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Abstract. The constitutive law relating stress to strain for viscoelas-
tic materials can be written as a Volterra equation of the second kind.
This results in the mathematical models of viscoelastic behaviour taking
the form of partial differential equations with memory. In this article
we illustrate how the memory terms arise in these equations and also
summarize the various partial differential Volterra equations used when
modelling problems of quasistatic and dynamic viscoelasticity, and non-
Fickian diffusion in polymers. We also indicate some of the numerical
analysis work that has been carried out for these problems.
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1 Introduction

This paper is concerned with the modelling of problems involving viscoelastic
materials which, even in their simplest form, exhibit behaviour characteristic
of both classical Hookean solids and Newtonian fluids. The resulting effects are
important when the material is deforming under an applied load. This load could,
for example, be due to externally applied forces; internal deformation caused by
a diffusing penetrant; or, constrained thermal expansion caused by temperature
gradients. See for example [21,6,28]. Moreover, the material somehow keeps a
record of its response history and, for this reason, viscoelastic materials are said
to possess memory. This memory is manifest in the constitutive relationship
between the stress and strain tensors, σ and ε, and as a result mathematical
models of viscoelastic behaviour take the form of partial differential Volterra
(pdv) equation problems. The canonical forms of these equations are: the elliptic
Volterra problem,

Au(t) = f(t) +
∫ t

0

B(t, s)u(s) ds; (1.1.whi)

http://www.brunel.ac.uk/~icsrbicm
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the parabolic Volterra problem,

u′(t) +Au(t) = f(t) +
∫ t

0

B(t, s)u(s) ds; (1.2.whi)

and, the hyperbolic Volterra problem,

u′′(t) +Au(t) = f(t) +
∫ t

0

B(t, s)u(s) ds. (1.3.whi)

These are supplied with initial and/or boundary data as appropriate, and the
dependence on the space variable x is suppressed. In these problems we use A
and B(t, s) to represent partial differential operators (acting only in the space
variables) where, for example, we could have

A := −∇2 and B(t, s) := −∇ · φ(t, s)∇,

although for (1.1.whi) and (1.3.whi) the appropriate form for A is the linear elasticity
operator—with B(t, s) “similar”.

The purpose of this article is to illustrate how the memory terms arise in
these equations and also to summarize the various pdv equations used when
modelling problems of quasistatic and dynamic viscoelasticity, and non-Fickian
diffusion in polymers. We also indicate some of the numerical analysis work that
has been carried out for these problems (but we do not claim to be exhaustive,
for a fuller account see [39]).

Throughout, the positive real number T will denote a final time and we
use J := [0, T ] and I := (0, T ] to denote time intervals. Also, for n = 1, 2
or 3 we consider Ω ⊂ Rn to be an open bounded domain with boundary ∂Ω.
Furthermore, we consider ∂Ω in the form

∂Ω := ΓD ∪ ΓN with ΓD ∩ ΓN = ∅,

where the closed set ΓD ⊆ ∂Ω is called the Dirichlet boundary and is of positive
measure so that ∫

ΓD

dΓ > 0.

We call the (possibly empty) open set ΓN ⊂ ∂Ω the Neumann boundary. The
reason for this terminology is the obvious one where we refer to the type of
boundary condition specified on these subsets. We indicate vector-valued quan-
tities with boldface so that, for example, we use x := (xi)ni=1 to indicate a point
in Rn. Tensors are indicated by a further underlining: σ = (σij)ni,j=1.

2 Hereditary constitutive relationships

Suppose that the interior of a compressible viscoelastic body G occupies Ω and
that its surface coincides with ∂Ω. If at a time t this body is subjected to
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a system of body forces f := (fi(x, t))ni=1, for x ∈ Ω, and surface tractions
g := (gi(x, t))ni=1, for x ∈ ΓN , then the body G will deform from its equilibrium
configuration. A material particle originally at the point x will move to the new
time dependent location x+u(x, t) where u := (ui)ni=1 denotes the displacement
vector. In the linear theory these displacements define the symmetric strain
tensor ε := (εij)ni,j=1 by the relationships:

εij(u) :=
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.1.whi)

In addition to this strain field there will also be induced in G a stress field
described by the symmetric stress tensor σ := (σij)ni,j=1. This stress field ra-
tionalizes the internal force field which is set up within G to resist the external
forces f and g.

