
EQUADIFF 9

Vy Khoi Le; Klaus Schmitt
Some global bifurcation problems for variational inequalities

In: Ravi P. Agarwal and František Neuman and Jaromír Vosmanský (eds.): Proceedings of
Equadiff 9, Conference on Differential Equations and Their Applications, Brno, August 25-29,
1997, [Part 1] Survey papers. Masaryk University, Brno, 1998. CD-ROM. pp. 97--113.

Persistent URL: http://dml.cz/dmlcz/700274

Terms of use:
© Masaryk University, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/700274
http://project.dml.cz


EQUADIFF 9 CD ROM, Brno 1997 PROCEEDINGS

Masaryk University pp. 97–113

Some Global Bifurcation Problems for

Variational Inequalities

Vy Khoi Le1 and Klaus Schmitt2

1 Department of Mathematics and Statistics
University of Missouri - Rolla
Rolla, Missouri, 65409, USA

Email: vy@umr.edu
2 Department of Mathematics

University of Utah
Salt Lake City, Utah 84112, USA
Email: schmitt@math.utah.edu

Abstract. The paper presents several examples of bifurcation problems
for variational inequalities and discusses an abstract framework for treat-
ing such problems. This abstract framework is applied to analyze some
of the problems stated.

AMS Subject Classification. 35J85, 35R35, 49J40, 49R99, 73V25

Keywords. Variational inequalities, unilateral problems, topological de-
gree, bifurcation problems

1 Introduction

This paper is based on a lecture presented by the second author at Equadiff 9
held during the last week of August, 1997 in Brno, Czech Republic. The purpose
of the lecture was to present several illustrations of global bifurcation phenomena
in variational inequalities and to present some general framework for the analysis
of such problems. Thus we present and discuss several examples and show how
the global bifurcation results derived in [9] may be applied.

We first present examples of bifurcation problems which may be formulated
as variational inequalities, then provide an abstract setting for these problems
and state and sketch a proof of a global bifurcation theorem which will apply
in these situations and finally provide a (partial) bifurcation analysis for the
examples given.

When studying buckling phenomena of constrained elastic systems, one is
led in a very natural way to bifurcation problems for variational inequalities.
For example, the problem of the buckling of a slender column (beam) that is
constrained by some obstacles leads to a problem for variational inequalities,
simply because one searches for extremal points of an energy functional in a
space of possible displacements determined by the obstacles, and hence these
extremal points, which in the absence of constraints result in the Euler-Lagrange
differential equations, now will be characterized as solutions of inequalities.
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2 Some examples

In this section we present several examples of bifurcation problems which may
be formulated as bifurcation problems for variational inequalities.

2.1 A unilateral problem

Consider the following ordinary differential equation

−u′′ + u = λ(u + u3), t ∈ (0, π), (2.1.sch)

subject to the unilateral constraints
0 ≤ u(0), 0 ≤ u(π)

u′(0) ≤ 0 ≤ u′(π)

u(0)u′(0) = 0 = u(π)u′(π).

(2.2.sch)

Since nontrivial solutions of (2.1.sch) may not have multiple zeros, we see that the
above problem includes four different types of boundary value problems, namely
problems subject to the following conditions:

1. Dirichlet boundary conditions:

u(0) = 0 = u(π), (2.3.sch)

where, however λ must be restricted so that the second of the unilateral
conditions (2.2.sch) hold, i.e.

u′(0) < 0 < u′(π). (2.4.sch)

Thus, for example, the problem may not have any solutions u, with u(t) > 0,
t ∈ (0, π), nor any solutions u with u(t) > 0 for t in a neighborhood of 0
and u(t) < 0 for t in a neighborhood of π. Thus, imitating the bifurcation
analysis for nonlinear Sturm-Liouville problems, we would surmise that the
values

λ = n2 + 1, n = 1, 3, · · · (2.5.sch)

are bifurcation points, whereas the values

λ = n2 + 1, n = 2, 4, · · · (2.6.sch)

are not. Furthermore, changing the sign of a solution will no longer yield a
solution. Solutions must have an even number of zeros interior to (0, π).
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2. Neumann boundary conditions:

u′(0) = 0 = u′(π), (2.7.sch)

where, however λ must be restricted so that the first of the unilateral con-
ditions (2.2.sch) hold, i.e.

u(0), u(π) > 0. (2.8.sch)

Again, using the bifurcation analysis for nonlinear Sturm-Liouville problems,
we find that the values

λ = n2 + 1, n = 0, 2, 4, · · · (2.9.sch)

are bifurcation points, whereas the values

λ = n2 + 1, n = 1, 3, · · · (2.10.sch)

are not. Again, changing the sign of a solution will no longer yield a solution
and solutions must have an even number of zeros interior to (0, π).

