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Abstract. Models of flow of multiple immiscible fluids in a porous ma-
trix and/or phenomena of multiple transitions of phase, result into quasi-
linear parabolic equations, with measurable coefficients and exhibiting
multiple singularities and/or degeneracies (in the sense made precise in
Section 1.1 below). We discuss the problem of the continuity of the tran-
sition parameters, for example saturation in the flow of immiscible fluids,
or temperature in isothermal phase transitions. We review and summa-
rize the main points of the theory and will present some recent results
in this direction, pointing to the new mathematical tools generated by
these investigations. We will also indicate the main open questions of
physical and mathematical interest and discuss their relevance.
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1 Introduction

We will present some recent results concerning the local behavior of weak so-
lutions of singular parabolic equations with measurable coefficients. We will in-
dicate the main points of the theory and will trace back their motivation to
physical phenomena, such as transition of phase and/or flow of immiscible fluids
in a porous matrix. In this connection, we will also indicate some novel analyti-
cal ideas of measure theory which we feel are of independent interest. Along the
presentation we will point out the main open problems, which we feel have both
a theoretical and physical interest.
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1.1 Singular Parabolic Equations

Let β(·) be a maximal monotone graph in R×R and consider parabolic inclusions
of the type

∂

∂t
β(u)− div A(x, t, u,∇u) +B(x, t, u,∇u) 3 0 in ΩT , (1.1.dib)

where Ω is a domain in RN and ∇ denotes the gradient with respect to the space
variables only. Also, for T > 0 we have set ΩT ≡ Ω× (0, T ]. We assume that the
graph β(·) is coercive, i.e., there exists a positive constant γo, such that for all
pairs of real numbers (s1, s2) and all selections w1 ∈ β(s1) and w2 ∈ β(s2),

w1 − w2 ≥ γo(s1 − s2). (1.2.dib)

We also assume that β(·) is bounded for bounded values of its argument, i.e.,

for every M > 0, sup
|s|<M

sup
w∈β(s)

|w| <∞. (1.3.dib)

No further condition is formulated on the behavior of β(·). In particular in any
finite interval (−M,M), the graph β(·) might exhibit countably many jumps or
might become vertical countably many times, exponentially fast or faster. If a
graph β(·) exhibits this behavior we call it a singular graph and refer to (1.1.dib)
as singular parabolic equations. Examples of such a β(·) are

β(s) ≡


s if s < 0,
[0, 1] if s = 0,
1 + s if s > 0;

β(s) ≡



2 + s if s > 1,
[2, 3] if s = 1,
1 + s if 0 < s < 1,
[0, 1] if s = 0,
s if s < 0;

(i)

β(s) ≡ |s| 1
m sign s, m > 1;

β(s) ≡ 1 + sα1 − (1− s)α2 ,

{
s ∈ [0, 1],
αi ∈ (0, 1), i = 1, 2.

(ii)

The first of (i) is the enthalphy function in the weak formulation of a Stefan-like
problem modeling a water-ice transition of phase.1 The second might serve as
a prototype of the enthalpy in a double transition of phase. The first of (ii) is
the graph arising from the classical porous media equation, modeling the flows
1 There exists a vast literature on each of the several aspects of the classical Stefan

problem. For a summary of the main results we refer to the monograph of Meirmanov
[42], the review article of Danilyuk [13] as well as the Proceedings [8,26,30] and
the references therein. Here we review only those aspects connected with the local
continuity of weak solutions of (1.1.dib) with β(·) exhibiting multiple singularities.
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of a single fluid in a porous matrix.2 The second, is a first approximation for a
model of two immiscible fluids moving within a porous matrix.3 The simplest
example of (1.1.dib) is,

∂

∂t
β(u)−∆u 3 0 in ΩT . (1.1′.dib)

The diffusion field A and the forcing term B in (1.1.dib), are real valued and mea-
surable over ΩT × R× RN , and satisfy the structure conditions,

A(x, t, η, ξ) · ξ ≥ µo |ξ|2 − ϕo(x, t);
|A(x, t, η, ξ)| ≤ µ1 |ξ| − ϕ1(x, t);

|B(x, t, η, ξ)| ≤ µ2 |ξ|2 − ϕ2(x, t),

(1.4.dib)

for a.e. (x, t, η, ξ) ∈ ΩT × R × RN . Here µi, i = 0, 1, 2 are prescribed positive
numbers and ϕi, i = 0, 2 are prescribed nonnegative functions defined a.e. in
ΩT , satisfying

ϕo + ϕ2
1 + ϕ2 ∈ Lq,rloc(ΩT ). (1.5.dib)

The numbers q and r are positive, are linked by

1
r

+
N

q
= 1− κ, κ ∈ (0, 1), (1.6.dib)

and can be taken out of their admissible range

q ∈
[

N
2(1−κ) , ∞

]
, r ∈

[
1

1−κ , ∞
]
, 0 < κ < 1, for N ≥ 2;

(1.7.dib)
q ∈ (1 , ∞), r ∈

[
1

1−κ ,
1

1−2κ

]
, 0 < κ < 1

2 , for N = 1.

The inclusion in (1.1.dib) is meant weakly and in the sense of graphs. Precisely, a
function

u ∈ L2
loc

{
0, T ;W 1,2

loc (Ω)
}
, (1.8.dib)

is a local weak solution to (1.1.dib) if there exists a measurable selection w ⊂ β(u),
such that

t→ w(·, t) is weakly continuous in L2
loc(Ω), (1.9.dib)

2 Also the porous medium equation has been widely investigated in the literature and
we refer to the same Proceedings [8,26,30] and their references, for an overview. An
overview of the main results regarding the local regularity of the solutions, is in the
Bibliographical Notes of the monograph [22].

3 A 1-dimensional model in hydrology is investigated by Van Duijn and Zhang in
[15], and numerically by Hoff [29]. Most of the models of multiphase flows in
porous medium are multidimensional. For such models we refer to the monographs
[6,7,11,12,49].
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and in addition,∫
Ω

w(x, t)ϕ(x, τ) dx
∣∣∣∣τ=t2

τ=t1

+
∫ t2

t1

∫
Ω

{
− w(x, τ)ϕt + A(x, τ, u,∇u) ·Dϕ

}
dxdτ

+
∫ t2

t1

∫
Ω

B(x, τ, u,∇u)ϕdxdτ = 0, (1.10.dib)

for all testing functions

ϕ ∈W 1,2
loc

{
0, T ;L2

loc(Ω)
}
∩ L2

loc

{
0, T ;W 1,2

o (Ω)
}
, (1.11.dib)

and for all intervals (t1, t2) ⊂ (0, T ].