The stress field can be related to u, f and g by Newton’s second law of
motion (see later in equation (3.1.whi)) and so it is of interest to derive a constitutive
relationship linking σ and u, or in practice, linking the tensors σ and ε.

In classical linear elasticity theory this relationship is provided by Hooke’s
law:

σij = Dijklεkl or σ = Dε,

where D is a positive-definite fourth-order tensor of elastic coefficients satisfying
the symmetries

Dijkl = Djikl , Dijkl = Dijlk, and Dijkl = Dklij .

The first two of these are implied by the symmetry of σ and ε while the third
follows from energy considerations. However, in viscoelasticity the third of these
only applies when the material is isotropic, see [21, Equations (1.10) and (2.62)].

One way of deriving a constitutive relationship for viscoelastic materials is
to assume that a Boltzmann superposition of stress increments can be applied
where these stress increments are related by Hooke’s law to corresponding strain
increments. For example, suppose that G is quiescent for t < 0 so that ε(t) ≡ 0
for t < 0, and that at t = 0 the body undergoes a strain ε(0). Then for t ≥ 0
the resulting stress is assumed to be given by

σ0(t) = D(t)ε(0),

where a time dependence has been introduced into the Hooke’s tensor D. Phys-
ically we expect D to be a smooth monotone decreasing function of t since it
is unrealistic to expect σ to grow over time for the fixed strain ε(0). (Where
would the strain energy come from?) In fact experiments on polymers show that
D does in fact decrease and this phenomena is known as stress relaxation.

Now, let ∆t be a small time interval and set ti := i∆t. We approximate the
strain evolution by the step function

ε̃(t) := ε(ti) in [ti, ti+1) for i = 0, 1, 2, . . . ,
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and then each strain increment,

∆ε(ti+1) := ε(ti+1)− ε(ti),

induces a stress increment according to Hooke’s law:

∆σj(ti) := D(ti − tj)∆ε(tj) for 1 ≤ j ≤ i.

Notice that each of these stress increments will also relax according to the time
dependence of D. The total stress at time ti is now given by superposition:

σ(ti) := σ0(ti) +
i∑

j=1

∆σj(ti),

= D(ti)ε(0) +
i∑

j=1

D(ti − tj)∆ε(tj),

and by taking an appropriate limit we get the hereditary constitutive law as

σ(x, t) = D(t)ε(u(x, 0)) +
∫ t

0

D(t− s)ε(u′(x, s)) ds. (2.2.whi)

Since we are assuming that D(t) is smooth we can arrive at an alternate form
by partial integration,

σ(x, t) = D(0)ε(u(x, t))−
∫ t

0

Ds(t− s)ε(u(x, s)) ds, (2.3.whi)

where the subscript s indicates partial differentiation with respect to the history
variable s. Either of these may be used as the constitutive relationship, and each
demonstrates clearly the role of memory in viscoelastic modelling.

To get a feel for the form of the time dependence of the stress relaxation
tensor D we can also quote a perhaps more intuitive method for deriving these
constitutive relationships.

We start with the physical observation that viscoelastic materials display the
characteristics of both elastic solids and viscous fluids. The kinetics of these type
of substances are modelled respectively by the spring and the dashpot.

Fig. 1. A Hookean (linear) spring: σ = Eε; E is the spring stiffness

E
ε, σ = Eε
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Fig. 2. A Newtonian (linear) dashpot: σ = η
dε

dt
; η is the viscosity

η

ε, σ = η
dε

dt

In these models the stress carried by the spring is proportional to the strain in the
spring and is given by Hooke’s law: σ = Eε. The stress carried in the dashpot is
proportional to the strain rate and is given by Newton’s law of viscosity: σ = ηε′.

One then models a viscoelastic material by considering a notional system
of springs and dashpots with independent stiffness and viscosity parameters.
There are essentially two ways to connect a spring to a dashpot: in series and
in parallel. These are the building blocks and are named the “Maxwell” and
“Voigt” models.

The Maxwell model

The Maxwell model is a series connection of a spring and dashpot.