3. Mixed Dirichlet and Neumann boundary conditions:

u(0) = 0 = u′(π), (2.11.sch)

where, however λ must be restricted so that the first and the second of the
unilateral conditions (2.2.sch) hold, i.e.

u′(0) < 0, u(π) > 0. (2.12.sch)

As above, we compute that the values

λ =
(

2n− 1
2

)2

+ 1, n = 1, 3, 5, · · · (2.13.sch)

are bifurcation points, whereas the values

λ =
(

2n− 1
2

)2

+ 1, n = 2, 4, 6, · · · (2.14.sch)

are not. Changing the sign of a solution will no longer yield a solution and
these solutions must have an odd number of simple zeros interior to (0, π).

4. Mixed Neumann and Dirichlet boundary conditions:

u′(0) = 0 = u(π), (2.15.sch)

where, however λ must be restricted so that the first and the second of the
unilateral conditions (2.2.sch) hold, i.e.

u(0) > 0, u′(π) > 0. (2.16.sch)

In this case we obtain the set of bifurcation points as for the other set of
mixed boundary conditions considered above.
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Let us formulate the above problem as an equivalent bifurcation problem for
a variational inequality. To this end we consider the Sobolev space H1(0, π) (of
all L2(0, π) functions with a square integrable first distributional derivative) and
let the (closed and convex) set K be defined by

K = {u ∈ H1(0, π) : u(0) ≥ 0, u(π) ≥ 0}.

Then, if u solves (2.2.sch), u will be in H2(0, π) and hence u ∈ C1[0, π]. Therefore
if u also satisfies the boundary constraints (2.3.sch), we may multiply (2.1.sch) by an
arbitrary v ∈ K and an integration by parts and the boundary constraints yield

∫ π

0

u′(v − u)′ + u(v − u)− λ(u + u3)(v − u) ≥ 0, ∀v ∈ K,

u ∈ K,
(2.17.sch)

which is a variational inequality. Conversely, if u solves the variational inequality
(2.17.sch), using the density of C∞0 (0, π) in K, we easily conclude that u actually
solves (2.1.sch), (2.2.sch).

If we denote by IK , the indicator function of the set K, i.e.

IK(u) =

0, u ∈ K

∞, u /∈ K,

then we see that the variational inequality (2.17.sch) is equivalent to the variational
inequality

∫ π

0

u′(v − u)′ + u(v − u)− λ(u + u3)(v − u) + IK(v)− IK(u) ≥ 0

∀v ∈ H1(0, π)

u ∈ H1(0, π).

(2.18.sch)

We note here, that because of the convexity and closedness of K, the functional
IK is a lower semicontinuous convex functional on the (Hilbert) space H1(0, π).

2.2 A unilateral problem for a semilinear elliptic equation

A higher dimensional analogue of the problem discussed above in section 2.1
is the following unilateral problem. Let Ω be a bounded smooth domain in
RN , N ≥ 2, and consider the semilinear elliptic equation

−∆u+ u = λ(u + g(u)), x ∈ Ω, (2.19.sch)

where g : R → R is a smooth odd function with g′(0) = 0 and |g(u)| ≤ a +
b|u|s, 1 ≤ s < N+2

N−2 . Let the following unilateral constraints be imposedu(x) ≥ 0, ∂u
∂ν ≥ 0, x ∈ ∂Ω

u(x)∂u∂ν = 0, x ∈ ∂Ω,
(2.20.sch)
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where ν is the unit normal vector field to ∂Ω.
In this case, if we consider the Sobolev space H1(Ω) and let

K = {u ∈ H1(Ω) : u(x) ≥ 0, x ∈ ∂Ω ( in the sense of traces)},

then the above unilateral problem is equivalent to the variational inequality

∫
Ω

∇u∇(v − u) + u(v − u)− λ(u + g(u))(v − u) + IK(v) − IK(u) ≥ 0,

∀v ∈ H1(Ω),

u ∈ H1(Ω).
(2.21.sch)

It is again apparent that the special Dirichlet problem, i.e. equation (2.19.sch) sub-
ject to the boundary condition

u = 0, x ∈ ∂Ω,

and the Neumann problem, i.e. equation (2.19.sch) subject to

∂u

∂ν
= 0, x ∈ ∂Ω

will yield some of the bifurcation points for problem (2.21.sch). However, one very
quickly sees that much more is needed to detect other bifurcation points.