2 The Problem of Continuity of Weak Solutions

It is natural to ask whether locally bounded weak solutions to (1.1.dib) are continuous
in ΩT and whether one can estimate quantitatively their modulus of continuity.
To simplify the setting of the problem, we assume that u is a solution of (1.1.dib)
bounded in the whole ΩT and set,

‖u‖∞,ΩT ≡M. (2.1.dib)

This is not restrictive, by regarding ΩT as a subset of the domain of definition
of u. By the same token we also assume that the integrability requirement in
(1.5.dib) holds in ΩT and set, ∥∥ϕo + ϕ2

1 + ϕ2

∥∥
q,r;ΩT

≡ Φ. (2.2.dib)

We refer to the numbers,

N, γo, M, Φ, µi, i = 0, 1, 2,

as the data. For a constant C or γ, or a continuous function ω(·) we say

C ≡ C(data), γ ≡ γ(data), ω(·) = ωdata(·),

if they can be determined a priori only in terms of the indicated parameters.
Having fixed an arbitrary subset K ⊂ ΩT , one can ask whether u is continuous
in K with a modulus of continuity ωdata(·) depending only upon the data and
the distance from K to the parabolic boundary of ΩT .

Remark 2.1. If β(·) ≡ I, then locally bounded solutions of (1.1.dib) are locally
Hölder continuous in ΩT , and the assumptions (1.5.dib)–(1.7.dib) are optimal for this
to occur.4 Thus the issue at hand is to investigate to what extend the singularity
of β(·) might affect the continuity of u.
4 For a general account of the theory of local regularity of solutions of non-singular

parabolic equations with measurable coefficients, we refer to the monograph [39],
and in particular Chap. I, §3,4; Chap. II, §6,7; Chap. V, §1,2.
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Remark 2.2. The assumption that u be locally bounded is essential. Indeed even
if β(·) ≡ I, weak solutions of (1.1.dib) need not be bounded. This is due to the critical
growth of the forcing term B(x, t, u,∇u) with respect to |∇u| as indicated in the
last of (1.4.dib). We refer Stampacchia [51] for counterexamples even in the elliptic
case.5 If the last of (1.4.dib) were replaced with

|B(x, t, η, ξ)| ≤ µ2 |ξ|+ ϕ2(x, t), (1.4′.dib)

then weak solutions of (1.1.dib), for any coercive β(·) as in (1.2.dib)–(1.3.dib) would be
locally bounded. This would follow from a simple adaptation of the methods of
[39].6

In what follows we will assume in addition that the local solution u can be
constructed as the limit in the topology of (1.8.dib), of a sequence of smooth local
solutions of (1.1.dib) for smooth β(·). This assumption is formulated only to justify
some of the calculations.7 We stress that the modulus of continuity of u must be
independent of any approximating procedure and must depend only upon the
data.

3 Some Degenerate Parabolic Equations

The full generality indicated in (1.4.dib)–(1.6.dib) seems to be natural in physical mod-
els, such as the simultaneous flow of two immiscible fluids in a porous matrix.8

These models typically lead to degenerate parabolic equations of the type,9

vt − div a (x, t, v,∇v) + b (x, t, v,∇v) = 0 in ΩT . (3.1.dib)
5 Thus (1.1.dib) even with β(·) = I might have unbounded solutions. However if one

had some a priori qualitative knowledge of the boundedness of the solution, such a
qualitative bound could be turned into a quantitative one. See for example Vespri
[53] and references therein.

6 Indeed a slightly faster growth is allowed; for example |∇u|q where 0 ≤ q < N+4
N+2

.
See [39] Chap. V, §1.

7 If the forcing term B(x, t, u,∇u) has at most a linear growth with respect to |∇u|,
then questions of existence and uniqueness are well understood. We refer for ex-
ample to the monographs [27,39,41] and the Proceedings [8,26,30] and references
therein. Here we only remark that a modulus of continuity uniform with respect to
the approximating procedure, would supply the necessary compactness to establish
existence of solutions.

8 For these models we refer to the monographs of J. Bear [6] (Chap. 9) and [7]
(Chap. 6), R. E. Collins [12] (Chap. 6), and A.E. Scheidegger [49] (Chap. 10), and the
article of Leverett [40]. These models consist of a system of two parabolic equations,
written in terms of the saturations and pressures of each of the two fluids.

9 The transformation of Kruzkov-Sukorjanski [37], transforms the physical models of
[6,7,12,40,49] into a system of one parabolic equation like (3.1.dib) in terms of the sat-
uration v of only one of the two fluids, and another degenerate-elliptic equation in
terms of a mean pressure. In such a formulation, the term b(x, t, v,∇v) in (3.1.dib) would
depend on such a mean pressure. The local continuity for the saturations was first
raised in [1] and [21]. The analysis of [1,21] permits to reduce the question of the
continuity of the saturations to the continuity of solutions to (3.1.dib).
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The leading vector field a and the forcing term b, are measurable and satisfy,

a(x, t, v,∇v) · ∇v ≥ Coϕ(v)|∇v|2 − ϕo(x, t);
|a(x, t, v,∇v)| ≤ C1ϕ(v)|∇v| − ϕ1(x, t);

|b(x, t, v,∇v)| ≤ C2ϕ(v)|∇v|2 − ϕ2(x, t),

(3.2.dib)

for a.e. (x, t) ∈ ΩT and all smooth functions (x, t) → v(x, t) defined in ΩT .
Because of the physical origin of the p.d.e., it is natural to assume that the
solutions are bounded, say for example v ∈ [0, 1].10 The equation is degenerate
in the sense that ϕ(·) is permitted to vanish. Precisely we assume that v → ϕ(v)
is continuous, non-negative and vanishes at the extreme values of its argument,
i.e.,

ϕ(v) > 0 for v ∈ (0, 1) and ϕ(0) = ϕ(1) = 0. (3.3.dib)

The functions ϕi, i = 0, 1, 2 satisfy the assumptions (1.5.dib)–(1.7.dib). A notion of
solution to (3.1.dib) is introduced along the lines of (1.8.dib)–(1.11.dib), by requiring that
t→ v(·, t) satisfies (1.9.dib) and that

∇ϕ(v) ∈ L2
loc(ΩT ).

The main difficulty in establishing the local continuity of v resides in the double
degeneracy of ϕ(·) and, more importantly, in the lack of precise quantitative
and/or qualitative information on its modulus of continuity. Such a limited in-
formation on the nature of the degeneracy is typical of the physical models of
flows of a mixture of fluids in a porous medium.11 Thus in particular ϕ(·) might
degenerate at v = 0 and v = 1 at different rates, and perhaps exponentially
fast or faster.12 The problem of continuity of weak solutions to (3.1.dib) consists
in showing that v is continuous whatever the nature of the degeneracy of ϕ(·),
provided (3.3.dib) is satisfied.

Let u ∈ [0, 1] be a solution of (1.1.dib) with β(·) ∈ C(0, 1) and singular at the
extreme values u = 0 and u = 1 of its argument, i.e. for example

lim
u↘0

β′(u) = lim
u↗1

β′(u) = +∞.

10 The function (x, t)→ v(x, t) is the local relative saturation of one of the two fluids.
Thus v ∈ [0, 1]. See for example [1,6,7,12,37,49].

11 The function ϕ(·) is related to the permeability of both fluids. The permeability of
one of the fluids vanishes as the fluid is displaced by the other (i.e., either v = 0 or
v = 1). This is the physical origin of the degeneracy of ϕ(·). The behaviour of the
permeabilities as functions of the saturations are derived from hydrostatic (rather
than dynamic) experiments, [6,7,12,49], dimensional analysis [40], and heuristic ar-
guments. For this reason the information on their rate of vanishing is rather limited.