Fig. 3. The Maxwell model

E
εS, σS η εD, σD

ε, σ

In this model εS and σS denote the strain and stress in the spring alone, and εD,
σD denote those in the dashpot alone. The total stress is given by σ = σS = σD
and the total strain by ε = εS + εD. Differentiating and using Hooke’s and
Newton’s laws yield

dε

dt
=

1
E

dσS
dt

+
σD
η

=⇒ dσ

dt
+
σ

τ
= E

dε

dt
, (2.4.whi)

where τ := η/E is the so-called relaxation time. Using σ(0) = Eε(0) this ODE
is easily solved to give

σ(t) = Ee−t/τε(0) + E

∫ t

0

e−(t−s)/τε′(s) ds,

and this is essentially (2.2.whi) with the scalar analogue of D given by D(t) =
Ee−t/τ .
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The Voigt model

Connecting the spring and dashpot in parallel yields the Voigt model. This time
εS = εD = ε and equilibrium demands that σ = σS + σD, hence

Fig. 4. The Voigt model

η σD, εD

E
σS , εS

ε, σ

η
dε

dt
+ Eε = σ =⇒ dε

dt
+
ε

τ
=
σ

η
.

This gives the constitutive law in hereditary form as

ε(t) = e−t/τε(0) +
1
η

∫ t

0

e−(t−s)/τσ(s) ds.

The Maxwell solid

In his internal variable formulation A. Johnson, in for example [20], uses these
basic building blocks in the Maxwell solid. Here E0 and E1 are spring stiffnesses
and σ∗, ε∗ are internal stress and strain variables. This time σ∗ = E1ε

∗, εD =
ε− ε∗ and σS = E0εS . Also σ∗ = σD and this gives

E1ε
∗ = η

d

dt
(ε− ε∗) =⇒ dε∗

dt
+
ε∗

τ
=
dε

dt
,

where now τ := η/E1. Solving this we get

ε∗(t) = e−t/τε(0) +
∫ t

0

e−(t−s)/τε′(s) ds. (2.5.whi)

Now, defining the stress relaxation function

D(t) := E0 + E1e
−t/τ
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Fig. 5. The Maxwell solid

E1

σ∗, ε∗ η σD, εD

E0

σS, εS

ε, σ

as the scalar analogue to the tensor D(t) in (2.2.whi) and (2.3.whi), and using this in
(2.5.whi) along with the relation

σ = σS + σ∗ = E0ε+ E1ε
∗ (since εS = ε),

gives

σ(t) = E0ε(t) + E1e
−t/τε(0) +

∫ t

0

E1e
−(t−s)/τε′(s) ds,

= D(0)ε(t)−
∫ t

0

Ds(t− s)ε(s) ds.

This is the scalar analogue of equation (2.3.whi) and suggests that we model D with
the Dirichlet-Prony series,

D(t) = ϕ(t)D(0) (2.6.whi)

where ϕ(t) is a generic stress relaxation function given by

ϕ(t) = ϕ0 +
N∑
i=1

ϕie
−αit. (2.7.whi)

Here the (possibly x dependent) coefficients {ϕi}Ni=0 are non-negative and nor-
malized so that ϕ(0) = 1, and the (possibly x dependent) {αi}Ni=1 are non-
negative. More generally one could of course write

Dijkl(t) := (Dijkl)0 +
Nijkl∑
m=1

(Dijkl)m exp(−(αijkl)mt).

The Dirichlet-Prony series is an extremely convenient form to take for large scale
computational approximations to problems (1.1.whi), (1.2.whi) and (1.3.whi) since if

ψ(t) := e−αt,
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then one can exploit the simple recurrence

ψ(t+ k) = e−αkψ(t)

to update the history term arising from a discretization of the Volterra integral.
For general Volterra problems one must usually store the entire solution history
as the computation advances through the time levels and moreover, at each
time level this history needs to be summed to approximate the integral. For
such methods the number of operations required at time level N is of the order
O(N2). The Dirichlet-Prony series provides a very useful short cut around this
“N2 problem”. (In certain special cases one can also overcome this difficulty
using other means, see for example [19,16]).

We now return to the Maxwell solid and generalize the conceptual spring and
dashpot model in order to motivate the choice of the Dirichlet-Prony series for
the relaxation function as given in (2.7.whi). To begin with we assume again a state
of uniaxial stress and strain.

