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ACTA FACULTATIS RERUM NATURAIЛШI UNIVERSITATIS COЗIEXIANAE 

ЗIATHEMATICA XVII - 19G7 

PROBLEMS IN LINEAR CONTROL THEORY 

R. CONTI, Firenze 

1. 
Given a Banach space X and a real T > 0 let A: t -> A(t) be a function 

of t e [0, T] with values in the space of linear (possibly unbounded) operators 
i n X 

We shall assume the existence of the Green's function (evolution operator) 
associated with A. By this we mean a function G : t,s ->-G(t, s) defined for 
0 <; s < t <[ T, with values in the space J§?(X, X) of linear bounded operators 
in X, strongly continuous in the two variables jointly and satisfying the 
conditions: 

G(t, s) G(s, r) = G(t, r), 0<r<s^t<T, 
G(s, s) = 1 (the identity in X) 

8G(t, s) x 

et 

Єв(t, s) X 
Єs 

= A(t) Q(t, s) x, xєD(A(s)) 

= —G(t, s) A(s) x, xe D(A(s)) 

where e\et, e\es denote strong derivatives and D(A(s)) <=• X is the domain 
of A(s). 

There are various known sufficient conditions for the existence of Green's 
function (T. KATO [9], J . KISYNSKI [10], E. T. POULSEN [14]). 

Let 1 <; p <, oo. Given a Banach space E we denote by LP(0, T; E) the 
Banach space of all B-valued, strongly measurable functions / defined in 
[0, T], such that 

l/l* = (/1/(01 piAtYlv < °° if P < oo 
o 

l/loo = ess sup {\f(t)\E :0<,t<,T}<co, if p = oc. 

If c : t -> c(t) belongs to L^O, T; X) then 
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t 

fG(t, s) c(s) dseX, 0 < t < T 
o 

the integral understood in the sense of Bochner. 
Beside X we shall, consider another Banach space U and the space 3?(U,X), 

of linear bounded operators from U into X. 
Let B:t->B(t) belong to LP'(0, T; J?(U, X)) with p' = p(p - l ) - 1 for 

1 < p < oo, p' = 1 for p = oo, p' = oo for p = 1. 
If u : £ -> M(«) belongs to />(0, T; £7) then t -> J5(0 w(«) will belong to 

IA(0, T; X) and 

t 

fG(t, s) B(s) ^t(s) dseX, 0<t<T. 
o 

Summing up, if G exists and if v e X, u e LP(0, T; U), B e LP'(0, T; 
&(U,X)), ceLx(0, T; X), we may define 

t t 

(1.1) x(t, u, v) = G(t, 0) v + f G(t, s)B(s) ^l(s)ds + f G(t, s)c(s)ds, 0<t<T. 
0 0 

We shall denote by V, W, and $/ three convex, bounded, closed subsets of 
X, X and LP(0, T; U) respectively and consider the following: 

Problem P. Given X, U, p, T,A (or rather G),B,c, V, TV, 91, determine ^chether 
there are v e V, ^l e 91 such that x(T, u, v) e W. 

A few comments before we go further. 
Equation (1.1) can be considered as the Bochner integral version of the 

linear differential equation 
(1.2) dxjdt — A(t) x = B(t) u(t) + c(t) 
with initial condition 

(1.3) x(0,u,v) = v. 

Sufficient conditions in order that (1.1) yield (1.2) are known (T. KATO 

[9] , J . KlSYNSKI [10], E . T. POULSE& [14]). 
The problem we are dealing with is a typical one in linear control theory 

where x represents the state of some physical system, ut v are controls, 
permanent and initial, respectively, and it is required to determine such controls 
from given sets %, V which transfer x from V into TV in a given time interval 
[0, T] along a trajectory of (1.2). 

If dim X < oo then (1.1) is in fact equivalent to the ordinary differential 
equation (1.2) and G(t, s) = &(t) 0~x(s) where 0(t) is any fundamental matrix 
associated with A. However control problems involving partial differential 
equations (distributed parameter controls) require that also infinite dimensional 
spaces X be C3iisidered (A. G. BUTKOVSKII [3], P . K. C. WANG [16]). 

74 



2. 
The linear operator 

rT : x -> G(T, 0) x 

from X into itself is bounded, therefore the image FTV of V is a bounded 
convex subset of X. 

Also the linear operator 
T 

AT:u->f G(T, s) B(s) u(s) ds 
o 

from LP(0, T; U) into X is bounded and the image AT?/ of ?/ is a bounded 
convex subset of X. 

Therefore W — TTV — AT% is a bounded convex subset of X. 
By virtue of (1.1) Problem P reduces then to establish whether 

T 

(2.1) - / G(T, s) c(s) ds e —W + rTV + ATW. 
o 

L?t us first consider the weaker relation 
T 

(2.2) - / G(T, s) c(s) ds e - IV + FT V + AT%, 
o 

the closure of — W + 1\V + ATU. 
Recall that for any bounded subset C <-= X a supporting function hc(x') is 

defined in the dual space X' by 
hc(x') = sup (x, x') 

x eC 

We need the following lemmas. 

Lemma 1. 