12 In fact, because of the phenomenon of the connate water it might be even completely
flat in a small right neighborhood of zero or a left interval of 1, or both. See Bear [6]
Chap. 9, §2.3 and 2.4; Collins [12] Chap. 2, §24, and Chap.6, §10; Scheidegger [49]
Chap. 3, §4 and Chap.10, §6.
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Then by setting v ≡ β(u) and ϕ(·) ≡ β−1′(·) the singular p.d.e. in (1.1.dib), in terms
of u, can be recast as the degenerate p.d.e. in (3.1.dib), in terms of v, and one checks
that the conditions (1.4.dib) yield (3.2.dib). For this reason, the methods introduced in
the context of (1.1.dib) and those connected to (3.1.dib) bear a considerable similarity
and/or overlap. Starting now from (3.1.dib) one might set

u ≡
∫ v

ϕ(s) ds, β(u) = v,

and attempt to recast the degenerate p.d.e. (3.1.dib) as the singular equation (1.1.dib).
One verifies that the resulting leading coefficients A would satisfy the first two
of (1.4.dib). The resulting free term B however might not satisfy the last (1.4.dib), due
to its faster than linear growth with respect to |∇v|.13 In what follows we will
outline the analogies and point to the main differences.

4 The Classical Approach to Continuity

For positive ρ, let Kρ and Qρ denote respectively the cube of wedge 2ρ centered
at the origin of RN , and the parabolic cylinder with “vertex” at the origin of
RN+1, with cross sections Kρ, i.e.,

Kρ ≡ {x ∈ RN | max
1≤i≤N

|xi| < ρ}, Qρ ≡ Kρ × (−ρ2, 0). (4.1.dib)

A cube centered at some xo ∈ RN\{0} and congruent to Kρ will be denoted by
{xo + Kρ} and a parabolic cylinder with “vertex” at some (xo, to) ∈ RN+1 and
congruent to Qρ, will be denoted by {(xo, to) +Qρ}. In what follows we will fix
a point (xo, to) ∈ ΩT and let ρo be the largest radius so that {(xo, to) +Qρo}
is contained in ΩT . Also for a constant δ ∈ (0, 1) we consider the sequence of
decreasing radii,

ρn ≡ δn ρo, n = 0, 1, 2. . . . , (4.2.dib)

and the family of nested shrinking cylinders, with the same vertex at (xo, to),

{(xo, to) +Qρn} , n = 0, 1, 2, . . . .

4.1 Non Singular Parabolic Equations

Suppose for the moment that in (1.1.dib), the graph β(·) is the identity, i.e., that
(1.1.dib) is a quasilinear, non-singular , parabolic equation with measurable coeffi-
cients. If u is a weak solution to such an equation, we set

µ+
n ≡ ess sup

{(xo,to)+Qρn}
u, µ−n ≡ ess inf

{(xo,to)+Qρn}
u, ωn≡ ess osc

{(xo,to)+Qρ}
u.

13 One verifies this for the equation vt − ∆v2 = v|∇v|2. The equivalence of the two
formulations would hold if B had a linear growth with respect to |∇u|. Equations
such as (3.1.dib) arising from the flow of immiscible fluids in a porous medium bear
lower order terms with a behavior technically similar to a super-linear growth with
respect to |∇v|. See [1], §3–6.
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Proposition 4.1. Let u be a weak solution of (1.1.dib) with β(·) ≡ I. Then there
exists constants C > 1 and δ, η ∈

(
0, 1

2

)
that can be determined a priori only in

terms of the data, such that for every (xo, to) ∈ ΩT ,

ωn+1 ≤ (1− η)ωn + Cρλn, n = 0, 1, 2, . . . . (4.3.dib)

Here λ ∈ (0, 1) is a number determined only in terms of the integrability condi-
tions (1.5.dib)–(1.7.dib) and is independent of δ and η. As a consequence u is locally
Hölder continuous in ΩT .

Proof of Hölder continuity assuming (4.3.dib). Having fixed (xo, to) ∈ ΩT , from (4.3.dib)
by iteration we derive,

ωn ≤ (1− η)nωo +
C

δλ

∑n

i=1

(
1− η
δλ

)n
, ∀n ∈ N. (4.4.dib)

The two numbers (1− η) and δ can be related by

(1− η) = δα, where α =
ln(1− η)

ln δ
∈ (0, 1).

Moreover without loss of generality we may assume that ρo ∈ (0, 1). Then,
having determined δ and η, the iterative inequalities (4.3.dib) continue to hold if λ
is replaced by a smaller number. We will choose it so that (1− η)δ−λ < 1. This
way the sum on the right hand side of (4.4.dib) can be majorized with a convergent
series. Therefore from (4.4.dib) and the definition (4.2.dib) of the sequence ρn, it follows
that,

ωn ≤ ωo
(
ρn
ρo

)α
+ γ(data; η, δ)ρλn, ∀n ∈ N. (4.5.dib)

Since (xo, to) ∈ ΩT is arbitrary, this implies that u is locally Hölder continuous
in ΩT , with Hölder exponent min{α;λ}. ut

Remark 4.1. Having fixed (xo, to) ∈ ΩT , the starting cylinder {(xo, to) + Qρo}
must be contained in ΩT . Thus from the form of (4.5.dib) it follows that the Hölder
continuity can be claimed only within compact subsets K of ΩT and that the
Hölder constant ωoρ−αo deteriorates as (xo, to) approaches the parabolic bound-
ary of ΩT .

Remark 4.2. The constant C appearing on the right hand side of (4.3.dib) is due
only to the functions ϕi in the structure conditions (1.4.dib) and it would be zero
for the prototype equation (1.1′.dib), with β(·) ≡ I.

This is the parabolic version of the classical DeGiorgi’s approach to continu-
ity introduced in the context of elliptic equations with measurable coefficients
[14]. The adaptation to parabolic equations is far from simple and it appears in
the book [39]. The same point of view of reducing the oscillation of u in a family
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of shrinking cylinders has influenced, one way or another, most of the litera-
ture on the subject, including Moser [43,44], Trudinger [52], Kruzkov [34,35,36],
Aronson-Serrin [5] and Krylov-Safonov [38]. The reduction of the oscillation (4.3.dib)
is realized by the following Proposition that can be regarded as some sort of a
weak maximum principle.14

Proposition 4.2. Let u be a weak solution of (1.1.dib) with β(·) ≡ I. Then there
exists constants C > 1 and δ, η ∈

(
0, 1

2

)
, that can be determined a priori only

in terms of the data, such that for every (xo, to) ∈ ΩT and every n ∈ N, either
ωn < Cρλn, or at least one of the following two inequalities holds,

u(x, t) ≤ µ+
n − ηωn,

u(x, t) ≥ µ−n + ηωn,
for a.e. (x, t) ∈

{
(xo, to) +Qρn+1

}
. (4.6.dib)

Proof of (4.3.dib) assuming (4.6.dib). Fix (xo, to) ∈ ΩT and n ∈ N. If the first of (4.6.dib)
holds true, then

ess sup
{(xo,to)+Qρn+1}

u = µ+
n+1 ≤ µ+

n − ηωn.