The generalized Maxwell solid, shown in Figure 6, consists of a Hookean
spring connected in parallel to a sequence of N spring-dashpot components. In
this model

ε0 = ε, σ0 = E0ε, and σ∗i = Eiε
∗
i .

Balancing the stresses carried by each of the spring-dashpot pairs we get for each
i ∈ {1, . . . , N} that

dε∗i
dt

+
ε∗i
τi

=
dε

dt
,

=⇒ ε∗i (t) = e−t/τiε(0) +
∫ t

0

e−(t−s)/τiε′(s) ds,

where now we have set τi := Ei/ηi. The total stress carried by the assemblage
is therefore given by:

σ(t) = σ0(t) + σ1(t) + · · ·+ σN (t),
= E0ε(t) + E1ε

∗
1(t) + · · ·+ ENε

∗
N (t),

= E0ε(0) + E0(ε(t)− ε(0))

+
N∑
i=1

(
Eie
−t/τiε(0) +

∫ t

0

Eie
−(t−s)/τiε′(s) ds

)
,

= E(t)ε(0) +
∫ t

0

E(t− s)ε′(s) ds, (2.8.whi)

where

E(t) := E0 +
N∑
i=1

Eie
−t/τi .
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Fig. 6. The generalized Maxwell solid.

E1

σ∗1 , ε
∗
1

η1

E2

σ∗2 , ε
∗
2

η2

EN
σ∗N , ε

∗
N

ηN

E0

σ0, ε0

ε, σ

The constitutive relationship (2.8.whi) is the scalar analogue of (2.2.whi) with the ana-
logue of D(t− s) given by E(t− s), which itself is an example of the Dirichlet-
Prony series given in (2.7.whi). Note that if we set E0 := 0 then this generalized
Maxwell solid actually models a fluid since limE(t) = 0.

So much for uniaxial states of stress and strain. In fact it can be shown
that for each relaxation mode (i.e. each spring-dashpot pair) there is an ODE
governing the evolution of each of the internal strain tensor components. Thus
we have

d(εij)∗n
dt

+
(εij)∗n
τn

=
dεij
dt

,

and for the details we refer to [20]. The significance of these internal variable
formulations for the viscoelastic constitutive behaviour lies in the fact that it
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is possible to solve some kinds of viscoelasticity problems, when the relaxation
functions are in the form of a Dirichlet-Prony series (2.7.whi), using only a linear
elasticity solver and an ODE solver. This obviates the need to create special
software for quasistatic viscoelasticity problems. For more on this we refer again
to [20] and also to [33]

The Dirichlet-Prony series is not however the only form used to model the
stress relaxation functions, for example the authors of [1] use the stretched re-
laxation function

ϕ(t) = ϕ0 exp(−(αt)p) for p ∈ (0, 1]. (2.9.whi)

Obviously no simple recurrence exists for this form. Another popular choice for
ϕ is the power law where

ϕ(t) = ϕ0t
−p for p ∈ (0, 1), (2.10.whi)

although from either of (2.2.whi) or (2.3.whi) this implies that either ε(0) is zero irre-
spective of the magnitude of the load, or σ(0) is infinite. Neither of these are
physically realistic and so we would prefer to modify this law to

ϕ(t) = ϕ0(t+ ϕ1)−p for p ∈ (0, 1), (2.11.whi)

where ϕ1 > 0 in order to remove the non-physical behaviour. Nonetheless, it is
instructive to see how one might “derive” the power law, and for this we borrow
heavily from Chern’s thesis [3] which exploits the fractional calculus.

The formulation is based on the observed fact that viscoelastic materials be-
have in a way intermediate to that of solids and fluids. Interpreting this literally
yields a constitutive law that contains fractional derivatives. Unfortunately we
are unable here to give this interpretation the depth it deserves and instead try
only to illustrate the main point. Recall that the stress in a solid is proportional
to the strain while the stress in a fluid is proportional to the strain rate. Ac-
cepting the intermediate nature of viscoelastic materials the idea is to define the
viscoelastic constitutive law as:

σ(t) = D(0)ε(t) +D(1)∂αt ε(t), (2.12.whi)

for constant fourth order tensors D(0) and D(1), and where α ∈ [0, 1). The
fractional derivative operator may be defined as:

∂αt ε(t) :=
∂

∂t

(
1

Γ (1− α)

∫ t

0

(t− s)−αε(s) ds
)
, for α ∈ [0, 1). (2.13.whi)

(Note that α can be irrational, even though the word “fractional” is always
used.) By firstly integrating by parts in (2.13.whi) and then taking the differentiation
through, Chern arrives at a constitutive law which is suitable for use within
the standard finite element framework. Two solution schemes are considered: a
solution in the Laplace transform domain and a direct time domain solution.
However, in this case there is no efficient history storage and so the operation
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counts and computer memory requirement grow without bound as the time step
is diminished.

