the 

transformation of solutions on their whole intervals of definition, 

i.e. the globality of the transformation. Let me remark also, that 

recently M.Cadek derived Stackel's result without any differentiability 

assumption, [ 4} . 

It appears to be convenient to write the global transformation in 
T the following form. Let y = (y,,...,y ) be the vector column function 

whose coordinates *:y. are linearly independent solutions of the equation 

P (y,x;I) for i = l,...,n. Let us call the y a fundamental solution of 

P (y,x;I). Similarly, let z denote a fundamental solution of the 

equation Q (z,t?J). Then there exists a nonsingular n by n constant 
n 

matrix C such that 

(a) z(t) = C.f(t).y(h(t)), t G- j . 

The global transformation expressed explicitely by this formula will be 

denoted by a = <Cf,h> , and we shall write 

P (y,xjl)a = Q (z,t?J) , 

or shortly 



Pa = Q . 

The relation of global transformability is an equivalence 

h-dlation. Hence the set A of all linear homogeneous differential 

equations of all orders greater than and equal to two, is decomposed 

into the classes of globally equivalent equations. 

Let B be one of the classes of the equivalence. For each three 

equations P, Q and T of the class B there exist global tranformations 

a and 3 such that 

Pa = Q and Q3 = T . 

If we define a composition a3 of the tranformations a and 3 by 

(Pa)3 = P(a3) = T , 

we introduce a certain algebraic structure into each class B of 

globally equivalent equations. This algebraic structure considered on 

the whole set A is a special category, called the Ehie.6mann gioupo<Ld, 

Linear differential equations are objects and global transformations 

are morphisms of the category. The same algebraic structure restricted 

to any class B of globally equivalent equations is a special Ehresmann 

groupoid, called the Biandt groupoid. 

The basic (and in fact, the only) structural notion of a Brandt 

groupoid is the so called 4tattona>iy gtioup of any of its objects. In 

our case of differential equations, the stationary group G(P) of an 

equation P is formed by all global transformations that transform the 

equation P into itself, i.e. 

G(P) = {a; Pa = P) . 

It can be shown that the stationary groups of any two equations 

P and Q from the same equivalent class B are conjugate: 

Having a special [canonical) object [equation) S B in the class
 B 

of equivalent equations, all global transformations transforming P into 

Q are described by the formula 

Y""1G(SB)6, where P = S BY and Q = Sfi6. 

We could observe that in each area of mathematics where a struc

ture of an Ehresmann groupoid occurs as it is also in our case, the 

following basic problems have to be solved in order to describe the 

structure of sets of objects and transformations in this area, and in 

this manner, to form a foundation of the corresponding theory: 

1. Find sufficient and/or necessary conditions (if even effective, 

the b e t t e r ) under which two given objects, two given equations are 
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equivalent, i.e. cKitzKion oi global tquivalo.net. 
2. Characterize all possible htationaKy gKoapA according to the 

classes of equivalence. 

3. Find, construct canonical object*, equations in tach class of 

equivalent equations. 

In what follows we shall answer the mentioned questions for 

linear differential equations of arbitrary orders. 

First, let us introduce also a gtomztKical KcpKtmentation of our 

global transformations very useful in the sequel when different 

geometrical approaches are applied. 

Again, let an equation P be represented by its (arbitrary, but 

f i x e d ) fundamental solution y, considered now as a curve in n-dimen-

sional vector space V , the independent variable x ranging through the 

interval I and being the parameter of the curve. Due to the form (a) 

of a global transformation, 

the change x = h(t) is only a reparametrization, 

the factor f(t) selects only another curve but on the same 

cone K formed by straight lines going through the origin 0 G V and 

all points of the original curve y, 

the matrix C performs a centroaffine mapping. 

We may conclude that each fundamental solution, or curve z of any 

equation Q globally equivalent to the equation P is a section of a 

cone in n-dimensional vector space obtained as a centroaffine image of 

a fixed cone determined by a fixed curve y. 

Now, let us come to answer the above mentioned basic questions. 

III. Global Equivalence 

A sufficient and necessary condition for global equivalence of 

the ..second oKdtK linear differential equations was found by 0. Boruv-

ka [3] in the sixties. First, some definitions: 

The maximal number of zeros of nontrivial solutions of an equa

tion of the second order P2 gives the type of the equation: either 

iifiitz, an integer m, or infinite. Moreover, the equation P2 being of 

finite type m is called of g^n^Kal kind, if it admits two linearly in

dependent solutions with m - 1 zeros/ everything considered on the who

le interval of definition. Otherwise, P2 being of finite type m is 

called of &p^cial kind. If the equation P2 is of infinite type then 

its kind is either on^-6id^ ohcillatoKy or both-bidt oAcillatoKy. 
Now Boruvka's criterion reads as follows: 

Two titcond oKdiK limaK di&iz.tential ^quation6 ate globally 
zquivatent i£ and only i£ t^y aKt oi tfo ham^ typz and at thz 6am^. 
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time. o/J tke. 6.ame. kind. 

