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Abstract. This paper deals with the second order nonlinear bound-
ary value problems. We consider the two-point, multipoint or nonlinear
boundary conditions on a compact interval and suppose the existence
of strict upper and lower solutions of the problem with the both types
of ordering i.e. the lower (upper) solution is less than the upper (lower)
one. We prove the relation between the topological degree and strict
upper and lower solutions in the both cases and using this we get the
existence and multiplicity results for the boundary value problems under
consideration.
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1 Introduction

When we study the boundary value problems for the second order differential
equation

x′′ = f(t, x, x′), (1.1.rac)

with certain linear or nonlinear boundary conditions on the compact interval
J = [a, b] ⊂ R we often use the properties of lower and upper solutions for (1.1.rac).
Let us remind the definition.

Let f be continuous on J ×R2 (or let f satisfy the Carathéodory conditions
on J × R2 ). The functions σ1, σ2 ∈ C2(J) (or AC1(J) ) are called lower and
upper solutions for (1.1.rac), if they satisfy

σ′′1 (t) ≥ f(t, σ1(t), σ′1(t)),
σ′′2 (t) ≤ f(t, σ2(t), σ′2(t)),

(1.2.rac)
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for all t ∈ J ( for a.e. t ∈ J). If the inequalities in (1.2.rac) are strict, then σ1, σ2

are called strict lower and upper solutions.
We distinguish two basic cases:
1. The functions σ1, σ2 are well ordered, i.e.

σ1(t) ≤ σ2(t) for all t ∈ J. (1.3.rac)

2. The functions σ1, σ2 are not well ordered, i.e. the condition (1.3.rac) falls.
The most existence results concern the first case, but there are the existence

results for the second case, as well. We can refer to the papers [7], [3] or [4].
Here, we want to present the existence and multiplicity results for (1.1.rac) (with

various boundary conditions) in the first case and also in the second case where
σ1, σ2 have the opposite order, i.e.

σ2(t) ≤ σ1(t) for all t ∈ J. (1.4.rac)

Our results are based on the relation between the topological degree of the
operator corresponding to the boundary value problem and strict lower and
upper solutions fulfilling (1.3.rac) or (1.4.rac) (in the strict sense).

For getting the existence and multiplicity results we need a priori estimates
of solutions of the original boundary value problem or of solutions of proper
auxiliary boundary value problems. Working with σ1, σ2, we want to estimate
the solutions just by σ1, σ2. For the estimation at the endpoints a, b of J we
use certain connection between σ1, σ2 and the boundary conditions. It is well
known that for the classical two-point boundary conditions such connection has
the form:

– for the periodic conditions

x(a) = x(b), x′(a) = x′(b), (1.5.rac)

we suppose

σi(a) = σi(b),
(
σ′i(b)− σ′i(a)

)
(−1)i ≥ 0, i = 1, 2; (1.6.rac)

– for the Neumann conditions

x′(a) = 0, x′(b) = 0, (1.7.rac)

we assume

σ′i(a)(−1)i ≤ 0, σ′i(b)(−1)i ≥ 0, i = 1, 2. (1.8.rac)

Similarly,

– for the four-point conditions

x(a) = x(c), x(d) = x(b), a < c ≤ d < b, (1.9.rac)

σ1, σ2 have to satisfy (
σi(c)− σi(a)

)
(−1)i ≤ 0,(

σi(b)− σi(d)
)
(−1)i ≥ 0, i = 1, 2,

(1.10.rac)
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– for the nonlinear conditions

g1

(
x(a), x′(a)

)
= 0, g2

(
x(b), x′(b)

)
= 0, (1.11.rac)

where g1, g2 ∈ C(R2) are increasing in the second argument and g1 is non-
increasing and g2 nondecreasing in the first argument, we can impose on
σ1, σ2

g1

(
σi(a), σ′i(a)

)
(−1)i ≤ 0,

g2

(
σi(b), σ′i(b)

)
(−1)i ≥ 0, i = 1, 2.

(1.12.rac)

Let us note that for more general nonlinear two-point boundary conditions
the compatibility of the boundary conditions with σ1, σ2 was introduced in [14].
For the special cases of the conditions (1.5.rac), (1.7.rac) and (1.11.rac) this notion leads
just to the assumptions (1.6.rac), (1.8.rac) and (1.12.rac).