Subtracting µ−n+1 from the left hand side and µ−n from the right hand side, gives

ωn+1 = µ+
n+1 − µ−n+1 ≤ µ+

n − µ−n − ηωn = (1− η)ωn.

A similar argument proves the claim if the second of (4.6.dib) holds. ut
The proof of this Proposition is in [39] and is a parabolic version of a similar

elliptic Proposition proved by DeGiorgi [14].

5 Parabolic Equations with One-Point Singularity

We consider now (1.1.dib) where β(·) is singular at only one point . This would
include the Stefan graph indicated in the first of (i) and the porous medium
graph indicated in the first of (ii).

The first regularity results for weak solutions of these equations with such a
β(·), appear in [9,18,19,47,48,55]. In all these contributions, the basic approach
to continuity is analogous to that of Propositions 4.1–4.2. The proofs differ es-
sentially from the technical ways of establishing an alternative similar to that
in Proposition 4.2. The singularity of β(·) affects Proposition 4.2 in two ways,
i.e., the reduction factor δ that determines the sequence of radii ρn in (4.2.dib), and
the number η that determines the reduction of the oscillation in (4.3.dib), are both
functions of the oscillation itself. Given two continuous, monotone increasing
functions

(0, 2M ] 3 s→ δ(s), η(s) ∈ (0, 1), such that δ(0) = η(0) = 0, (5.1.dib)

14 Suppose the first of (4.4.dib) holds and assume without loss of generality that (xo, to)
coincides with the origin of RN+1. Then the supu over the smaller cylinder Qρn+1 is
strictly less than the sup u over the larger and coaxial cylinder Qρn . Thus the supu
over the larger cylinder can only be achieved in the parabolic shell Qρn\Qρn+1 . This
can be regarded as some sort of parabolic boundary for the larger box.
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we construct inductively, the decreasing sequences of numbers

ωo = max
{

2M ; Cρλo
}
,

ρn+1 = δ(ωn) ρn,

ωn+1 = max
{(

1− η(ωn)
)
ωn;Cρλn

} ∀n ∈ N, (5.2.dib)

and the corresponding family of shrinking nested cylinders {(xo, to)+Qρn}, with
the same “vertex” at (xo, to). Here C > 1 and λ ∈ (0, 1) are two given constants.

Lemma 5.1. {ωn} → 0 as n→∞.

Proof. From the definition it follows that the sequences {ρn} and {ωn} are non-
increasing, so that their limits as n↗∞ exist. Since δ(·) ∈ (0, 1), it is apparent
that {ρn} ↘ 0. If

lim
n→∞

ωn = ω∞ > 0,

then, using the monotonicity of η(·), we derive from (5.2.dib),

ωn+1 ≤ max
{(

1− η(ω∞)
)
ωn;Cδλn(ω∞)ρλ

}
, ∀n ∈ N.

Thus {ωn} ↘ 0 against the contradiction assumption. ut

Proposition 5.1. Let u be a weak solution of (1.1.dib) with β(·) either of Stefan-
type (i.e., the first of (i)) or of the type of porous media (i.e., the first of (ii)).
Then there exist constants C > 1 and λ ∈ (0, 1), and two continuous increasing
functions δ(·) and η(·) as in (5.2.dib), that can be determined a priori only in terms
of the data, such that for every (xo, to) ∈ ΩT ,

ess osc
{(xo,to)+Qρn}

u ≤ ωn n = 0, 1, 2, . . . . (5.3.dib)

Here λ ∈ (0, 1) is a number determined only in terms of the integrability condi-
tions (1.5.dib)–(1.7.dib) and is independent of δ and η. As a consequence u is locally
continuous in ΩT .

Remark 5.1. The constants C and λ in (5.2.dib), depend only upon the functions
ϕi, i = 0, 1, 2 in the structure conditions (1.4.dib) and can be taken to be zero for
the prototype equation (1.1′.dib).

Remark 5.2. While Proposition 4.1 implies a precise Hölder modulus of conti-
nuity, this is not longer the case for Proposition 5.1. The sequences (5.2.dib) and
the recursive bound (5.3.dib) supply a quantitative but not explicit modulus of con-
tinuity for u.15

15 In the case of graphs of Stefan-type the functions s → δ(s), η(s) have the explicit
form K−h/s where K and h are large constants (see [18]). It would be of interest to
generate an explicit modulus of continuity for u, in terms of K and h.
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The contributions in [9,18,19,47,48,55] all establish recursive inequalities sim-
ilar to those of Proposition 5.1, even though with technically different points of
view. In [18,19] the Proposition was established by means of DeGiorgi-type iter-
ations, in the parabolic setting of [39]. The proof of [55] follows the Harnack-type
techniques of Moser, as appearing in [43,44,5,52]. The results of [9] make use of
local representations in terms of heat potentials, and for this reason are limited
to the prototype equations (1.1′.dib). The results of [47,48] are also limited to (1.1′.dib),
being based on the non-divergence structure shrinking technique of Krylov and
Safonov [38].

Whatever the approach however, it is essential that β(·) be singular at only
one point , say for example at u = 0.

All these proofs have a common pattern, i.e., having fixed a cylinder {(xo, to)
+ Qρ}, either the singularity occupies a small portion of such a box or a large
one. The first case is a favorable, in the sense that the singularity plays a neg-
ligible role. If the second case occurs, then since off the singular set the partial
differential equation (1.1.dib) is uniformly parabolic, the solution cannot grow too
fast and remains “close” to a fixed value, for example µ+, and it does not os-
cillate too much. This supplies a control on the oscillation which in turn can be
rephrased as in Proposition 5.1.

Technically, the solution u remains “close” to µ+ within {(xo, to) + Qρ}, if
the functions

(u − k)+ ≡ max{u− k; 0}, 0 < k < µ+,

are subsolutions of a uniformly parabolic equation. This in turn is possible if, for
u ≥ k > 0, the graph β(·) does not suffer any other singularity. By working with
the infimum µ− a similar argument indicates that β(·) cannot have a singularity
for u < 0. Thus the only singularity permitted is at a single point. This is the
main limitation of these proofs.

