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UNIFORM ZEROS FOR BEADED STRINGS 
K. KREITH 
University of California 
Davis CA 95616, U.S.A. 

1. I n t roduc t ion . Early a t tempts to model the fundamental v i b r a t i o n of a 

musical s t r i n g focussed on th ree phys ica l p rope r t i e s which were believed to 

under l i e t h i s phenomenon: i s o c h r o n i s m , the pendulum p r i n c i p l e and a 

"simultaneous cross ing of the a x i s " C33. With the discovery that the small 

vibrations of such s t r ings are described by hyperbol ic p a r t i a l d i f f e r e n t i a l 

equa t ions , i n t e r e s t in these physical concepts declined. Isochronism became 

embodied in the "small amplitude assumption" which under l i e s the l i n e a r i t y of 

the r e s u l t i n g equation, while the pendulum principle (asserting that restoring 

forces are proportional to displacements from equi l ibr ium) turned out to be 

i nco r r ec t for the wave equation. The notion of a simultaneous crossing of the 

axis has become identified with separat ion of va r i ab l e s and does not seera to 

have been pursued in i t s own r igh t . 

However given a l inear hyperbolic PDE of the form 

(1.1) u t t - ux x + p(x, t )u == 0, 

with p(x,t) continuous and positive for 0 _< x £ L and t >_ 0, and given 

boundary conditions such as 

(1.2) u (0,t) - u (L,t) -* 0, 

the question of a simultaneous crossing of the axis is an important one. 

Specifically, the question arises whether it is possible to assign Cauchy data 

of the form 
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(1.3) u(x,0) = 0; u
t
(x,0) = g(x) 

for 0 < x < L such that the solution of (1.1)-(1.3) will satisfy 

u(x,T) = 0 for 0 _< x <_ L 

for some T > 0. We shall refer to such solutions as having a uniform zero at 

t = T. 

Except in the case of separation ^ ' variables there seems to be no simple 

answer to this question. As such it is natural to consider a semi-discrete 

approximation to (1.1)-(1.3) corresponding to a beaded string. In this context 

one obtains [7] a system of ordinary differential equations of the form 

4 
(1.4) — - + G(t)u = 0 

dt 

subject to initial conditions of the form 

(1.5) u(0) = 0; u'(0) = g. 

The problem of choosing _g in (1.5) so as to satisfy u_(T) = fJ for some T > 0 

is now the classical problem of establishing the existence of conjugate points 

of zero relative to (1.4). Such problems have been studied by M. Morse [9] and 

W. T. Reid [10] in the more general context of Hamiltonian systems. More 

recently Ahmad and Lazer [1] have also studied conjugate points under the 

assumption the entries of G(t) satisfy appropriate positivity conditions. 

In the case at hand, the matrix function G(t) is a Jacobi matrix given by 

g
и
(t) = 2 + p (t) for 1 < i < n , 

(1.6)
 g

i,i-1 "
 g
i-1,i " "

1 f o г 2
 i ^ 1

 n
» 

g_-j - 0 for |i-j| _> 2. 
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While this matrix function has the symmetry required in [9] and [10], the 

variational criteria for conjugate points established therein are based on 

positive definiteness and provide no information regarding the sign of the 

solution which realizes a particular conjugate point. Also, the essential 

indefiniteness of G(t) prevents the techniques of [1] from being brought to 

bear in establishing uniform zeros for solutions of (1.-0. Accordingly, 

criteria for the existence of uniform zeros of (1.1) would seem to require the 

development of novel techniques for establishing the existence of conjugate 

points for (1 .4). 

2. The Oppositional Mode of Vibration. A special case of interest in 

connection with (1.4) and (1.6) is that where the initial data 

g = col(g1,...,gn) in (1.5) satisfies 

(-1)Jg < 0; 1 < j < n . 

In th is case the solution of (1.4) and (1.5) also sa t i s f i e s ( -1 ) J u . ( t ) < 0 for 

s u f f i c i e n t l y smal l v a l u e s of t and i s s a i d to be ( i n i t i a l l y ) in an 

oppositional mode of vibrat ion. 

The s p e c i a l J a c o b i form of ( 1 . 6 ) makes t r a c t a b l e the problem of 

e s t a b l i s h i n g the ex i s t ence of the conjugate po int T whose corresponding 

so lution _u(t) = c o l ( u 1 ( t ) , . . . , u ( t) is in an oppositional mode for 0 < t < T. 

Indeed, if we define v_(t) = coKv. ( t ) , . . . ,v ( t ) ) by 

v ( t ) = ( - 1 ) J u . ( t ) 

then _v(t) is a so lution of 

v" + F(t)v = 0 

(2.2) 

v ( 0 ) = 0 ; v » ( 0 ) = f 
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where f * |g . | and f « |g. | for 1 _< i, j <_ n. Because of the positivity 

properties of F(t) and £ one can apply the techniques of Ahmad and Lazer [1] 

to establish the existence of a conjugate point T for (2.2) which is realized 

by solution _v(t) whose components are positive for 0 < t < T. 

A nonlinear version of this problem has been considered by Duffin [4] in 

connection with the "plucked string" (corresponding to a right focal point). 

Indeed given appropriate positivity conditions on hi(t,v_) one can also use the 

techniques of Krasnoselskii [6; Ch. 7.4] to establish the existence of positive 

solutions of boundary value problems of the form 

v_" + h(t,v) -= 0 

(2.3) 

v(0) = v(T) = 0, 

leading to more general equations which allow for solutions in this oppositional 

mode. 