In this paper we will study the boundary value problems (1.1.rac), (k), and we will
assume the existence of lower and upper solutions σ1, σ2 of (1.1.rac) with the prop-
erty (k+.1), k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac}. The problem (1.1.rac), (k), k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac},
can be written in the form of the operator equation

(L+N)x = 0, (1.13.rac)

where L : domL→ Y is a linear operator and it is a Fredholm map of index 0,
and N : C1(J) → Y is, in general, nonlinear and it is L-compact on any open
bounded set Ω ⊂ C1(J). The form of L and N and the choice of the spaces domL
and Y depend on the type of boundary value problems. Let us suppose that f is
continuous on J ×R2. Then we put for k∈{1.5.rac,1.7.rac,1.9.rac} domL = {x ∈ C2(J) : x
satisfies (k)}, Y = C(J), L : x 7−→ x′′, N : x 7−→ −f(·, x(·), x′(·)); for the
boundary condition (1.11.rac) we put domL = C2(J), Y = C(J) × R2, L : x 7−→
(x′′, 0, 0), N : x 7−→ (−f(·, x(·), x′(·)), g1(x(a), x′(a)), g2(x(b), x′(b))) . For more
details see [2], [8], [9].

If the equation (1.13.rac) has no solution on the boundary of Ω then there exists
the degree of the map L+N in Ω with respect to L

dL(L+N,Ω).

In [6], the relation between the degree and strict lower and upper solutions
satisfying (1.3.rac) (in the strict sense) is shown. In the following section we will
formulate this relation for the above boundary value problems.

2 Topological degree for f bounded

First, let us suppose that f ∈ C(J ×R2) is bounded:

∃M ∈ (0,∞) : |f(t, x, y)| < M for ∀(t, x, y) ∈ J ×R2. (2.1.rac)

For f unbounded we will use the method of a priori estimates and replace the
condition (2.1.rac) by the conditions of the growth or sign types in the next sections.
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Theorem 1. Suppose k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac}. Let (2.1.rac) be fulfilled, (1.13.rac) be the
operator equation corresponding to the problem(1.1.rac), (k) and let σ1, σ2 be strict
lower and upper solutions of (1.1.rac), (k) with

σ1(t) < σ2(t) for all t ∈ J.

Then

dL(L +N,Ω1) = 1 (mod 2), (2.2.rac)

with

Ω1 ={x ∈ C1(J) : σ1(t) < x(t) < σ2(t), |x′(t)| < c for all t ∈ J},
where c ≥ (2M + r + 1)(b− a) for k ∈ {1.5.rac, 1.7.rac, 1.9.rac}
and c ≥ (2M + r + 1)(b− a) + 2(r + 1)/(b− a) for k=1.11.rac,
r = ‖ σ1 ‖max + ‖ σ2 ‖max .

Theorem 1 concerns the case of well ordered σ1, σ2. the case where σ1, σ2 are
ordered by the opposite way is described in Theorem 2.

Theorem 2. Suppose k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac}. Let (2.1.rac) be fulfilled, (1.13.rac) be the
operator equation corresponding to the problem (1.1.rac), (k) and let σ1, σ2 be strict
lower and upper solutions of (1.1.rac), (k) satisfying

σ2(t) < σ1(t) for all t ∈ J.

Then

dL(L +N,Ω2) = 1 (mod 2), (2.3.rac)

where

Ω2 = {x ∈ C1(J) : ‖x‖max < A, ‖x′‖max < B,

∃tx ∈ J : σ2(tx) < x(tx) < σ1(tx)},

with B ≥ 2(b− a)M, A ≥ ‖σ1‖max + ‖σ2‖max + 2(b− a)2M for k ∈{1.5.rac,1.7.rac,1.9.rac},
B ≥ 2(b− a)M + ‖σ′2‖max, A ≥ ‖σ1‖max + ‖σ2‖max + (b− a)B for k=1.11.rac.

Corollary 3. Suppose k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac}. If σ1, σ2 in Theorem 1 (2) are not
strict, then either the problem (1.1.rac), (k) has a solution on ∂Ω1 (∂Ω2) or the
condition (2.2.rac) ( (2.3.rac) ) is valid.