2.3 A simply supported, or clamped, slender beam subject to
elastic obstacles

In this example, we consider a bifurcation problem for a beam resting between
two foundations (one above and one below, with partial contact along its length)
with nonlinear elastic laws. This problem can be modeled by the following vari-
ational inequality:



∫ a

0

u′′(v − u)′′ − λ
∫ a

0

u′√
1 + u′2

(v − u)′

+
[∫

I1

k1(v−)γ +
∫
I2

k2(v+)β
]

−
[∫

I1

k1(u−)γ +
∫
I2

k2(u+)β
]
≥ 0, ∀v ∈ E,

u ∈ E.

(2.22.sch)

Here, [0, a] (a > 0) is the interval occupied by the beam, and E = H2
0 (0, a),

or E = H2(0, a) ∩ H1
0 (0, a) depending on whether the beam is clamped or is

simply supported at the ends 0 and a. I1, I2 ⊂ (0, a), |I1|, |I2| > 0 are closed,
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disjoint sets representing the domain of possible contact between the beam and
the foundations.

We refer to [12], [13], and [14], for the physical motivation in deriving such
a model.

Because u 7→ u+, u−, u ∈ R are nonnegative and convex, we see that the
functional j, given by

j(u) =
∫
I1

k1(u−)γ +
∫
I2

k2(u+)β ,

is well defined, with values in [0,∞]. Moreover, j is convex and nonnegative, and
j(0) = 0. Using Fatou’s lemma, we find that j is lower semicontinuous on V .

2.4 Bifurcation problems for Navier-Stokes flows

We consider here bifurcation problems for some (nonlinear) variational inequal-
ities associated with the Navier-Stokes equation, subject to different types of
unilateral constraints (cf. [10]). Let Ω be a bounded domain in R3 with smooth
boundary. We are concerned with variational inequalities of the form:

ν

∫
Ω

Du : D(v − u) + b(u, u, v − u) + j(v)− j(u)

≥
∫
Ω

g(x, u, λ) · (v − u), ∀v ∈ E

u ∈ E.

(2.23.sch)

Here E = {v ∈ [H1
0 (Ω)]3 : divv = 0 a.e. in Ω}. E is a (Hilbert) subspace of

[H1
0 (Ω)]3 with the restricted norm and scalar product. We also denote Du =

[∂iuj ]1≤i,j≤3 and assume that ν > 0 is the viscosity constant.
Let b be the trilinear form defined on [H1

0 (Ω)]3 by

b(u, v, w) =
∫
Ω

3∑
i,j=1

ui(∂ivj)wjdx

=
∫
Ω

uT (Du)wdx,

for all u, v, w ∈ [H1
0 (Ω)]3.

We also assume that j : V → [0,∞] is a convex, lower semicontinuous func-
tional such that j(0) = 0, and g : Ω×R3×R→ R3, (x, u, λ) 7→ g(x, u, λ) satisfies
the Carathéodory condition (i.e. gi satisfies this condition for each i = 1, 2, 3).
We assume that g is differentiable with respect to u and g,Dug satisfies the
usual growth condition: |g(x, u, λ)| ≤ A(λ) +B(λ)|u|s−1

|Dug(x, u, λ)| ≤ A(λ) +B(λ)|u|s−2,
(2.24.sch)



Global Bifurcation Problems 103

for a.e. x ∈ Ω, all u, λ ∈ R, with A,B ∈ L∞loc(R), 1 < s < 6(= 2∗).
Here u is the velocity of the fluid, b is the usual trilinear form in the Navier-

Stokes equation, and g is the outer force acting on the fluid. g depends on u (in
a nonlinear manner) and on λ, which usually represents the magnitude of the
force. We assume that

g(x, 0, λ) = 0 for a.e. x ∈ Ω, all λ ∈ R,

i.e., we have no external force at points with zero velocity. Here j is some kind of
constraint imposed on the velocity. In many cases, j is of the form j = IK , where
K is a closed, convex subset of V , representing the set of admissible velocity fields
of the fluid. For example, interesting choices of K are the following:

K = {u ∈ E : u1(x) ≥ −c, u2(x) ≥ −d, c, d ≥ 0},

K = {u ∈ E : |∇ × u| ≤ c, c ≥ 0},

K = {u ∈ E : |
∫
S

u · ndS| ≤ c, c ≥ 0}.