(2.3) hc(x') = hc(x'), x'eX' 
Proof. Since C c= C it follows hc(x') <:hc(x') by definition. Conversely, 

for a fixed x' eX' let Xk eC he such that lim* (xk, x') = sup <ar, x') = 
x <=c 

= hc(x'). Now choose xk e C, \xk — xk\x < k"1. 
Then (xk, x') = (xk, x') + <a?* — Xk, x') < M * ' ) + k-x\x'\X', and letting 

fe ->oo we have AcT(#') < ^c(^')-

Lemma 2. / / C i8 a bounded convex set cz X, then 

(2.4) <£, *'> < hc (x'h x'eX'oxe C. 

Proof, x £ C means </, x'} < sup (x, x'} = hc(x') = hc(x') by lemma 1. 

Let x $ G, i.e. let {x} O C be void. Since {#}, C are convex, closed sets and 
{x} is compact the "strict s3paration" theorem holds, i.e. there are two real 
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numbers e > 0, c and some %' e X' such that (x, #'> < c — e < c < <#, #'> 

a: G <7, hence ^e(z') -^ <#> *'> a n d *c(*') < <Z> *'> b y lemma 1. 
By applying (2.4) to (2.2) we have 

Theorem 1. The inequality 
T 

(2.5) < - fG(T, s) c(s) ds, x'} *£h-W+Irv+Arv<*'K *' e X' 
o 

is equivalent to (2.2), therefore it is equivalent to (2.1) iff the set — TV + FTV + 
+ AT°M is closed. 

3. 

We are now going to indicate some criteria for the validity of 

(3.1) - TV + TTV + AT® = - W + T r F + /lz^f. 
This can be insured by 

(3.2) TF - W, rTV = rTV, AT°U = AiW, 

plus an additional assumption namely that 
(3.3) X is a reflexive Banach space. 

We recall in fact that in a Banach space X: i) all bounded weakly closed 
subset are weakly compact iff X is reflexive; ii) convex sets are weakly closed 
iff they are closed; Hi) any finite sum of weakly compact sets is weakly closed. 
The implication (3.2) + (3.3) => (3.1) then follows from the fact that all 
sets involved are convex and bounded. 

Now W = TV by assumption. Also FTV = TTV since TV, as a linear 
operator continuous in the norm topology of X is also weakly continuous 
and V is, by assumption, weakly compact. On the contrary the validity of 
AT% = AT% requires some further assumption on °il. In particular the case 
p = 1 has to be put aside since there are examples of AT% ^ AT°% in 
Lx(0, T; U) even for U = B, the real number system. 

Therefore we shall consider, from now on, only the case 1 < p < oo and 
make a further assumption, namely 

U = Q<%1 

with given Q > 0 and ^ x == {u : \u\v <> 1}, the unit ball of 2>(0, T\ U). 
What we have to show is then that AT%I is (weakly) closed, or, equivalently, 
weakly compact. 

Since AT is continuous (in the norm hence) in the weak topologies of Z>(0, 
T; U), X, we have weak compactness of AT^± when also °UX is weakly 
compact, which is equivalent to the assumption that 
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(3.4) LP(0, T\ U) is a reflexive Banach spaced. 
We thus have 

Theorem 2. Let X be a reflexive Banach space and let V, W be convex, bounded, 
closed subsets of X. 

Then Problem P has sohitions if, <?/ -=- Q°UX, Q > 0, <?/x the ^lnit ball of 
LP(0, T\U), 1 < p < oo and U is s^^ch that LP(0, T\ U) be reflexive. 

Let us now turn to the case p = oo. 
We have (P. L. FALB [6]). 

Lemma 3. If U is such that LP(0, T\ U) is reflexive, 1 < p < oo, then the unit 
ball <?/x of -Z/°(0, T\ U) is a weakly compact siibset of LP(0, T\ U). 

Proof. Clearly CMX is a bounded subset of LP(0, T\ U). Further if a sequence 
ujc e <?/x converges in LP(0, T\ U) towards some v e LP(0, T\ U) then v e 4/v 

i.e. <?/x is a closed subset of LP(0, T\ U). In fact ujt->v in measure, hence 
ujcn->v a.e. in [0,T] for some subsequence ujcn. Since \u\u < 1 is closed, 
\v(t)\u < 1 a.e. in [0, T], i.e. v e <%tx. Since (?/x is also convex it is also weakly 
closed in LP(0, T\ U), hence is weakly compact in LP(0, T\ U) as LP(0, T\ U) 
is reflexive. 

From this follows 

Theorem 2'. Let X, V, W be as in Theorem 2. 
Then Problem P has solutions if $/ = Q<%X, Q > 0, <%x the unit ball of 

2/°(0, T\ U), provided that LP(0, T\ U), 1 < p < oo be reflexive, and 
(3.5) B e L^O, T\ &(U, X)), for some a > 0. 

Proof. In fact (3.5) allows to consider AT as a mapping of L1+ll<x(0, T\ U) 
into X, continuous (in the norm, hence) in the weak topologies and by lemma 3 
(p = l -f l/a) it follows, again, that AT°M\ is a weakly compact subset of X. 

