EQUADIFF 6

Alexander Ženíšek

Some new convergence results in finite element theories for elliptic problems

In: Jaromír Vosmanský and Miloš Zlámal (eds.): Equadiff 6, Proceedings of the International Conference on Differential Equations and Their Applications held in Brno, Czechoslovakia, Aug. 26-30, 1985. J. E. Purkyně University, Department of Mathematics, Brno, 1986. pp. 353--358.

Persistent URL: http://dml.cz/dmlcz/700172

Terms of use:

© Masaryk University, 1986
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SOME NEW CONVERGENCE RESULTS IN FINITE ELEMENT THEORIES FOR ELLIPTIC PROBLEMS

A. ŽENÍŠEK
Computing Center of the Technical Lniversity
Obráncio míru 21, Brno, Czechoslozakia

THE LINEAR PROBLEM

```
    We consider the following variational problem: Find u E W such
that
\[
\begin{equation*}
a(u, v)=L(v) \equiv L^{\delta l}(v)+L^{\Gamma}(v) \quad \forall v \in V \tag{1}
\end{equation*}
\]
```

where

$$
\begin{aligned}
& a(v, w)=\iint_{\Omega} k_{i j} v r_{i} w,{ }_{j} d x, \\
& L^{\Omega}(v)=\iint_{\Omega} v f d x, \quad L^{\Gamma}(v)=\iint_{2} v q d s
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{V}=\left\{\mathrm{v} \in \mathrm{H}^{1}(\Omega): \mathrm{v}=0 \text { on } \Gamma_{1} ; \text { mes }_{1} \Gamma_{1}>0\right\}, \mathrm{W}=\mathrm{z}+\mathrm{V} \tag{4}
\end{equation*}
$$

Ω is a bounded domain in E_{2} with a boundary $\Gamma=\Gamma_{1} \cup \Gamma_{2}\left(\Gamma_{1} \cap \Gamma_{2}=\right.$ $=\phi) ; \mathrm{z} \in \mathrm{H}^{1}(\Omega), \mathrm{z}=\overline{\mathrm{u}}$ on $\Gamma_{1}, \overline{\mathrm{u}} \in \mathrm{L}_{2}\left(\Gamma_{1}\right)$ is a given function. In (2) and in what follows the summation convention over repeated subscripts is adopted and $v r_{i \sim}=\partial v / \partial x_{i}$. The functions $k_{i j}=k_{i j}(x)$ are bounded and measurable in $\Omega \supset \bar{\Omega}$ and satisfy

$$
\begin{equation*}
k_{i j}(x) \xi_{i} \xi_{j} \geq C \xi_{i} \xi_{i} \quad \forall x \in \widetilde{\Omega} \supset_{r} \bar{\Omega} \quad \forall \xi_{i}, \xi_{j} \in E_{1}, \tag{5}
\end{equation*}
$$

where $\mathrm{C}>0$, and $\mathrm{f} \in \mathrm{L}_{2}(\Omega)$, $q \in \mathrm{~L}_{2}\left(\Gamma_{2}\right)$. Assumption (5) and Friedrichs' inequality imply that the form $a(v, w)$ is V-elliptic. Thus, according to the Lax-Milaram lemma, problem (1) has just one solution.

Problem (1) is approximated by the problem: Find $u_{h} \in W_{h}$ such
that

$$
\begin{equation*}
a_{h}\left(u_{h}, v\right)=L_{h}(v) \equiv L_{h}^{\Omega}(v)+L_{h}^{\Gamma}(v) \quad \forall v \in v_{h} \tag{6}
\end{equation*}
$$

where V_{h} is a finite element approximation of V and $W_{h}=z_{h}+V_{h}, z_{h}$ being a finite element approximation of z. The forms $a_{h}(v, w), L_{h}(v)$ approximate the forms $\mathrm{a}(\mathrm{v}, \mathrm{w}), \mathrm{L}(\mathrm{v})$ in the following way: The sets Ω and Γ_{2} appearing in (2), (3) are substituted by Ω_{h} and $\Gamma_{h 2}$ and the
obtained forms $\tilde{a_{h}}(v, w), \tilde{L}_{h}(v)$ are then computed numerically.
In the Ciarlet's and Raviart's theory and its modifications (see [1],[2],[6]) the solution u of (1) is assumed to be sufficiently smooth, $u \in H^{n+1}(s i)(n \geq 1)$, and the maximum rate of convergence is proved:

$$
\begin{equation*}
\left\|\tilde{u}-u_{h}\right\|_{1, \Omega_{h}} \leq \mathrm{Ch}^{n} \tag{7}
\end{equation*}
$$

where \tilde{u} is the Calderon's extension of u into $H^{n+1}\left(E_{2}\right)$.
The problem of convergence of u_{h} to \tilde{u} (when $u \in H^{l}(\Omega)$ only) was solved recently in [8]. In this section we present outlines of considerations of [8].

Theorem 1. Let the boundary Γ of the domain Ω be piecewise of class $\overline{C^{n+1}}$. Let Γ_{h} approximate r piecewise by arcs of degree n. Let $k_{i j}, f \in W_{\infty}^{(n)}(\tilde{\Omega})$ and let the quadrature formula used on the standard triangle T_{0} for calculation of $a_{h}(v, w)$ and $L_{h}^{\Omega}(v)$ be of degree of precision $2 n-2$. Let $q \in C^{n}(\bar{U})$, where U is a domain containing Γ_{2}, and let the quadrature formula used on $[0,1]$ for calculation of $L_{h}^{\Gamma}(v)$ be of degree of precision $2 \mathrm{n}-1$. Let $\overline{\mathrm{u}}$ be so smooth that there exists a function $z \in H^{2}(\Omega)$ such that $z=\bar{u}$ on Γ_{1}. Then

$$
\begin{equation*}
\left\|\tilde{u}-u_{h}\right\|_{1, \Omega_{h}} \rightarrow 0 \text { if } h \rightarrow 0 . \tag{8}
\end{equation*}
$$

Proof. The assumptions concerning Γ and $a_{h}(v, w)$ imply, according to [2] and [7], that the forms $a_{h}(v, w)$ are uniformly V_{h}-elliptic. Thus we have similarly as in [1], [2]:

$$
\begin{align*}
& \left\|\tilde{u}-u_{h}\right\|_{1, \Omega_{h}} \leq c\left\{\sup _{w \in V_{h}} \frac{\left|L_{h}(w)-\tilde{a}_{h}(\tilde{u}, w)\right|}{\mathbb{T}_{w} \|_{1, \Omega_{h}}}+\right. \\
& \left.\quad+\inf _{v \in W_{h}}\left[\|\tilde{u}-v\|_{1, \Omega_{h}}+\sup _{w \in V_{h}} \frac{\left|\tilde{a}_{h}(v, w)-a_{h}(v, w)\right|}{\|w\|_{1, \Omega_{h}}}\right]\right\} . \tag{9}
\end{align*}
$$

For simplicity we prove Theorem l only in the case $\Gamma_{1}=\Gamma$, $\bar{u}=0$ and $n=1$, i.e. Ω_{h} has a polygonal boundary and we use linear triangular finite elements. As Γ is piecewise of class C^{2} each boundary triangle satisfies (for sufficiently small h) one of the following possibilities:

$$
\begin{equation*}
\text { a) } T \subseteq T_{i d}, \quad \text { b) } \quad T_{i d} \subset T \text {, } \tag{10}
\end{equation*}
$$

where $T_{i d}$ is the ideal boundary triangle (see [9]) whose approximation is T.

In order to estimate the first term on the right-hand side of (9) let us define a function $\widehat{w} \in V$ associated with $w \in V_{h}$ in the following
way: $\hat{w}\left(P_{i}\right)=w\left(P_{i}\right)$ at the vertices P_{i} of the triangles of the triangulation T_{h} of the domain Ω_{h}; the function \hat{w} is continuous on $\bar{\Omega}$, linear on each interior triangle of T_{h}, equal to zero on $\mathrm{T}_{\mathrm{id}}-\mathrm{T}$ and linear on T in the case (10) and, finallv, equal to zlámal's ideal "linear" interpolate of w on $T_{i d}$ in the case (: b) (see | 9|). Thus we can write, accordina to (1):

$$
\begin{equation*}
L_{h}(w)-\tilde{a}_{h}(\tilde{u}, w)=L_{h}(w)-L(\hat{w})+a(u, \hat{w})-\bar{a}_{h}\left(\tilde{u}_{w} w\right) . \tag{11}
\end{equation*}
$$