The “justification” for the power law is as follows. Carrying out this integra-
tion-differentiation process gives

∂αt ε(t) =
t−α

Γ (1− α)
ε(0) +

1
Γ (1− α)

∫ t

0

(t− s)−αε′(s) ds, (2.14.whi)

and using this in the scalar analogue of equation (2.12.whi) we now arrive at the
constitutive law:

σ(t) = E0ε(t) +
E1t
−α

Γ (1− α)
ε(0) +

E1

Γ (1− α)

∫ t

0

(t− s)−αε′(s) ds. (2.15.whi)

This seems to combine (2.2.whi) and (2.3.whi) when ϕ(t) is given by the power law,
(2.10.whi).

We now have several candidates for the constitutive law and these may be
used to generate a variety of differential equation problems. In the following pages
we do just this and demonstrate how concrete forms of the abstract problems
(1.1.whi), (1.2.whi) and (1.3.whi), as well as some non-standard variants, can be derived to
model viscoelastic behaviour.

3 Viscodynamics

To obtain the governing equations for the dynamic response of a viscoelastic
body one uses Newton’s second law to relate the stress field σ and the forces f
and g to the acceleration, or inertia, of the body G. This process is familiar from
linear elasticity theory and gives, with boundary and initial data, the following.
For i = 1, . . . , n:

%u′′i − σij,j = fi in Ω × I,
ui = 0 in ΓD × I,

σij n̂j = gi in ΓN × I,
ui(x, 0) = ui0 in Ω,

u′i(x, 0) = ui1 in Ω.


(3.1.whi)

Here: repeated indices imply summation; % is the mass-density of G; and, n̂ :=
(n̂i)ni=1 is the unit outward directed normal to ΓN .

Using (2.3.whi) to substitute for the stress one arrives at the pdv problem: find
u such that

%u′′i (t)−
(
Dijkl(0)εkl(u(t))

)
,j

= fi(t)−
∫ t

0

(
∂Dijkl(t− s)

∂s
εkl(u(s))

)
,j

ds,

in Ω×I with the indicated initial-boundary data. With an appropriate definition
of A and B(t, s) this is clearly a realization of the abstract problem (1.3.whi). Note
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that it is “safe” to use the Dirichlet-Prony series (2.7.whi) or modified power law
(2.11.whi) in this problem, but we may not use the power law (2.10.whi) directly because
we cannot then interpret D(0).

In terms of existence, uniqueness and stability of solutions this problem has
been studied in [9,10,24]. Numerical schemes are given in [12,45,29,32].

One could also use the fractional calculus model to substitute for σ in New-
ton’s second law. This will yield a pdv equation of the form

%u′′i (t)−
(
D

(0)
ijklεkl(u(t))

)
,j

= fi(t) +
D

(1)
ijkl

Γ (1− α)
∂

∂t

∫ t

0

(t− s)−αεkl(u(s)) ds.

On the other hand one could use (2.2.whi) and then arrive at

%u′′i (t)−
(
Dijkl(t)εkl(u(0))

)
,j

= fi(t) +
∫ t

0

(
Dijkl(t− s)εkl(u′(s))

)
,j
ds.

Note that u does not occur as a natural “unknown” in this problem and so it is
possible to replace u with u′ and arrive at the alternative problem: find u such
that

%u′i(t) +
∫ t

0

(
Dijkl(t− s)εkl(u(s))

)
,j
ds = fi(t)−

(
Dijkl(t)εkl(u0)

)
,j
,

which makes sense if u0 is smooth enough. The initial datum for this problem is
now u(0) = u1. Properties of the solution of these type of problems are studied
in [10,24] and numerical analysis is given in [25,23].