3 Existence and multiplicity for f bounded

As the direct consequence of Corollary 3, using a limiting process, we obtain the
following existence results for the problems (1.1.rac), (k), k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac}.
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Theorem 4. Suppose k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac}. Let (2.1.rac) be fulfilled and let σ1, σ2

be lower and upper solutions of (1.1.rac), (k) with

σ1(t) ≤ σ2(t) for all t ∈ J.

Then the problem (1.1.rac), (k) has at least one solution in Ω1, where Ω1 is the set
from Theorem 1.

Remark 5. The assumption about the monotonicity of g1, g2 can be omitted in
Theorem 1 and 4. The existence results of Theorem 4 are known and they are
presented here for the completeness, only.

Theorem 6. Suppose k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac}. Let (2.1.rac) be fulfilled and let σ1, σ2

be lower and upper solutions of (1.1.rac), (k) with

σ2(t) ≤ σ1(t) for all t ∈ J.

Then the problem (1.1.rac), (k) has at least one solution in Ω2, where Ω2 is the set
from Theorem 2.

Remark 7. For k∈{1.5.rac,1.7.rac} the similar existence results are proven in [3], [4], [7].

Theorems 1 and 2 are a tool for proving multiplicity results for (1.1.rac), (k),
both for the linear two-point (k∈{1.5.rac,1.7.rac}) or multipoint boundary conditions
(k=1.9.rac) and for the nonlinear boundary condition (k=1.11.rac).

Theorem 8. Suppose k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac}. Let (2.1.rac) be fulfilled and let σ1, σ2,
σ3 be strict lower, upper and lower solutions of (1.1.rac), (k) with

σ1(t) < σ2(t) < σ3(t) for all t ∈ J. (3.1.rac)

Then (1.1.rac), (k) has at least two different solutions u, v satisfying

σ1(t) < u(t) < σ2(t), σ1(t) < v(t) for all t ∈ J,
σ2(tv) < v(tv) < σ3(tv) for a tv ∈ J.

The dual situation is described in Theorem 9.

Theorem 9. Let all assumptions of Theorem 8 be fulfilled with the exception
that now σ1, σ2, σ3 are strict lower, upper and upper solutions with

σ3(t) < σ1(t) < σ2(t) for all t ∈ J (3.2.rac)

Then (1.1.rac), (k) has at least two different solutions u, v satisfying

σ1(t) < u(t) < σ2(t), v(t) < σ2(t) for all t ∈ J,
σ3(tv) < v(tv) < σ1(tv) for a tv ∈ J.

For constant lower and upper solutions we get the multiplicity result of the
Ambrosetti-Prodi type.
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Theorem 10. Suppose k∈{1.5.rac,1.7.rac,1.9.rac}. Let (2.1.rac) be fulfilled and let n ∈ N,
n ≥ 2, s1, r1, . . . , rn+1 ∈ R be such that

r1 < r2 < · · · < rn+1 (3.3.rac)

and (
f(t, ri, 0)− s1

)
(−1)i < 0 for all t ∈ J, i ∈ {1, . . . , n}. (3.4.rac)

Then there exist s2, s3 ∈ (−M, s1), s3 ≤ s2, such that the problem

x′′ + f(t, x, x′) = s, (k) (3.5.rac)

has:

(i) at least n different solutions greater than r1 for s ∈ (s2, s1];
(ii) at least n+1

2 (n2 ) solutions greater than r1 for s = s2 and n odd (even);
(iii) provided s3 < s2 at least one solution greater then r1 for s ∈ [s3, s2);
(iv) no solution for s < s3.

4 Topological degree for f unbounded

In this section we suppose that k∈ {1.5.rac, 1.7.rac, 1.11.rac}, that (1.13.rac) is the operator
equation corresponding to the problem (1.1.rac), (k) and that σ1, σ2 are strict lower
and upper solutions of (1.1.rac), (k).