We have

$$
L(\hat{w})=\iint_{\Omega} f \hat{w} d x=\iint_{\Omega_{h}} f w d x+\int_{b}\left\{\int_{i d}(\hat{w}-w) f d x-\int_{T-T_{i d}} w f d x\right\}
$$

where the sum is taken over all boundary triangles (1,b). Expressing similarly $a(u, \hat{w})-\tilde{a}_{h}(\tilde{u}, w)$ we obtain from (11):

$$
\begin{align*}
& \left|L_{h}(w)-\tilde{a}_{h}(\tilde{u}, w)\right| \leq\left|\tilde{L}_{h}^{\Omega /}(w)-L_{h}^{\Omega /}(w)\right|+ \\
& +\sum_{b}\left|\int_{T_{i d}}\left\{(w-\hat{w}) f+k_{i j} u,_{i}(\hat{w}-w),{ }_{j}\right\} d x\right|+ \\
& +\left.\sum_{b}\right|_{T-T} \iint_{i d}\left(w f-k_{i j} \tilde{u}^{\prime}{ }_{i}{ }^{w,}{ }_{j}\right) d x \mid . \tag{1;}
\end{align*}
$$

According to [2, Theorem 4.1.5],

$$
\begin{equation*}
\left\|\tilde{L}_{h}^{\Omega}(w)-L_{h}^{\Omega}(w) \mid \leq C h\right\| w \|_{1, \Omega_{h}} \tag{13}
\end{equation*}
$$

Denoting the first sum in (12) briefly by S_{1} we have, according to the Cauchy inequality and the boundedness of $k_{i j}$:

$$
\left|S_{l}\right| \leq\left(\|f\|_{0, \Omega}+C\|u\|_{1, \Omega}\right)\left\{\sum_{b}\|\hat{w}-w\|_{1, T_{i d}}^{2}\right\}^{1 / 2}
$$

The definition of \widehat{w} and the proof of $[9$, Theorem 2] imply

$$
\left\|_{\mathrm{w}}-\hat{\mathrm{w}}\right\|_{1, \mathrm{~T}_{\mathrm{id}}} \leq C h\left\|_{\mathrm{w}}\right\|_{2, \mathrm{~T}_{i d}} \leq C h\left\|_{\mathrm{w}}\right\|_{1, \mathrm{~T}}
$$

because w is linear on T and (10b) holds. Thus

$$
\begin{aligned}
& \left|S_{l}\right| \leq C h\left\|_{\mathrm{w}}\right\|_{I, \Omega_{h}} \\
& \text { As mes }\left(T-T_{i d}\right)=0\left(h^{3}\right) \text { we have } \\
& \sum_{\mathrm{b}}\left\|_{\mathrm{w}}\right\|_{0, T-T_{i d}}^{2} \leq \mathrm{Ch}^{3} \sum_{\mathrm{b}} \max \mathrm{w}^{2} .
\end{aligned}
$$

Further, similarly as $[7,(39)]$ we can prove

$$
\left\|_{w}\right\|_{0, \Omega_{h}}^{2} \geq \mathrm{Ch}^{2} \sum_{\mathrm{T} \in T_{h}} \sum_{i=1}^{3}\left[w\left(\mathrm{P}_{\mathrm{T}}^{\mathrm{i}}\right)\right]^{2}
$$

where $P_{T}^{i}(i=1,2,3)$ are the vertices of T. Using these results and the fact that w_{i} are constants on each $T \in T_{h}$ we can easily find for the second sum S_{2} on the right-hand side of (12):

$$
\begin{align*}
& \left|S_{2}\right| .\|w\|_{i, \Omega_{h}}^{-1} \leq C\left\{\sum_{b}\|w\|_{0, T-T}^{2}\left\|_{w}\right\|_{0, \Omega_{h}}^{-2}+\right. \tag{15}
\end{align*}
$$

According to (12) - (15), the first term on the right-hand side of (a) is $O\left(h^{l / 2}\right)$.