6 Power-Like One Point Singularity

Consider now (1.1.dib) with β(·) given by the first of (ii). In such a case we rewrite
the p.d.e. as

|u|
1−m
m ut − div A(x, t, u,∇u) +B(x, t, u,∇u) = 0 in ΩT . (6.1.dib)

If the coefficient of ut were constant, one might perform a change of the time vari-
able to transform (6.1.dib) into a non-singular , uniformly parabolic equation. Fol-
lowing this remark, one might introduce an intrinsic time scale in the parabolic
cylinders {(xo, to) + Qρ}, with respect to which (6.1.dib) would exhibits proper-
ties typical of uniformly parabolic equations. This idea has been introduced and
implemented in [23]. The new intrinsic geometry is constructed as follows. For
ω > 0 let Qρ(ω) denote the cylindrical domain with “vertex” at the origin of
RN+1,

Qρ(ω) ≡ Kρ × {−ρ2ω
1−m
m , 0}. (6.2.dib)
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For (xo, to) ∈ ΩT , we let {(xo, to) +Qρ(ω)} denote the cylinder congruent to
Qρ(ω) and with “vertex” at (xo, to). Having fixed (xo, to) ∈ ΩT and ω > 0, we
will choose ρ > 0 so that {(xo, to) +Qρ(ω)} ⊂ ΩT . Let us fix two constants
δ, η ∈

(
0, 1

2

)
satisfying

δ < (1− η)
m−1
m , (6.3.dib)

and construct, inductively, sequences {ωn}, {ρn} and a family of nested and
shrinking cylinders as follows.

ωo = 2M,ρo such that {(xo, to) + Qρo(ωo)} ⊂ ΩT ;

ωn+1 = (1− η)ωn + Cρλn, ρn+1 = δnρo, ∀n ∈ N;
{(xo, to) +Qρn(ωn)} .

(6.4.dib)

Here C > 1 and λ ∈ (0, 1) are fixed constants. These cylinders all have the same
“vertex”. Therefore, to verify that they are nested it suffices to verify that

ρ2
n+1ω

1−m
m

n+1 < ρ2
nω

1−m
m

n .

By making use of the definitions of ρn and ωn, this is verified if (6.3.dib) holds.

Proposition 6.1. Let u be a weak solution of (1.1.dib) with β(·) of the type of
porous media (i.e., the first of (ii)). Then there exist constants δ, η ∈ (0, 1)
that can be determined a priori only in terms of the data, such that for every
(xo, to) ∈ ΩT ,

ess osc
{(xo,to)+Qρn (ωn)}

u ≤ ωn n = 0, 1, 2, . . . . (6.5.dib)

Here C > 1 and λ ∈ (0, 1) are numbers determined only in terms of the integra-
bility conditions (1.5.dib)–(1.7.dib) and are independent of δ and η. As a consequence
u is locally Hölder continuous in ΩT .

Remark 6.1. The Hölder modulus of continuity can be derived as in the proof of
Proposition 4.1, since the “shrinking” numbers δ and η are independent of the
solution.16

Remark 6.2. It is natural to ask whether the same idea of working with intrin-
sically rescaled cylinders could be used for graphs of the Stefan-type. In such
a case β′(·) is the Dirac mass at the origin. As a consequence the time should
be intrinsically rescaled into another which, loosely speaking, would remain con-
stant on the transition set [u = 0].17 We do not know of a general technical way
of operating such a rescaling. However in [20] we have devised a variant of it, in
the context of the boundary regularity of weak solutions of (1.1.dib).
16 The same idea of introducing an intrinsic geometry, can be applied to doubly non

linear parabolic equations, as long as the singularities and/or degeneracies are power-
like. We refer to Ivanov [31,32], Porzio-Vespri [46] and Vespri [54] for the main points
of the theory.

17 Presumably, a technical implementation of this idea, if at all possible, would require
some preliminary information on the relative size of the singular set [u = 0].
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6.1 Remarks on Boundary Regularity

Suppose that continuous Dirichlet data are prescribed on the lateral part

ST ≡
⋃

t∈(0,T ]
∂Ω × {t},

of the parabolic boundary of ΩT . The boundary data on ST are taken in the
sense of the traces of the functions u(·, t) ∈W 1,1(Ω). In such a case we establish
in [20] that weak solutions of (1.1.dib) are continuous up to ST , both for Stefan-type
graphs and for graphs of the type of porous media. We introduce a time scale
which becomes progressively small as as the essential oscillation of u decreases to
zero. The method however could be implemented only because of the information
contained in the boundary data.

7 Parabolic Equations with Multiple Singularities

Equations with β(·) exhibiting multiple singularities arise naturally from the
flows of two immiscible fluids in a porous medium. The model example is (3.1.dib)
which, as indicated in §3, presents difficulties of similar nature as (1.1.dib). The first
attempt to establish the local continuity of solutions of (3.1.dib) is in [1] under some
assumption on the nature of the degeneracy of the function ϕ(·) introduced in
(3.3.dib), near at least one of the degeneracy points v = 0 and v = 1. For example
ϕ(·) could degenerate at any unrestricted rate near v = 1, provided near v = 0
it degenerates no faster than logarithmically. The result was improved in [21]
by allowing the second degeneracy to be power-like, with no restriction on the
power. This last work employs a “one sided” intrinsic geometry, of the type
discussed in §6, by introducing, roughly speaking, two parabolic scales. When
working near the unrestricted degeneracy, say for example v = 1, we employ the
standard parabolic cylinders {(xo, to) +Qρ}, as in (4.1.dib). This is because, due to
the lack of information on the nature of the degeneracy, no natural rescaling is
available. When working near v = 0, if the degeneracy is power-like, we work
with cylinders coaxial with {(xo, to) + Qρ}, with the same “vertex” at (xo, to)
and whose time scale is of the form (6.2.dib).

Because on the restriction placed on the degeneracy of ϕ(·), both contribu-
tions [1,21] leave open the main issue of local continuity of solutions, as outlined
in §3. The restriction imposed in [1,21], are used to exploit the parabolic nature
of (1.1.dib) on some side of a point of singularity of β(·).

However for general graphs β(·), the equation in (1.1.dib) is not uniformly
parabolic on either side of a singular point. For this reason, any continuity result
for weak solutions of (1.1.dib) with general β(·), would require a “non-parabolic”
approach.

The first approach in this direction appears in [25], where the role played
by (1.1.dib) is reduced essentially to some energy estimates and a major role is
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played instead, by some novel measure-theoretical facts.18 The results of [25] are
optimal in space-dimension N = 2. For N ≥ 3 they are still not complete. We
will state these results and point out the main open problems regarding N ≥ 3.

Theorem 7.1 (N = 2). Let u be a locally bounded weak solution to (1.1.dib), in the
sense of (1.8.dib)–(1.11.dib), where β(·) is any maximal monotone graph satisfying the
coercivity and boundedness conditions (1.2.dib)–(1.3.dib). Assume moreover that N = 2
and that the structure conditions (1.4.dib)–(1.7.dib) are satisfied for N = 2. Then u
is locally continuous in ΩT . Moreover, for every compact subset K ⊂ ΩT , there
exists a continuous, non-negative, increasing function

s −→ ωdata(s), ωdata(0) = 0, (7.1.dib)

that can be determined a priori only in terms of the data and the distance from
K to the parabolic boundary of ΩT , such that

|u(x1, t1)− u(x2, t2)| ≤ ωdata

(
|x1 − x2|+ |t1 − t2|

1
2

)
, (7.2.dib)

for every pair of points (xi, ti) ∈ K, i = 1, 2.