Our criterion of global equivalence of equations of higher 

orders needs the following notion. Let 

(p) u'' + p(x)u = 0 

be an equation of the second order whose coefficient p belongs to the 

class C (I), and let u and u
?
 denote two of its independent solu

tions. Define n functions 

* i : = - r 1 ' y2 ••- -r2-»2 yn ---*?1 • 

These functions are of the class C
n
(I) and they are linearly indepen

dent. Hence they can be considered as solutions of the uniquely de

termined n-th order linear differential equation, called the iterative 

equation iterated from the equation (p). We denote the iterative 

equation by p (y,x;I), or simply by p . The differential expres

sion of the iterative equation normalized by the unit leading coeffi-
r I 

cient will be denoted as lp I. It can be shown (e.g. [ 5l ) that 

, [n] . (n) . /n+lx , * (n-2) , -/n+lx ,, * (n-3), 

IP I = y + (
 3

 )P(x)y + 2(
 4
 )p'(x)y +... . 

In order to find whether two given linear differential equations 

of the n-th order, P (y,xjl) and Q (z,t;J) with sufficiently smooth 

coefficients are globally equivalent, we rewrite them in the form 

T, / -r N , [ n l . , f N
 (n-3) , f s (n-4)

 n P
n
(y,x;I) = lp I + r

n
_

3
(x)y + r

R
_

4
(x)y +... = 0 

and 

Q
n
(z,t;J) = |q

[ПІ
 | + S

n
_

3
(t)z

( П
"

3 )
 + S

n
_

4
(t)z

( П 4 >
 + .*. = 0 

where the first three coefficients of P and Q coincide with the 

n
 r

 ~n
 r

 , 

coefficients of the iterative expressions lp I and |q I, respect 

tively. li tke equation ? i6 globally tian&ioimable. into tke equation 

0 by mean* o£ a global ttiani> _Jonmation witk tke. ckange x = k[t) , tken 

A. tke second oh.de,n. equation u*' + p( x) a = 0 on I it> globally 

tianA &0Kmable into v' * + q[t)v = 0 on J with tke i>ame ckange x a k[t) 

o& tke independent variable, 

B. tke following relation* atie t>ati6 ^ied 
r (h(t))h'3(t) = s ,(t) on J 
n-3 n-3 

r ^(h(t))h'4(t) = s .(t) on J wkene. s At) = 0, 
n-4 n-4 n-3 

r _(h(t))h'5(t) = s _(t) on J wkene, s (t) = s „(t) = 0, 
n-5 n-5 n-3 n-4 

e,tc. 

Due to condition B the criterion is in ge.neK.al e,&&ective, that 
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means, that it is expressible in terms of quadratures of coefficients 

of given equations. Let us recall that for the second order equations 

the criterion is not effective in this sense, since it requires the 

number of zeros of solutions. 

IV. Stationary Groups 

Stationary groups for the second order equations, called groups 

of dit>po.>i£>iont>, were studied and completely described by 0. Boruvka 

[ 3l in the sixties. Some results on stationary groups of linear 

differential equations of an arbitrary order were obtained in 1977 

mainly by using the theory of functional equations [ 11] . 

In 1979 J. Posluszny and L.A. Rubel [15] characterized (up to con-

jugacy) those transformations, called motion*, of a linear differential 

equation into itself that consist in a change of the independent 

variable only. 

Finally, in 1984 on the basis of our criterion of global equi

valence a complete, ckaftactzsiization of all possible stationary groups 

was derived [14]. Here is the list of the groups up to conjugacy of 

linear differential equations of all orders considered with respect to 

global transformations in the most general form, i.e., involving 

changes both the independent and the dependent variables: 

1. The functions h : R - R, h(x) = Arctan | ~|~ * + d' I ad - be 1 = 1 

2. h : R+- R+, h(x) = Arctan c tl/xVl/a > a * ° 

3m. For each positive integer m, h : (0,nu.) -> (0,mix), 

•u r \ Tv x. a tan x , n h(x) = Arctan — z . • - / , a * 0 c tan x ± 1/a ' 

4m. For each positive integer m, h : (0,nu. - u/2) — (0,iru - rc/2), 

h(x) = Arctan(k tan x) and h(x) = Arctan(k cot x), k > 0 

5. The functions h : R -* R, h(x) = x + c and h(x) = -x + c, c £ R 

6. The increasing functions from 5 

7. The functions h : R - R, h(x) = x + k and h(x) = -x + k, k e Z 

8. The increasing functions from 7 

9. idR and -idR 

10. Only idR. 

These groups range from the maximal one, a three-parameter group 

in case 1, through an infinite cyclic group in case 8, to the trivial 

group in case 10 consisting from the identity only. Let me point out 

that the maximal group has already occured as the fundamental group in 
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Boruvka's investigations of the second order equations. 