While of interest, these results are of little help in establishing uniform 

zeros for (1.1). For as we seek to approximate (1.1) by systems such as (1.4) 

and let n -*• °°, solutions in the oppositional mode do not converge to solutions 

of (1.1). 

For this reason one is led to the more difficult problem of establishing 

the existence of conjugate points for (1.4) which are realized by positive 

solutions. 

3. Positive Solutions. In case the matrix G(t) given by (1.6) is a constant 

Jacobi matrix, the existence of a conjugate point realized by a positive 

solution can be established by algebraic means. In this case (1.4) can be 

written as 

(З.D G
 1
u" + u = 0 
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where G is totally positive in the sense of Gantmacher and Krein [5]. As 

shown in [5], it now follows that G has n simple positive eigenvalues 

A.. > A >...> A > 0, where A. corresponds to an eigenfunction £. which may 

be taken to be positive. Accordingly the choice g - jL in (1.5) leads to 

u_ - £_ sin t/y/~T. and T = IT-/ A . (It also follows from [5] that the 

vibration considered in §2). 

In order to deal with non-constant G(t) in (1.-0 it will be necessary to 

give a non-algebraic argument for the existence of the above solution u,(t). 

To that end we consider the case where 

(3.2) G(t) = Г
Q
 + П(t), 

Y.. » p > 0; Y - Y. « -1; Y.. - 0 otherwise 

n l, i-1 i-1,i lj 
and n(t) - diag(iT (t),...,ir (t)) playing the role of a perturbation of r . 

By [5] T
A
 has positive eigenvalues y., < y_ < . .. < y , for which w& establish 

u i d n 
the following property. 

3.1 Lemma. For sufficiently large values of p the eigenvalues of r
n
 satisfy 

(3.3) 1 < / - ł < \ ; 2 <̂  i < n. 

Proof. The eigenvalues of - rn satisfy - y. < ... < - y and tend to p 0 ' p i P n 

1 as p -• «. Therefore (3.3) follows for the eigenvalues of p r and for the 

In order to establish topological criteria for the existence of uniform 

zeros it will be useful to regard solutions of 

(3.*0 u" + [r + n(t)]u - 0; u(0) « 0, u'(0) - g 
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We seek to show the existence of g > 0 such that the corresponding trajectory 

normalized eigenvectors of r« (corresponding to the eigenvalues y. ) by j_., 

As in [4] we define a contact point of a trajectory _u(t) as its first 

point of intersection with a coordinate plane. An exit point is a contact point 

at which the trajectory also crosses that coordinate plane. In the oppositional 

mode one can readily show [4] that such first contact points are also exit 
+ 

points, but this need not be the case for trajectories in IR . However, the 

following theorem shows that under the condition of Lemma 3.1 such an 
+ 

equivalence also exists for trajectories in ]R . 

3.2 Theorem. If v(t) is a trajectory of 

1" + ľ
0ï. = 0; v(0) = 0, vł(0) = g > 0, 

and if condition (3-3) is satisfied, then the point at which v_( t) first 

plane (v_,e_. ) = 0, where _s. is a unit vector along the positive v.-axis. 

Because of (3.3) and the fact that the _£.. component has maximal amplitude 

among the characteristic directions, it follows that we must have 

ÌЋ (3.5) \ </iI. t
Q
 < ir and ir <Jy^ t

Q
 < | 

for 2 _< i <_ n. Writing X^n^
 i n t e r m s

 °̂
 t h e

 eigenvectors of r leads to 

the equation 
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(3-6) (
c

1
І

1
-

c
2І

2
"-

#
-"

C
rř--n,-j) = ° 

for appropriate choice of positive constants c , ...,c . If now _v(t0) were 

not an exit point we would also have (_v* (tn),e_ ) = 0 and, because of (3.5), 

<<Wd2±2+---+dnVV - ° 

for positive constants d1f...,d . This contradicts (3.6) and completes the 

proof. 

Remarks 

1. Given specific eigenvalues satisfying (3*3) the above argument remains 

valid under small perturbations of the trajectories. Accordingly Theorem 

3.2 remains valid for (3.^) when n(t) is sufficiently small. 

2. The fact that contact points are also exit points assures that contact 

points will vary continuously with initial data. This observation is 

crucial to the proof of Theorem 3.-I below. 

3. In the case of oppositional vibrations the fact that the initial velocity 

vector j_ has g. = 0 assures that the resulting trajectory exits the 

oppositional quadrant at t = 0 across v. = 0. Lemma 3.3 shows that for 

(3.*0 a very different situation exists. 

3.3 Lemma (Crossover property). J_f _in_ Theorem 3.2 the vector jg has g. = 0, 

then the trajectory v_(t) does not exit H across the coordinate plane 

(v,e.) = 0. 

where \\> lies in (J).. . The fact that all components of ip will satisfy 

•3-r 

n </IT. t_ < -** at the time of contact precludes an exit across the plane 

(v,e.) = 0. 
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The above properties of trajectories of v' ' + T v = 0 lead to the 

existence of a conjugate point as follows. Among all initial velocity vectors 

g satisfying g_ > 0 all llgll = 1 we define 

T = [g_ : Wt) exi ts R across (v,e.) = 0}. 

A well known corollary to Sperner's lemma then leads to the fact that 
n 
H T. 4= d> and the following result. 

3.4 Theorem. Under the hypotheses of Theorem 3.2, and for sufficiently small 

perturbations II(t), the system (3.4) has a conjugate point of zero which is 

realized by a trajectory in R . 
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