Assumption (3.5) is actually stronger than B e L\0, T\ ££(U, X)) which 
would be the natural one in the case wejL°°(0, T\ U). I t can be avoided, 
however, at the expense of heavier assumptions on U9 X, by using a particular 
case of the well-known Alaoglu's theorem, namely 

Lemma 4. If L*(0, T\ U) = (L\0, T\ U'))', then the unit ball Wx of Z°°(0, 
T\ U) is weakly * compact. 

Let ujc be any sequence in <%x. We may assume that ujc converges weakly * 
towards some u e tftx, i.e. 

T T 

(3.6) / (v, uky dt->f <v, u} dt for all v e L\0, T\ U'). 
0 0 

This will imply ATUJC -> ATU strongly in X in some cases, for instance when 

<x) Recall that the reflexivity of LP(09 T; U) depends on U9 but not on p9 1 < p < oo. 
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£7, X are both finite dimensional: dity U = m, dim X = n. In fact ATUK, 

ATU are w-vectors with components, respectively 

T T 

* / <vj, ^lk) dt, f <VJ, u) dt, j = X 2, . . . , n 
u o 

where Vj denotes the j . th row of the ft by m matrix G(T, t) B(t). 
We thus have (H. A. ANTOSIEWICZ [\]). 

Theorem 2" . Let V, TV, be convex, bonded, closed subsets of X, dim X = n. 
Then Problem P has solutions if % = (f$tx, Q > 0, Qix the unit ball of L°°(0, 
T; U), dim U = m. 

4. 

We shall now write the right hand side of (2.5) under the assumption 
of/ — Q?/1 in a more explicit form. We have 

h-w+i^v+QA^i{xf) = -W(0 ' ) + hr?v(x') + QhAjUl(x') 
with 

hrMx') = sup <v, x'G(T, 0)> 
r e J* 

and 
T 

* i.ui(^) = (f \x'G(T, s) B(s)\%,dsyiP'. 
0 

Therefore (2.5) becomes 

T 

(4.1) < - / G(T, s) c(s) ds, x'} ^ sup (w, x'} + sup <v, x'G(T9 0)> + 
0 we - I T ve V 

+ Q (f \x'G(T, s) B(s)\ $, ds)^P', x' e X'. 
0 

This inequality already appeared in the literature in many particular 
instances, both finite (H. A. ANTOSIEWTICZ [1], R. CONTI [4], R. GABASOV— 

F. M. KIRILLOVA [8], W. T. R E I D [15]) and infinite dimensional (W. MIRANKER 

[11], G. MOCHI [12]). 

5. 
Some existence theorems for certain typical optimum control problems can 

be drawn from (4.1) along the lines followed by H. A. ANTOSIEWICZ [1] in the 
finite dimensional case. 

a) Let Q0 be the infimum of o's such tha t (4.1) holds and let Qic | Q0 be 
a sequence of such Q'S. Then (4.1) must hold also with Q = Q0 and we have 

Theorem 3. Under the assumptions of Theorems 2,2'', 2 " if Problem P has 
a solution, then it also has a solution v, ^l with minimum \u\p. 
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Sometimes \u\p is called the "effort" associated with the control system 
and Theorem 3 states tha t under the assumptions of Theorems 2, 2', 2 " there 
is a solution of the minimum effort control problem (VV. A. P O R T E R — J . P . 
WILLIAMS [13]) as soon as the corresponding control problem has solutions. 

b) Another typical problem in optimum control theory is the so-called 
"final value" problem (A. V. BALAKRISHNAN [2]). For instance it is required 
to minimize \x(T, u, v) — w°\x for a given ^v0 e X. To this purpose we may 
assume the set IV to be a closed ball of radius e > 0 with center at ^v0

i i.e. 
W = {w0} + eXl9 Xx the unit ball of X. Then —W= {-w0} + eXlf and 
h-w(x') = —(w°,x'y + £|#'|x'. Substituting into (4.1), the same argument 
we used for g, applied to the infimum of e's for which (4.1) holds leads to 

Theorem 4. Under the assumptions of Theorems 2.2', 2" if Problem P ^vith 
]V == {w0} + sXx has a solution, then it also has a solution v, u such that 
\x(T, u, v) —- iv°\x is minimum. 

c) In a similar way we could consider an "initial value" problem by taking 
V = {v°} + oXl9 a > 0. Then Arir(a?') = <v°, x'G(T, 0)> + a\x'G(T, 0)\x\ 
etc. 

d) The best known problem in optimum control theory is perhaps the 
"minimum t ime" problem: to find solutions yielding the minimum time T 
of transfer from V to IV. 

Since both sides of (4.1) are continuous functions of T, denoting by T0 the 
infimum of T's for which (4.1) holds and by Tjc \ T a sequence of such T'& 
we obtain 

Theorem 5. Under the assumptions of Theorems 2,2', 2" if Problem P has 
a solution, then it also has a solution such that T is minimum. 

For an infinite dimensional X particular cases of this Theorem were obtained 
by Y. V. EGOROV [5], H. 0 . FATTORINI [7], A. V. BALAKRISHNAN [2]. 
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