However, one must resist the temptation to interpret this as a parabolic
problem for, in general, it is not. To see this use the power law (2.10.whi) with (2.6.whi)
to obtain (with % = 1 and D not x dependent for simplicity):

u′i(t) +Dijkl

∫ t

0

(t− s)−p(εkl(u(s)),j ds = f̃i(t), (3.2.whi)

where f̃ now incorporates the additional term in u0. In the case p = 1
2 we find

that the operator I defined by,

Iw(t) :=
1√
π

∫ t

0

(t− s)− 1
2w(s) ds

has the property,

I2w(t) ≡ I(Iw)(t) =
∫ t

0

w(s) ds,

and so may be regarded as the square root of the definite integral operator.
Applying ∂

1
2
t to both sides of (3.2.whi) in the case p = 1

2 we arrive at(
∂

∂t

) 3
2

ui(t) +
√
πDijkl(εkl(u(t)),j = ∂

1
2
t f̃i(t).
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This equation is half way between being parabolic and hyperbolic. Similar ma-
nipulations are also possible in the case p 6= 1

2 , with the final time derivative
being of order between 1 and 2. Numerical methods for fractional order differ-
ential equations are studied in [31,22,11].

For more detail on these type of problems see [27], as well as the other papers
in that collection.

4 Viscostatics

Recall that the classical linear elasticity equations are “derived” from Newton’s
second law (3.1.whi) by dropping the inertia term %u′′. This corresponds to modelling
the problem at times long after the load has been applied when the transient
response has died out, and results in a very well-known elliptic problem. A
similar approach can be adopted for viscoelastic response although this time it
is a true approximation since the resulting problem is not time independent due
to the persistence of the Volterra term. It seems that this approximation can
be useful when the inertia term is negligible, which may occur when the load is
smoothly and slowly applied (and non-oscillatory), or when it is the long-time
creep response that is of interest. Since the time dependence persists we refer to
the resulting problems as modelling quasistatic viscoelastic response.

The governing equations for these type of problem are obtained from (3.1.whi)
by setting %u′′(t) := 0 and discarding the initial data. Thus, for i = 1, . . . , n we
have

−σij,j = fi in Ω × J ,
ui = 0 in ΓD × J ,

σij n̂j = gi in ΓN × J ,

 (4.1.whi)

which are turned into differential equation problems for u by substituting for the
stress using either of (2.2.whi) or (2.3.whi). These give respectively the pdv problems:
find u such that for each i ∈ {1, . . . , n},

−
∫ t

0

(
Dijkl(t− s)εkl(u′(s))

)
,j
ds = fi(t) +

(
Dijkl(t)εkl(u(0))

)
,j
,

and

−
(
Dijkl(0)εkl(u(t))

)
,j

= fi(t)−
∫ t

0

(
∂Dijkl(t− s)

∂s
εkl(u(s))

)
,j

ds.

The first of these is essentially a Volterra first-kind equation for u′, while the
second is a second-kind equation for u. In both cases one obtains u(0) by solving
a linear elasticity problem.

Numerical schemes and a priori error estimates were first provided for both of
these problems in [35]. Later and for the second-kind problem only, the estimates
were improved (in terms of the size of the error constant) in [34]. These results
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depend on by-passing Gronwall’s inequality and using more sensitive comparison
results to obtain sharp data-stability estimates. These estimates have now been
generalized in [40]. Also for the second-kind problem, a posteriori error estimates
for a space-time finite element discretization of a model problem have been given
in [38] and [42]. These results are based on the error estimates in [37] and are
currently being generalized to the multidimensional problem described above in
[41].

5 Non-Fickian diffusion

In classical diffusion theory the gradient of the concentration u of an active agent
(the penetrant) diffusing through a carrier medium is related to the mass flux
by Fick’s law: J = −λ∇u, where λ is the diffusivity of the carrier substance.
Conservation of mass then demands that u′ = −∇ · J which yields the familiar
heat equation,

u′(t) = ∇ · λ∇u.