Using the method of a priori estimates we can replace the condition (2.1.rac) in
Theorem 1 by the Nagumo-Knobloch-Schmitt condition with bounding functions
ϕ1, ϕ2 :

∃ϕ1, ϕ2 ∈ C1(K) : ϕ1(t, σi(t)) ≤ σ′i(t), ϕ2(t, σi(t)) ≥ σ′i(t),

f(t, x, ϕ1(t, x) < ∂ϕ1(t,x)
∂t + ∂ϕ1(t,x)

∂x ϕ1(t, x),

f(t, x, ϕ2(t, x) > ∂ϕ2(t,x)
∂t + ∂ϕ2(t,x)

∂x ϕ2(t, x),

for i ∈ {1, 2} and for all (t, x) ∈ K = J × [σ1(t), σ2(t)].

(4.1.rac)

Theorem 11. Let (4.1.rac) be fulfilled and let

σ1(t) < σ2(t) for all t ∈ J.

Further suppose that for k=1.5.rac

(ϕi(b, x)− ϕi(a, x))(−1)i ≥ 0,

for k=1.7.rac

(ϕi(b, x)− σ′i(b))(−1)i > 0,
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and for k=1.11.rac

g2(x, ϕi(b, x))(−1)i > 0,

with i = 1, 2, x ∈ [σ1(t), σ2(t)].
Then

dL(L+N,Ω3) = 1 (mod 2),

where

Ω3 = {x ∈ C1(J) : σ1(t) < x(t) < σ2(t), ϕ1(t, x) < x′(t) < ϕ2(t, x) on K}.

For the constant functions σ1, σ2, ϕ1, ϕ2 Theorem 11 implies

Corollary 12. Suppose that there exist real numbers r1 < r2, c1 < 0 < c2, such
that

f(t, r1, 0) < 0, f(t, r2, 0) > 0, (4.2.rac)
f(t, x, c1) < 0, f(t, x, c2) > 0, (4.3.rac)

for all (t, x) ∈ J × [r1, r2].
If k=1.11.racwe suppose moreover that for x ∈ [r1, r2]

g1(r1, 0) ≥ 0, g1(r2, 0) ≤ 0,
g2(r1, 0) ≤ 0, g2(r2, 0) ≥ 0,

(4.4.rac)

g2(x, ci)(−1)i > 0, i = 1, 2. (4.5.rac)

Then

dL(L+N,Ω4) = 1 (mod 2),

where

Ω4 = {x ∈ C1(J) : r1 < x(t) < r2, c1 < x′(t) < c2, ∀ t ∈ J.}

Now, let us consider the special case of bounding functions depending on t
only:

∃β1, β2 ∈ C1(J): β1(t) ≤ σ′i(t), β2(t) ≥ σ′i(t),
f(t, x, β1(t)) < β′1(t), f(t, x, β2(t)) > β′2(t),

(4.6.rac)

for all (t, x) ∈ J × [s2, s1], where s2 = min{σ2(t) : t ∈ J} −
∫ b
a γ(t)dt, s1 =

max{σ1(t) : t ∈ J}+
∫ b
a
γ(t)dt, γ(t) = max{|β1(t)|, |β2(t)|}.
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Theorem 13. Let (4.6.rac) be fulfilled and let

σ2(t) < σ1(t) for all t ∈ J.

Further suppose that for k=1.5.rac

(βi(b)− βi(a))(−1)i ≥ 0, (4.7.rac)

for k=1.7.rac

(βi(b)− σ′i(b))(−1)i > 0, (4.8.rac)

and for k=1.11.rac

g2(x, βi(b))(−1)i > 0, (4.9.rac)

with i ∈ {1, 2}, x ∈ [s2, s1].
Then

dL(L+N,Ω5) = 1 (mod 2),

where

Ω5 = {x ∈ C1(J) : s2 < x(t) < s1, β1(t) < x′(t) < β2(t) for all t ∈ J,
∃tx ∈ J : σ2(tx) < x(tx) < σ1(tx)}.