For each case of the stationary groups we can characterize the 

corresponding equations and each of the cases listed here actually 

occurs. E.g., the case 1 takes place exactly when the equation is an 

iterative equation of an arbitrary order iterated from a both-side 

oscillatory second order equation. 

Let us note that if we consider global transformations with only 

inch.&a6ing changes of the independent variable then, up to conjugacy, 

there are 5 poA&ibtc ca&£6 of stationary groups u)itk h.thpcct to tko, 

nmmbzh. o(± pa\amdt<ih.i> as announced in 1982 [ 121 . 

V. Canonical Forms 

The next important notion is the notion of canonical forms of 

linear differential equations. Such forms were studied from the early 

beginning of investigation of the equations in the middle of the last 

century. 

Wd have mentioned that already in 1910 G.D. Birkhoff pointed out 

that the so called Lagu.c>Lh.Q.-Voh.Aytk canonicat ^oKm i6 not gtobat. It 

can be shown [ 13] that also the other canonical form that has occurred 

in the literature, the so called Hatpkcn canonicat ^oh.m i6 not gtobat 

ditkdh.. 

For constructions of gtobat canonicat doh.mt> we may proceed in two 

ways, either we use a certain geometrical approach, or we may apply the 

criterion of global equivalence. 

First let us explain shortly our geometrical approach. We have 

seen that fundamental solutions -., considered as curves in an n-dimen-

sional vector space, corresponding to all equations globally equivalent 

to one equation with a fundamental solution y, a curve y, are obtained 

as sections of a cone determined by the curve y. To find a canonical, 

that means, a special equation in the class of equivalent equations, 

we need a special section of the cone. By applying Cartan's moving-

frame-of-reference method we come unfortunately again to the Halphen 

forms that are not global. However, if we consider the euclidean 

n-dimensional space and take the central projection of our curves and 

then their length parametrization, we obtain special sections of the 

cone, special curves. Fortunately, this can be done without any restric

tions on the whole intervals of definition. Then by using differential 

geometrical methods the explicit forms of the special, canonical equa

tions corresponding to the special curves are obtained. 

Tko.60. gtobat canonicat ^o>Lmt> aid 

n = 2: y " + y = 0 on (different) I C R, 



67 

n = 3: 
on I C R, 

(one ) arbitrary function p £ C (D, p ( x ) * 0 on I, 

ate. 

For n = 2 the canonical equations coincide with the canonical 

forms studied by O.Boruvka. 

There is also another procedure producing global canonical forms. 

This procedure is analytical and the construction is based on our 

criterion of global equivalence. Among many different global canonical 

forms obtained by this approach [131 the following equations 

y ( n ) + 0#yCn-l> + 1>y(n-2) + p__3(x)y<n-3) + _ + P o ( x ) y = Q / l C R r 

an.z global canonical £otLm6 . for equations with sufficiently smooth 

coefficients. They are characterized by their first three coefficients 

1, 0, l . 

Comparing with the local Laguerre-Forsyth canonical forms having the 

corresponding sequence 

1, 0, 0 , 

we may conclude that if Laguerre and Forsyth had taken 1 as the coef

ficient of the (n-2)nd derivative instead of their zero they would 

have got global forms instead of their local. 

VI. Invariants 

Invariants of linear differential equations with respect to trans

formations have been derived from the middle of the last century either 

directly, or mainly on the basis of the Halphen canonical forms. These 

invariants are local. 

A global invariant of the second olden, linear differential 

equations is in fact their t a p e .'finite (a positive i n t e g e r ) or infinite, 

and their kind, as introduced and derived bv O.Boruvka in the sixties. 

Due to the criterion of global equivalence we have now also 

global invariant* for equations of an anhitKan.y olda. Indeed, the 

typo, and kind ob the. equation (p): u'' + p(x)u = 0 on I i4> a global 

invariant o£ the. n-th oKdaK equation* P KzuiKitten in thz boKm 

Pn(y,x;D = |p[nl(y,x?DI + r n _ 3 ( x ) y ( n" 3 )+. . . = 0 . 