If we define M(t) as the total mass of penetrant absorbed by the carrier per unit
area at time t then it is well known (from similarity solutions) that M(t) ∼ t

1
2

for Fickian diffusion.
Diffusion in rubbery polymers, those well above their glass transition tem-

perature (GTT), is according to Durning in [13] adequately described by Fick’s
law, but the situation is much more complicated for glassy polymers, those near
but above their GTT. As the penetrant moves through the polymer it can force
a phase change and so leave behind it the polymer carrier in its rubbery state.
The stiffness and relaxation properties of the polymer change abruptly by orders
of magnitude across this phase change (see for example [15]), and as a result a
differential stress is set up across the penetrant boundary. Moreover, because
the carrier is viscoelastic this stress is described by a hereditary constitutive law
and this behaviour provides a mechanism for the observed non-Fickian effects.
Workers in the field make the following very rough classification.

Case I diffusion: standard Fickian diffusion where M(t) ∼ t 1
2 , applies to poly-

mers in the rubbery state high above the GTT.
Case II diffusion: non-Fickian diffusion, M(t) ∼ tα where 1

2 < α ≤ 1, applies
to glassy polymers near to but above the GTT.

There is also a “Super Case II” category corresponding to α > 1, see [5]. For
Case II sharp fronts (rather like shocks) may appear as the penetrant diffuses
through the carrier. This front moves initially at a constant speed and then slows
down, [7], and this explains why M(t) is almost linear, and thus M ′(t)—the rate
of absorbtion—is almost constant. By contrast M ′(t) for Case I is, in the words
of Cox in [7], “delta-function-like”, and this property of glassy polymers has an
interesting application in the area of controlled drug delivery products. Cox gives
a nice example.
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An active agent (the drug) is embedded into a polymer through which it
cannot diffuse. This may for example be a tablet which is to be swallowed.
When the carrier is invaded by a solvent, such as digestive fluid, the drug can
then diffuse out of the polymer through the solvent in a non-Fickian way. Since
M ′(t) is almost constant, this allows a controlled, constant-rate delivery of the
drug to the body for several hours.

The polymer doesn’t have to be a tablet. In fact, according to Cohen and
White in [5] (who also describe other applications of non-Fickian diffusion), such
“smart” pharmaceutical products can be designed to be “swallowed, smelled,
surgically implanted, rubbed on, taped on, strapped on”, and can in effect be
applied to any part of the body. There is an extensive literature on this science
and in addition to those already cited we refer also to [17,6,14].

To get a flavour of the mathematical modelling that these people employ
we borrow from [4] and consider the modelling of one-space dimensional diffu-
sion through a glassy polymer. Our development yields a linear model, but it
is unlikely that this will reproduce the sharp fronts characteristic of polymer
diffusion. The references cited deal with realistic nonlinear models.

To account for the differential stress set up at the penetrant front Fick’s law
is modified to include a stress dependence in the following way:

J = −(λux + κσx).

Here u is the concentration, λ the usual (Fickian) diffusion constant, and κ is
a proportionality constant. Conservation of mass again demands that u′ = −Jx
and this gives

u′ = λuxx + κσxx.

The stress is viscoelastic and the usual approach is to adopt the Maxwell model,
given earlier in (2.4.whi), with the assumption that u depends linearly on strain rate
ε′ (in order to get true Case II behaviour—see [8]). Thus

∂σ

∂t
+
σ

τ
= µu,

where µ is a proportionality constant. In the nonlinear theory the dependence
of τ on u is crucial, but here we shall assume that τ is constant. Integrating we
get

σ(t) = µe−t/τu(0) + µ

∫ t

0

e−(t−s)/τu(s) ds.

Eliminating the stress from the transport equation and using mass conservation
gives the single differential-Volterra equation,

u′(t) = λuxx + κµe−t/τuxx(0) + κµ

∫ t

0

e−(t−s)/τuxx(s) ds.
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Assuming for simplicity that u(0) = 0 we can generalize this to a multidimen-
sional model and obtain the pdv equation,

u′(t) = ∇ · λ∇u +∇ ·
(
κ∇
∫ t

0

µe−(t−s)/τu(s) ds
)
.

This is a concrete realization of the abstract problem (1.2.whi).
Equations of this nature have been studied in [26] and [18], and some nu-

merical analysis is given in [45,2,43,30,44]. Also, a priori and a posteriori error
estimates for a finite element discretization of a scalar prototype ODE with
memory, of the type that arises after spatial finite element semi-discretization of
this problem, are provided in [36].
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