Corollary 14. Suppose that there exist real numbers r1 > r2, c1 < 0 < c2, such
that (4.2.rac) and (4.3.rac) are satisfied for all (t, x) ∈ J× [r2 + c1(b−a), r1 + c2(b−a)].
If k=1.11.rac, we suppose that (4.4.rac), (4.5.rac) are satisfied for x ∈ [r2 + c1(b− a), r1 +
c2(b− a)].
Then

dL(L+N,Ω6) = 1 (mod 2),

where

Ω6 = {x ∈ C1(J) : r2 + c1(b− a) < x(t) < r1 + c2(b− a),
c1 < x′(t) < c2, ∀ t ∈ J.}

Example 15. Suppose f1, f2, f3 ∈ C(J), k,m ∈ N. The function

f(t, x, y) = f1(t)x2k+1 + f2(t)y2m+1 + f3(t)

satisfies the conditions of Corollary 12, if f1, f2 > 0 on J, and it satisfies the
conditions of Corollary 14, if f1 < 0, f2 > 0 on J and either m > k or m = k,
f2(t) > ‖f1‖max(b− a)2k+1 for all t ∈ J.
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Other type of conditions which can be used instead of (2.1.rac) in Theorem 1
and Theorem 2 are one-sided growth conditions which were used by Kiguradze
[5] in some existence theorems.

1. The one-sided Bernstein-Nagumo condition:

∃ω ∈ C(R+), ω positive,
∫ ∞

0

ds

ω(s)
=∞ and

f(t, x, y) ≤ ω(|y|) · (1 + |y|) (4.10.rac)
∀(t, x) ∈ J × [σ1(t), σ2(t)]×R.

2. The one-sided linear growth condition:

∃a1, a2 ∈ (0,∞), ρ ∈ C(J ×R), non-negative and non-decreasing
in the second argument such that

f(t, x, y) ≤ a1|x|+ a2|y|+ ρ(t, |x|+ |y|) (4.11.rac)

∀(t, x, y) ∈ J ×R2,

where

a1(b− a)2 + a2(b− a) < 1

and

lim
z→∞

1
z

∫ b

a

ρ(t, z)dt = 0.

Note 16. Let us remember that if f satisfies (4.11.rac) it satisfies (4.10.rac) as well.

For the proof of the following theorems we need lemmas on a priori estimates
for solutions of the problems (1.1.rac), (k), k∈ {1.5.rac, 1.7.rac, 1.11.rac}.

Lemma 17. Suppose

σ1(t) < σ2(t) for all t ∈ J.

Let (4.10.rac) be satisfied. If k=1.11.rac, suppose moreover

lim
y→∞

g1(r2, y) > 0, lim
y→−∞

g2(r2, y) < 0, (4.12.rac)

r1 = min {σ1(t) : t ∈ J}, r2 = max{σ2(t) : t ∈ J}.
Then there exists µ∗ ∈ (0,∞) such that for any solution u of the problem (1.1.rac),
(k), the implication

σ1(t) < u(t) < σ2(t) on J =⇒ ‖u′‖max < µ∗

is valid.
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Lemma 18. Let r1, r2 ∈ R, r1 < r2 and let (4.11.rac) be satisfied. If k=1.11.rac,
suppose moreover

lim
y→∞

g1(x, y) > 0, lim
y→−∞

g2(x, y) < 0, (4.13.rac)

uniformly for x ∈ R+.
Then there exists ν∗ ∈ (0,∞) such that for any solution u of the problem (1.1.rac),
(k), the implication

∃tu ∈ J : r1 < u(tu) < r2 =⇒ ‖u′‖max < ν∗

is valid.

Theorem 19. Let (4.10.rac) be fulfilled and let

σ1(t) < σ2(t) for all t ∈ J.

If k=1.11.rac, suppose moreover (4.12.rac).
Then there exists r∗ ∈ (0,∞) such that

dL(L+N,Ω6) = 1 (mod 2),

where

Ω6 = {x ∈ C1(J) : σ1(t) < x(t) < σ2(t) ∀t ∈ J, ‖x′‖max < r∗}.

Theorem 20. Let (4.11.rac) be fulfilled and let

σ2(t) < σ1(t) for all t ∈ J.

If k=1.11.rac, suppose moreover (4.13.rac).
Then there exists r∗ ∈ (0,∞) such that

dL(L+N,Ω7) = 1 (mod 2),

where

Ω7 = {x ∈ C1(J) : ‖x‖max + ‖x′‖max < r∗, ∃tx ∈ J : σ2(tx) < x(tx) < σ1(tx)}.

5 Multiplicity results for f unbounded

We can extend the results of the Section 3 onto differential equations with an
unbounded right-hand side f ∈ C(J ×R2). We will present here such extension
of some multiplicity results.