Remark 7.1. The result is optimal in that no restrictions are placed on the sin-
gularities of β(·), and the parabolic equations is permitted to bear the full quasi-
linear structure (1.1.dib)–(1.7.dib). For N ≥ 3 on the other hand, while no restrictions
are placed on β(·), the p.d.e. in (1.1.dib) is required to have a limited structure.

Theorem 7.1 (N ≥ 3). Let u be a locally bounded weak solution to (1.1′.dib),
where β(·) is any maximal monotone graph satisfying the coercivity and bounded-
ness conditions (1.2.dib)–(1.3.dib). Then u is locally continuous in ΩT , with a modulus
of continuity that can be determined quantitatively, a priori only in terms of the
data as in (7.1.dib)–(7.2.dib).

8 Main Ideas of the Proof

In outlining the main points of the proof, we let u be a weak solution of (1.1.dib)
with the full quasilinear structure (1.1.dib)–(1.7.dib) in any number of dimensions, and
will point out later the differences between N = 2 and N ≥ 3. To establish
Proposition 5.1, we fix (xo, to) ∈ ΩT and assume, after a translation, that it
coincides with the origin. We will work with the cubes Kρ and the cylinders Qρ
introduced in (4.1.dib). The numbers µ± and ω are defined as in Section 4.1.

Proposition 8.1. Let δ ∈
(
0, 1

4

)
be a parameter to be chosen and assume that

there exists a time level t̃ ∈ (−ρ2,−δ2ρ2), such that

u
(
x, t̃
)
≤ µ+ − 1

4ω, ∀x ∈ K2δρ. (8.1+.dib)

18 The main one these is stated in Section 11 and is independent of partial differential
equations. For this reason we feel that it might be applicable to other branches of
Analysis.
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Then there exist numbers η ∈ (0, 1) and C > 1, λ ∈ (0, 1), depending upon the
data and δ, but independent of ω and ρ, such that either ω ≤ Cρλ or,

u(x, t) ≤ µ+ − ηω ∀(x, t) ∈ Qδρ ≡ Kδρ ×
(
−δ2ρ2, 0

)
. (8.2+.dib)

Likewise if for some t̃ ∈ (−ρ2,−δ2ρ2), there holds,

u
(
x, t̃
)
≥ µ− + 1

4ω, ∀x ∈ K2δρ, (8.1−.dib)

then either ω ≤ Cρλ, or

u(x, t) ≥ µ− + ηω, ∀(x, t) ∈ Qδρ ≡ Kδρ ×
(
−δ2ρ2, 0

)
, (8.2−.dib)

for the same constants η, C, λ.

The constants C > 1 and λ ∈ (0, 1) depend only on the various parameters
appearing in the structure conditions (1.5.dib)–(1.7.dib) and are independent of ω and
the singularities of β(·). From now on we will consider them fixed.

As indicated in the proof of Proposition 4.2, either one of (8.2+.dib), (8.2−.dib)
implies that going down from Qρ to the smaller cylinder Qδρ, the oscillation of
u decreases of a factor (1− η).

The proof of Proposition 8.1 hinges upon recursive inequalities based on the
logarithmic estimates introduced in [18]. Due to the “initial conditions” (8.1+.dib),
(8.1−.dib) these logarithmic estimates are analogous to those one would derive for
solutions of non-singular equations.19 Another feature of Proposition 8.1 is that
the number η depends upon δ but not upon the oscillation ω. This is precisely
the parameter dependence of Proposition 4.1.

Thus, the starting point of the proof is that if one had some information,
such as (8.1+.dib), (8.1−.dib) on the status of the system at some “initial” time t = t̃,
then the p.d.e. in (1.1.dib) would behave like a quasilinear non-singular parabolic
equation.

To achieve an information of the type (8.1+.dib), (8.1−.dib) we consider cylinders,
coaxial with Qρ, with “vertex” at (0, t̃) and congruent to Q4δρ, i.e.,{

(0, t̃) +Q4δρ

}
≡ K4δρ ×

{
t̃− (4δρ)2 , t̃

}
.

As the time level t̃ ranges over{
−
(
1− 16δ2

)
ρ2 , −16δ2 ρ2

}
, (8.3.dib)

the cylinders {(0, t̃)+Q4δρ}, move inside Qρ remaining coaxial with it. By moving
them in the indicated range, we seek to locate some position of t̃ where one could
derive some “initial” information of the type of (8.1+.dib), (8.1−.dib). Precisely, we will
look for those positions of t̃, where the subset of {(0, t̃) + Q4δρ} where u is

19 The proof of Proposition 8.1 results from combining the logarithmic estimates of §4
of [25] with Propositions 3.2±. We refer to [25] for full proofs.
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close either to µ+ or µ− is small, i.e., for which either one of the following two
inequalities holds,

meas
{

(x, t) ∈ {(0, t̃) +Q4δρ}
∣∣∣∣ u(x, t) ≥ µ+ − 1

2ω

}
≤ ν |Q4δρ| ;

meas
{

(x, t) ∈ {(0, t̃) +Q4δρ}
∣∣∣∣ u(x, t) ≥ µ− + 1

2ω

}
≤ ν |Q4δρ| ,

(8.4±)

for some ν ∈ (0, 1) to be determined in terms of the data.

Proposition 8.2. There exists a number ν ∈ (0, 1), that can be determined a
priori only in terms of the data and ω, such that if (8.4+) holds for some t̃ in
the range (8.3.dib), then either ω ≤ Cρλ or,

u(x, t) ≤ µ+ − 1
4ω ∀(x, t) ∈ {(0, t̃) +Q2δρ}. (8.5+.dib)

Analogously, if (8.4−) holds for some t̃, then either ω ≤ Cρλ or,

u(x, t) ≥ µ− + 1
4ω ∀(x, t) ∈ {(0, t̃) +Q2δρ}. (8.5−.dib)

The proof is based on iterative inequalities starting from energy estimates, sim-
ilar to those one would obtain for quasilinear, non-singular equations. The sin-
gularity of β(·) contributes to these energy estimates with a large constant de-
pending upon the data and ω. For this reason the number ν, in (8.4±) has to be
chosen to depend upon ω.20

A consequence of Proposition 8.2 is that if either one of (8.4±) is verified for
some time level t̃ in the indicated range, then at least one of (8.2+.dib), (8.2−.dib) would
hold true, and the proof could be concluded as indicated in Proposition 4.2.

Therefore the unfavorable case is when both (8.4±) are violated for every
time level t̃ in the range (8.3.dib). The parameter δ introduced in Proposition 8.1 is
still to be chosen. We will choose it in such a way that if the unfavorable case
occurs for all t̃ in the range (8.3.dib) and for arbitrarily small valued of δ, then this
would imply a contradiction.

Consider any one of the cylinders {(0, t̃) +Q4δρ}. If (8.4±) are both violated
for arbitrarily small δ, then near the axis of Qρ, at the time level t̃, there is a
relatively large set where the solution u is close to µ and another relatively large
set where u is close to µ−. Since δ is arbitrarily small and t̃ is arbitrary in the
range (8.3.dib), these two sets are arbitrarily close to each other. Therefore the space
gradient ∇u must be large on a relatively large set. Since however ∇u ∈ L2(Qρ),
this would create a contradiction.