As to the second term on the right-hand side of (9) we can find a set $\left\{\mathrm{v}_{\mathrm{h}}\right\}$, where $\mathrm{v}_{\mathrm{h}} \in \mathrm{W}_{\mathrm{h}}$, such that

$$
\begin{equation*}
\left\|\tilde{u}-v_{h}\right\|_{1, \Omega_{h}} \rightarrow 0 \text { if } h \rightarrow 0 \tag{16}
\end{equation*}
$$

The following proof of (16) holds also in the case mes ${ }_{1} \Gamma_{1}<\operatorname{mes}_{1} \Gamma$: The set $G=C^{\infty}(\bar{\Omega}) \cap \mathrm{V}$ is dense in V (see [3]). Thus for every $\varepsilon>0$ we can find $v_{\varepsilon} \in G$ such that $\left\|_{u}-v_{\varepsilon}\right\|_{1, \Omega}<\varepsilon$. Let \tilde{v}_{ε} and $\tilde{v}_{\varepsilon}^{*}$ be the Calderon's extensions of v_{ε} into $H^{\ell}\left(E_{2}^{\varepsilon}\right)$ and $H^{2}\left(E_{2}\right),{ }^{\varepsilon}$ respectively. We have

$$
\begin{align*}
\| \tilde{u} & -I_{h} v_{\varepsilon}\left\|_{1, \Omega_{h}} \leq\right\| \tilde{u}-\tilde{v}_{\varepsilon} \|_{1, \Omega_{h}}+ \\
& +\left\|\tilde{v}_{\varepsilon}-\tilde{v}_{\varepsilon}^{*}\right\|_{1, \Omega_{h}}-\Omega_{2}+\left\|\tilde{v}_{\varepsilon}^{*}-I_{h} v_{\varepsilon}\right\|_{1, \Omega_{h}} \tag{17}
\end{align*}
$$

where $I_{h} v_{\varepsilon}$ is the interpolate of v_{ε} in W_{h}, i.e. the piecewise linear function which has the same function values at the vertices of $T \in T_{h}$ as the function v_{ε}. The properties of the Calderon's extensions, the absolute continuity of the Lebesque integral and the finite element interpolation theorem imply that for all $h \leq h_{0}(\varepsilon)$ the right-hand side of (17) is bounded by $K \varepsilon$, where K does not depend on ε. As $I_{h} V_{\varepsilon} \in V_{h}=W_{h}$ relation (17) implies (16).

The set $\left\{\mathrm{v}_{\mathrm{h}}\right\}$ appearing in (16) is bounded. Thus, according to [2, Theorem 4.l.4], the third term on the right-hand side of (9) is $0(h)$. This finishes the proof in our simple case. The general case $\Gamma_{1} \subset \Gamma$, $\mathrm{n} \geq 1$ is considered in [8].

SOME NONLINEAR PROBLEMS

Let the form $a(u, v)$ appearing in (1) be now nonlinear in u, linear in v, strongly monotone and Lipschitz continuous and let $a(0, v)=0$ for all $v \in H^{l}(\Omega)$. In addition, let the forms $a_{h}(v, w)$ be uniformly strongly monotone and uniformly Lipschitz continuous in X_{h} (the finite element approximations of $H^{1}(\Omega)$), i.e. let

$$
a_{h}(v, v-w)-a_{h}(w, v-w) \geq c|v-w|_{l, \Omega_{h}}^{2},
$$

$$
\begin{aligned}
\left|a_{h}(v, z)-a_{h}(w, z)\right| \leq & k\|v-w\| 1,\left\|_{h} l,\right\|_{h} \\
& r v, w, z \in X_{h} \overbrace{i}^{1})
\end{aligned}
$$

where the positive constants C, K do not depend on v, w, z and h. Finally, let the forms $\bar{a}_{h}(v, w)$ be uniformly Linschitz continuous. Under these assumptions the abstract error estimate has again the form (9) (see [5]).