Let us suppose that σ1, σ2 and σ3 are strict lower, upper and lower solutions
of (1.1.rac), (k), k∈{1.5.rac,1.7.rac,1.11.rac}. Using Theorem 11 and Theorem 13 we get the
following multiplicity result:
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Theorem 21. Suppose that (3.1.rac), (4.6.rac) and, according to k, the condition (4.7.rac)
or (4.8.rac) or (4.9.rac) are fulfilled for all (t, x) ∈ J×[σ1(t), s3], where s3 = max{σ3(t) :
t ∈ J} +

∫ b
a γ(t) dt.

Then the assertion of Theorem 8 is valid.

Similarly, by means of Theorem 19 and Theorem 20 and the fact that (4.11.rac)
and (4.13.rac) are the special cases of (4.10.rac) and (4.12.rac), we get:

Theorem 22. Let us suppose that (3.1.rac) and (4.11.rac) are fulfilled and, for k=1.11.rac,
suppose moreover (4.13.rac). Then the assertion of Theorem 8 is valid.

Now, let us consider the dual situation, where σ3 is an upper solution of
(1.1.rac), (k).

Theorem 23. Suppose that (3.2.rac), (4.6.rac) and, according to k, the condition (4.7.rac)
or (4.8.rac) or (4.9.rac) are fulfilled for all (t, x) ∈ J×[b3, σ2(t)], where b3 = min{σ3(t) :
t ∈ J} −

∫ b
a γ(t) dt.

Then the assertion of Theorem 9 is valid.

Theorem 24. Let us suppose that (3.2.rac) and (4.11.rac) are fulfilled and, for k=1.11.rac,
suppose moreover (4.13.rac). Then the assertion of Theorem 9 is valid.

For constant lower and upper solutions we can generalize the theorems from
[11], concerning the multiplicity results of the Ambrosetti-Prodi type for the
periodic problem.

Theorem 25. Suppose k∈{1.5.rac,1.7.rac}. Let n ∈ N, n ≥ 2, c1, c2, s1, r1, . . . , rn+1 ∈
R, c1 < 0 < c2, satisfy (3.3.rac), (3.4.rac), (4.3.rac) for all (t, x) ∈ J × [r1, r

∗], where

r∗ =

{
rn+1 for n odd
rn+1 + max{|c1|, c2}(b− a) for n even.

(5.1.rac)

Then there exist s2, s3 ∈ (−∞, s1), s3 ≤ s2, such that the problem (3.5.rac) has:

(i) at least n different solutions ui, i = 1, .., n, satisfying

r1 < ui(t) < r∗ for all t ∈ J, i ∈ {1, . . . , n}; (5.2.rac)

(ii) at least n+1
2 (n2 ) solutions satisfying (5.2.rac) for s = s2 and n odd (even);

(iii) provided s3 < s2 at least one solution satisfying (5.2.rac) for s ∈ [s3, s2);
(iv) no solution satisfying (5.2.rac) for s < s3.

Theorem 26. Suppose k∈{1.5.rac,1.7.rac}. Let n ∈ N, n > 2, be odd and let further
s1, r1, . . . , rn+1 ∈ R satisfy (3.3.rac) and (3.4.rac). Further, let (4.10.rac) be fulfilled.
Then there exists r∗ ≥ rn+1 such that (i)–(iv) of Theorem 25 are valid.

Theorem 27. Suppose k∈{1.5.rac,1.7.rac}. Let n ∈ N, n ≥ 2, be even and let further
s1, r1, . . . , rn+1 ∈ R satisfy (3.3.rac) and (3.4.rac). Further let (4.11.rac) be fulfilled.
Then there exists r∗ ≥ rn+1 such that (i)–(iv) of Theorem 25 are valid.
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Note 28. Close results concerning the existence of two or three solutions of the
periodic problem can be found also in [1] and [13].
For f satisfying the Carathéodory conditions on J×R2 the results of Corollary 3,
Theorem 4 and Theorem 6 can be proven as well. The multiplicity results of the
Theorems 8–10 and the theorems for f unbounded of the Sections 4 and 5 have
to be a little modified because in the Carathéodory case solutions can interact
strict lower and upper solutions.
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