9 Identifying Regions of Concentration of the Energy

The technical implementation of this idea requires that we locate those regions
within {(0, t̃) +Q4δρ} where the energy is sufficiently large. For this we identify
20 Proposition 8.2 corresponds to Propositions 3.1± of [25] to which we refer for a full

proof and further details.
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two sub-cylinders

{(yi, t̃) +Qδ2ρ} ⊂ {(0, t̃) +Q4δρ}, i = 1, 2, (9.1.dib)

where

u(x, t) ≥ 1
4µ

+ ∀(x, t) ∈ {(x1, t̃) +Qδ2ρ};
u(x, t) ≤ 1

4µ
− ∀(x, t) ∈ {(x2, t̃) +Qδ2ρ}.

(9.2.dib)

At first these two cylinders are found within {(0, t̃) +Q4δρ}. Then by using the
arbitrariness of t̃ we identify them has having their “vertices” at (yi, t̃), i.e., at
the same time level t̃. Also, using the arbitrariness of δ we may insure that their
cross sections are mutually separated by a distance of at least δ2ρ.21

It is in this process that the new Lemma on measure theory plays a role.
Assume for the moment that (8.4+) is violated so that the set where u is close
to µ+ is relatively large. The Lemma asserts that u must be close to µ+ in
some sufficiently small box within {(0, t̃) +Q4δρ}, i.e., the set where u is close to
µ+, even though it might be scattered in {(0, t̃) + Q4δρ}, it must have, loosely
speaking, some concentration regions within it. We will state and discuss this
Lemma in Section 11. Here we observe that (9.2.dib) implies

1
4ω ≤ u(x1, t)− u(x2, t) ∀xi ∈

{
yi +Kδ2ρ

}
, i = 1, 2, (9.3.dib)

for all the time levels

t ∈
(
t̃− δ4ρ2, t̃

)
. (9.3′.dib)

For t fixed in the indicated range, we first integrate (9.3.dib) over a path, piecewise
parallel to the coordinate axes and joining

x1 ∈
{
y1 +Kδ2ρ

}
and x2 ∈

{
y2 +Kδ2ρ

}
.

Then using the arbitrariness of these points within their ranges, we integrate the
resulting segment-integrals, over the remaining (N − 1) variables, and then over
the time in the range (9.3′.dib). This yields

γ(ω) (δρ)N ≤
∫ t̃

t̃−δ2ρ2

∫
Kδρ\Kδ2ρ

|∇u|2dxdτ, (9.4.dib)

where γ(ω) is a constant depending upon the data and ω. This inequality has
been derived for all t̃ in the range (8.3.dib) for which (8.4±) are both violated. We
observe that, for t̃ in such a range, the number of disjoint cylinders of the type
{(0, t̃) +Q4δρ} is of the order of δ−2. Thus adding (9.4.dib) over the corresponding
boxes, gives

γ(ω) δN−2ρN ≤
∫ 0

−ρ2

∫
Kδρ\Kδ2ρ

|∇u|2dxdτ, (9.4′.dib)

21 The proof of these assertions is in §5–8 of [25].
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The argument can now be repeated with δ replaced by δ2, since δ can be chosen
to be arbitrarily small. Therefore we conclude that for all n ∈ N,

γ(ω)δn(N−2)ρN ≤
∫ 0

−ρ2

∫
Kδnρ\Kδn+1ρ

|∇u|2dxdτ, (9.4n.dib)

On the other hand, a standard energy estimate, gives∫∫
Qρ

|∇u|2dxdτ ≤ (const)ρN . (9.5.dib)

We seek to derive a contradiction by iterating and adding (9.4n.dib) and comparing
the resulting integral with (9.5.dib).22

9.1 The case N = 2

Adding (9.4n.dib) for n = 1, 2, . . . , no, and taking into account (9.5.dib) implies that,

γ(ω)no ≤ (const).

This is a contradiction if no is sufficiently large depending on the data and ω.
It follows that at least one of (8.4±) must hold for t̃ in the range (8.3.dib) and for
some radius ρo ∈ [ρ, δnoρ]. In view of Propositions 8.2 and 8.1 this would imply
the result.

Remark 9.1. The same argument could be applied whenever one has information
that essentially reduce the space dimension N to 1 or 2. This for example would
occur for radial solutions of (1.1.dib).

10 The Case N ≥ 3

The key observation here is that, even though the previous argument fails if
N > 2, an information of the type of (9.4.dib) continues to hold within any sub-
cylinder of Qρ not necessarily coaxial with it. With the number δ to be chosen,
we assume, without loss of generality that (4δ)−1 is an integer, say for example
m, and partition the original cube Kρ, up to a set of measure zero, into mN

pairwise disjoint sub-cubes of wedge (8δρ) and centered at points x` ∈ Kρ, i.e.,

{x` +K4δρ} ⊂ Kρ, ` = 1, 2, . . . ,mN ;
{x` +K4δρ} ∩ {xj +K4δρ} = ∅ if ` 6= j;

Kρ =
⋃mN

`=1
{x` +K4δρ}.

22 These inequalities are proved in Sections 9–12 of [25].
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Then we partition the original cylinder Qρ, up to a set of measure zero, into
mN+2 pairwise disjoint sub-cylinders with vertices at (x`, th) and all congruent
to Q4δρ, i.e.,

{(x`, th) +Q4δρ} ` = 1, 2, . . . ,mN ;h = 1, 2, . . . ,m2;
{(x`, th) +Q4δρ} ∩ {(xj , tk) +Q4δρ} = ∅ if ` 6= j or h 6= k;

Qρ =
⋃mN

`=1

⋃m2

h=1
{(x`, th) +Q4δρ}.

(10.1.dib)

Returning to (8.4±), we claim that at least one of them must be satisfied, for at
least one of the cylinders {(x`, th)+Q4δρ} making up the partition of Qρ. Indeed
if both of (8.4±) are violated for all these cylinders, then inequality (9.4.dib) must
hold for all of them. We rewrite such inequalities in a sightly different form, i.e.,

γ(ω) (δρ)N ≤
∫ th

th−δ2ρ2

∫
{x`+Kδρ}

|∇u|2dxdτ,
` = 1, 2, . . . ,mN ;

h = 1, 2, . . . ,m2.

Adding these inequalities over the indicated indices and taking into account (9.5.dib)
gives,

γ(ω)m2(mδ)N ≤ (const) =⇒ δ−2 ≤ γdata(ω).

This is a contradiction for δ sufficiently small, depending on ω. It follows that at
least one of (8.4±) must hold for at least one of the cylinders (10.1.dib) making up
the partition of Qρ. Suppose for example that (8.4−) holds true for the cylinder
{(x`, th) +Q4δρ}. Then, by Proposition 8.2,

u(x, t) ≥ µ− + 1
4ω ∀(x, t) ∈ {(x`, th) +Q2δρ}. (8.5−(`,h))

If x` ≡ 0, then the cylinder {(x`, th) + Q4δρ} would be coaxial with Qρ, and
the proof could be concluded as indicated in Proposition 8.1. Thus the main
point of the proof for N ≥ 3 is to establish that a version of (8.5−(`,h)) actually
holds for a cylinder coaxial with Qρ. Alternatively we seek to establish that some
bound below for u, within a region, would yield a bound below in a larger region.
Estimates of this kind are typical of solutions of quasilinear parabolic equations
and are contained for example in [44,38,52]. The difficulty here is the presence
of the singularity of β(·).