A typical form $a(u, v)$ satisfying all assumptions presented in this section is given bv relation (${ }^{\prime}$) with

$$
\begin{equation*}
k_{i j}=b\left(x,(\nabla v)^{2}\right) s_{i j} \tag{18}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker delta and where the function $b(x, y)$ has the following properties (see [4|):
a) The functions $b(x, \eta), \partial b(x, \eta) / \partial x_{i}, \partial b(x, n) /$ in are continuous in $\tilde{\Omega} \times[0, \infty)$, where $\tilde{\Omega} \supset \bar{\Omega}$.
b) There exist constants $c_{1}>0, c_{2}>0$ such that
$c_{1} \leq b \leq c_{2},\left|\partial b / \partial x_{i}\right| \leq c_{2}, \quad 0 \leq j b / \partial \eta \leq c_{2}$ in $\tilde{s} \times \quad[(1, \infty)$,
$|\xi|(\partial b / \partial \eta)\left(x, \xi^{2}\right), \quad \xi^{2}(\partial b / \partial \eta)\left(x, \xi^{2}\right) \leq c_{2} \quad \forall x \in \tilde{\gamma}, \quad \forall \varepsilon \in E_{1}$.
The functions (18) with properties a), b) appear in many physical and technical applications.

Now we generalize the result introduced in Theorem 1 :

Theorem 2. Let the form $a(u, v)$ appearing in (1) be defined by (2) and (18) and let the function $b(x, \eta)$ have properties $a)$, b). Let the assumptions of Theorem 1 be satisfied with $n=1$. Then the solutions u and u_{h} of problems (1) and (6) exist and are unique and relation (8) holds. In addition, if $u \in H^{2}(\Omega)$ then the rate of convergence is given by (7), where $n=1$.

Proof. As $n=1$ we consider only linear triangular elements. We again restrict ourselves to the case $\Gamma_{1}=\Gamma, \bar{u}=0$. The existence and uniqueness of u and u_{h} is proved in [4]. The first property b) allows us to repeat (11) - (15). Thus the first term on the right--hand side of (9) is $0\left(h^{1 / 2}\right.$). Also relation (16) remains unchanged, only the analysis of the third term on the right-hand side of (9) is different: As $\nabla v=$ const. on $T \in T_{h}$ for all $v \in V_{h}=W_{h}$ we can write

$$
\begin{aligned}
& \left|a_{h}\left(v_{h}, w\right)-\tilde{a}_{h}\left(v_{h}, w\right)\right| \leq \sum_{T \in T_{h}} \mid \operatorname{mes}(T) b\left(P_{T},\left.g_{h}\right|_{T}\right)- \\
& \quad-\iint_{T} b\left(x, g_{h}\right) d x|\cdot|\left(\left.\left.\nabla v_{h}\right|_{T} \cdot \nabla W\right|_{T}\right) \mid
\end{aligned}
$$

where v_{h} are the functions from (16) and $g_{h}=\left(\nabla v_{h}\right)^{2}$. We used one--point integration formula with the centre of gravity P_{T} of $T \in T_{h}$. Using the properties of the function $b(x, \eta)$ we see, according to [2, Theorem 4.1.51, that the absolute value of the difference on the right-hand side is bounded by Ch mes(T). Thus the right-hand side of the last inequality is bounded by $C h\|w\|\left\|_{1}\right\|_{h}$ and relation (8) is valid. The error estimate in the case $u \in H^{2}(\Omega)$ is derived in [5] where also more general forms $a(v, w)$ are considered.

References
[1] CIARLET P.G., RAVIART P.A., The combined effect of curved boundaries and numérical integration in isoparametric finite element methods. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A.K. Aziz, Editor), Academic Press, New York, 1972, pp. 409-474.
[2] CIARLET P.G., The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.
[3] DOKTOR P., On the density of smooth functions in certain subspaces of Sobolev space. Commentationes Mathematicae Universitatis Carolinae 14 (1973), 609-622.
[4] FEISTAUER M., On the finite element approximation of a cascade flow problem. (To appear).
[5] FEISTAUER M., ŽENISEK A., Finite element methods for nonlinear elliptic problems. (To appear).
[6] ŽENISEK A., Nonhomogeneous boundary conditions and curved triangular finite elements. Apl. Mat. 26 (1981), l2l-141.
[7] ŻENISEK A., Discrete forms of Friedrichs' inequalities in the finite element method. R.A.I.R.O. Anal. numér. 15 (1981), 265-286.
[8] ŽENISEK A., How to avoid the use of Green's theorem in the Ciarlet's and Raviart's theory of variational crimes. (To appear).
[9] ZLÁMAL M., Curved elements in the finite element methods. I. SIAM J. Numer. Anal. 10 (1973), 229-240.