Another interesting invariants have occurred recently. It is a bit 

misleading fact that each second order equation with only continuous 

coefficients can be globally transformed into an equation with even 

analytic coefficients, e.g., into y'' + l.y = 0 on some I C R, For 

higher order equations the degree of the smoothness of their coeffi-
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cients is in some respect an invariant property. From many results of 

this kind let me introduce at least the following simplest one: 

If the coefficients of the equation P (y,xjl) satisfy 

Pn^1 e C
n"2(I), p n_ 2 e C

n""3(I),..., p. e Cj"1(I) for some 

j < n - 1 , 

then the coo&£iciont6 o& any globally oqutvalont equation to tko 

P (y,x;I) kave. the. 6amo oH.do.fi o£ dl^o.Hontlablllty. 

VII. Equations with Solutions of Prescribed Properties 

The main idea how to construct linear differential equations with 

solutions of some prescribed properties is based on the following 

"cooHdinatz appnoack". 

Having global canonical forms (the globality is essential), each 

linear differential equation P of an arbitrary order can be "coordi

nated" by a couple {S,a} consisting of its global canonical form S and 

of the global transformation a converting S into P, i.e., P = Sa. 

If we succeed to reformulate a given property of solutions of P 

equivalently into properties of S and a, we may construct all required 

equations. Also problems concerning relations among certain properties 

are then converted into (sometimes simple, or even already solved) 

problems from the theory of functions. 

By using this approach there were constructed linear differential 

equations that have important applications in differential and integral 

geometries. E.g., it was possible to go.no.Hallzo. Bla6ckke.' 6 and Santalo'6 

l6opo.HlmotH.lc tko.oHO.m6, [81. 
2 

Connections between boundedness of solutions and their L -pro

perties were easily explained by the above methcd [ 7l . 

Relations between di6tHlbution6 o£ ZOH.06 and a6ymptotlc be.kavion 

of the solutions were also deeply studied by means of the coordinate 

approach. 

There is also another way, a geometrical one, how to see what 

happens with zeros of solutions and how to construct equations with 

prescribed distribution of zeros of their solutions. 

VIII. Zeros of Solutions 

This qeometrical aoproach is based on the representation of a 

fundamental solution yof an equation P (y,x?I) as a curve in n-dimen-

sional vector or even euclidean soace V mentioned in the previous 
n 

sections. 
Let the curve v be the central oroiection of the curve y onto the 
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unit sphere S n - 1 in the space V without a change of parameter x. Each 

solution y of P (y,xv;I) can be written as a scalar product c . y where 

c is a nonzero constant vector in V . Let H(y) denote the hyperplane 

H(y) := (d G v .7 c . d r 0} 

going through the origin and corresponding to the vector c. Evidently 

0 = y(xQ) = c . y(xQ) = c . v(x0)ly(xQ)| ~ c . v(xQ) = 0 

since |y(xQ)| 4= 0. Thus we have shown that 

to each totution y o£ the equation P the.no. conn.c*pond* a 'hypen-

ptam H(y) in V going thnougn thz onigin *uch that 

zeno* oi the *otution y occuli a* panametens oA intersection* o& 

the pan.ticutan. hypen.ptam H(y) with tho. cunv2 v, and vice v2n*a. 

\kuttipticitie* o^ zen.o* occun a* ondens 0& contact* , [9], 

Let us recall that all this happens on the unit sphere, a compact 

space, where strong topological tools are at our disposal. 

Several open problems were solved and many complicated constuc-

tions were easily explained by using this approach, [ 10] . As a simple 

demonstration of the method let us present Sansone's result by con

structing a thin.d on.den. timan. di&&2n.cntiat 2quation with att o*cit-

taton.y *otution* . 

For this purpose it is sufficient to have an enough smooth (of the 

class C ) curve u on the unit aphere S? in 3-dimensional space without 

points of inflexion (that means, that Wronskian of u is nonvanishing) 

such that each plane going through the origin intersects u for infini

tely many values of parameter. The picture of a closed "prolonqed 

cvcloid" infinitelv manv times surrounding the equator as its parameter 

ranges from -°° to +°° may serve as an example of a curve with the 

required property. 

IX. Applications 

To the end of my survey let me mention some fruitful applications 

of the presented theory. 

The above methods were succesfully applied to Ay*tern* o& tinean. 

di{i£en.e.ntiat equation*. E.g., construction of certain second order sys

tems with only periodic solutions, [10], plays an important role in geo

metry of manifolds whose all geodesies are closed [2]. 

By using the above approach there were solved some problems con-
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cerning
1 tincan. and nontincan. diHe.n.e.ntiat zquation6 and 6y6te.m6 witk 

one. on. 6e.vcn.at dctay6. There are useful applications in generalized 

differential equations and tincan. diHe.n.e,ntiat zx.pn.e.66ion6 witk qua6i-

dcn,ivativc6 as well. Last but not least, there are many fruitful 

connections with the tkcon.y oi iunctionat e.quation6. 
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