In our proof such space propagation of a bound below , is technically realized
by means of a suitable comparison function. To construct such a comparison
function as well as to make full use of the comparison principle, the p.d.e. in
(1.1.dib) is required to have the restricted structure (1.1′.dib).

10.1 Open Problems

We omit here the presentation of such a construction as we feel that the space
extension of positivity should hold for equations with the full quasilinear struc-
ture (1.4.dib) and it should be independent of the comparison principle. What seems
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to be missing is some sort of weak form of the Harnack inequality ([44,52]), for
solutions of singular parabolic equations.

We feel that an understanding of this point would permit one also to establish
a, still missing, regularity Theorem up to the parabolic boundary of ΩT .

11 A Lemma of Measure Theory

For r > 0 let Kr be a cube of wedge 2r and centered at the origin, as in (4.1.dib).
Let v ∈ W 1,p(Kr), p > 1 satisfy∫

Kr

|∇v|pdx ≤ γ rN−p. (11.1.dib)

Inequalities of this type are satisfied by harmonic functions in a domain Ω con-
taining Kr, or more generally by solutions of quasilinear elliptic equations in
divergence form.

Lemma 11.1. Suppose that for some α ∈ (0, 1) there holds

meas
{
x ∈ Kr

∣∣ v(x) < 1
}
≥ α|Kr|. (11.2.dib)

Then for every ε ∈ (0, 1) and θ > 1, there exists some x∗ ∈ Kr and a number
δ ∈ (0, 1) that can be determined a priori only in terms of N, α, ε, θ, such that

meas
{
x ∈ {x∗ +Kδ r}

∣∣ v(x) < θ
}
≥ (1− ε)|Kδr|. (11.3.dib)

If v were continuous in Kr, then by the Theorem of the permanence of positivity,
the Lemma would be trivial. However a function v ∈W 1,p(Kr), has some regu-
larity. Thus the Lemma can be regarded as some sort of permanence of positivity
for functions in W 1,p(Kr). It asserts that if the set where (v − 1) is negative,
is quantitatively non negligible, then the set where (v − θ) is negative, mighty
be partly scattered within Kr, provided some of it is concentrated within a full
cube {x∗ +Kδ r}.

11.1 An Open Question

The proof is independent of (1.1.dib) or any partial differential equations and makes
only use of measure-theoretical arguments, starting from (11.1.dib). The number δ
deteriorates as either ε↘ 0 or θ ↘ 1.

The proof also uses in an essential way that v ∈ W 1,p(Kr) for p > 1. It would
be of interest to investigate it when p = 1.

11.2 Use of the Lemma in the Context of (1.1.dib)

The Lemma is applied to a solution u of (1.1.dib) in the following manner. Suppose
for example that (8.4−) is violated for some t̃ in the range (8.3.dib). Then for some
time level

t ∈ (t̃− 16r2, t̃), where r = δρ, (11.4.dib)
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there holds,

meas
{
x ∈ Kr

∣∣ u(x, t) > µ− + 1
2ω
}
> ν|Kr|. (11.5.dib)

By setting

v(x, t) =
2 {u(x, t)− µ−}

ω
,

we rewrite (11.5.dib) as

meas
{
x ∈ Kr

∣∣ v(x, t) < 1
}
≥ ν|Kr|. (11.2t.dib)

Then, by possibly modifying the positive number ν into a new quantifiable posi-
tive number α ∈ (0, ν), we establish the existence of a time τ in the range (11.4.dib)
such that the following two inequalities both hold,

meas
{
x ∈ Kr

∣∣ v(x, t) < 1
}
≥ α|Kr|,∫

Kr

|∇v(x, τ)|2dx ≤ γdata(ω) rN−2,

for a constant γdata(ω) depending only upon the data and ω, and independent
of τ . Therefore by Lemma 11.1, having fixed ε ∈ (0, 1) and θ = 3

2 there exists a
number δ ∈ (0, 1) and a cube {x∗ +Kδr} ⊂ Kr, such that

meas
{
x ∈ {x∗ +Kδr}

∣∣ u(x, τ) < µ− +
1 + σ

2
ω

}
≥ (1− ε)|Kδr|.

It follows that one has

u(x, τ) ≤ µ− + 3
4ω

= µ+ − µ+ + 3
4 (µ+ − µ−)

= µ+ − 1
4ω,

(11.6.dib)

everywhere in {x∗+Kδr} except at most a set of measure less than ε|Kδr|. The
information in (11.6.dib) is similar to (8.1+.dib) where some information is available at
some “initial” time t̃. Here the time is τ and the information is not as complete
since out of {x∗ + Kδr} one has to remove a set of measure less than ε|Kδr|.
However since ε ∈ (0, 1) is arbitrary, we establish that ε can be chosen so small
that (11.6.dib) is sufficient to apply a version of Proposition 8.1.
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33. D. Kröner and S. Luckhaus, Flow of Oil and Water in a Porous Medium J. Diff.
Equ., 55 (1984), 276–288.

34. S. N. Kruzkov, On the a Priori Estimation of Solutions of Linear Parabolic Equa-
tions and of Solutions of Boundary Value Problems for a Certain Class of Quasi-
Linear Parabolic Equations, Dokl. Akad. NAUK SSSR 138 (1961), 1005–1008;
(Engl. Transl. in Soviet Math. Doklady 2 (1961), 764–767).

35. S. N. Kruzkov, A Priori Estimates and Certain Properties of the Solutions of El-
liptic and Parabolic Equations of Second Order, Mat. Sbornik 65 (107), (1968),
522–570; (Engl. Transl. Amer. Math. Soc. Transl. 2 (68), (1968), 169–220).

36. S. N. Kruzkov, Results Concerning the Nature of the Continuity of Solutions of
Parabolic Equations and Some of Their Applications, Math. Zametki 6, (1969),
97–108 (Russian).

37. S. N. Kruzkov and S. M. Sukorjanski, Boundary Value Problems for Systems of
Equations of two Phase Porous Flow Type: Statement of the Problems, Questions
of Solvability, Justification of Approximate Methods, Mat. Sbornik, 44 (1977),
62–80.

38. N. V. Krylov and M. V. Safonov, A Certain Property of Solutions of Parabolic
Equations with Measurable Coefficients, Math. USSR Izvestija 16 (1) (1981),
151–164.

39. O. A. Ladyzenskaja, V. S. Solonnikov and N. N. Ural’ceva, Linear and Quasilinear
Equations of Parabolic Type, Amer. Math. Soc., Providence RI, 1968.

40. M. C. Leverett, Capillary Behavior in Porous Solids, Trans. Amer. Inst. Mining
and Metallurgical Engrs., 142 (1941), 151–169.
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