In the case j = 0, the variational inequality (2.23.sch) becomes the equation:
ν

∫
Ω

Du : Dv + b(u, u, v) =
∫
Ω

g(x, u, λ) · v, ∀v ∈ E

u ∈ E,
(2.25.sch)

which is the usual variational form of the Navier-Stokes equation (cf. [11], [16],
or [17]).

Other interesting choices for the functional j (the case of visco plastic Bing-
ham fluids, cf. [11]) are:

j(u) =
∫
Ω

µ(x)|Du|γ ,

j(u) =
∫
Ω

µ(x)|
∑

ε2ij(u)|γ ,

where
εij(u) =

1
2

(∂iuj + ∂jui)

and µ is a nonnegative locally integrable function.

2.5 Bifurcation problems associated with the p-Laplace operator

In this example, we consider bifurcation problems for the following variational
inequality:

∫
Ω

|∇u|p−2∇u∇(v − u)−
∫
Ω

[λ|u|p−2u+ g(x, u, λ)](v − u) + j(v)− j(u)

≥ 0, ∀v ∈ E,

u ∈ E.
(2.26.sch)
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Here p > 1, Ω is a bounded domain in RN (N ≥ 1) with a smooth boundary,

E = {u ∈W 1,p(Ω) : v = 0 on Γ},

where Γ is a (relatively) open subset of ∂Ω with positive measure. W 1,p(Ω) is
the usual Sobolev space, equipped with the norm,

‖u‖W 1,p(Ω) =
[∫

Ω

(|u|p + |∇u|p)
]1/p

, u ∈ W 1,p(Ω).

(E, ‖ · ‖W 1,p(Ω)) is a closed (Banach) subspace of W 1,p(Ω). By Poincaré’s in-
equality, we know that

‖u‖ =
(∫

Ω

|∇u|p
)1/p

, u ∈ E,

defines a norm on E, equivalent to ‖ · ‖W 1,p(Ω). In the sequel, we will always
consider E with this norm. We also define the pairing between E and E∗ by
〈·, ·〉. We assume that

g : Ω × R× R→ R

is a Carathéodory function, such that

g(x, u, λ) = o(|u|p−1), (2.27.sch)

as u→ 0, uniformly a.e. with respect to x ∈ Ω and uniformly with respect to λ
on bounded intervals, and, moreover, g satisfies the growth condition

|g(x, u, λ)| ≤ C(λ)[m(x) +M |u|p−1], (2.28.sch)

for a.e. x ∈ Ω, all u, λ ∈ R, where C(λ) ≥ 0 is bounded on bounded sets,
m ∈ L

p
p−1 (Ω), and M > 0 is a constant.

As a particular choice for the functional j we shall take

j(u) =
∫
∂Ω

|u|dS, u ∈ V. (2.29.sch)

Other choices of j will also be considered.

3 The abstract setting

In this section we shall provide an abstract framework for a bifurcation analysis
for the types of problems introduced in the previous section, section 2. The
setting will be variational inequalities in reflexive Banach spaces.
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3.1 Notation and definitions

Throughout we shall denote by E a reflexive Banach space and by E∗ its dual.
The norm in E will be denoted by ‖ · ‖ and that in E∗ by ‖ · ‖∗. The pairing
between E∗ and E shall be given by 〈·, ·〉, i.e. if f ∈ E∗ and u ∈ E, then
f(u) = 〈f, u〉.

We shall assume that:

–

j, J : E → R+ ∪ {∞}

are convex and lower semicontinuous functionals with

j(0) = J(0) = 0.

–

A,α : E → E∗

are continuous and bounded operators with

A(0) = α(0) = 0,

which are strictly monotone, coercive and belong to class (S), i.e:

• A is strictly monotone:

〈A(u)−A(v), u − v〉 > 0, whenever u 6= v.

• A is coercive: There exist constants c > 0 and p > 1 such that

〈A(u), u〉 ≥ c‖u‖p, ∀u ∈ E.

• A belongs to class (S) : For all weakly convergent sequences {vn}, vn ⇀
v, with

lim〈A(vn), vn − v〉 = 0,

it must hold that

vn → v.

–

B, f : R× E → E∗

are completely continuous operators with

B(λ, 0) = 0 = f(λ, 0), ∀λ ∈ R.
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3.2 Homogenizations

The following relationships between the operators introduced above (section 3.1)
will be assumed:

– For all sequences {vn}, vn → v, and all sequences of positive numbers
σn, σn → 0+,

lim
1

σp−1
n

A(σnvn) = α(v).

– For all weakly convergent sequences {vn}, vn ⇀ v, and all sequences of
positive numbers σn, σn → 0+, all sequences {λn}, λn → λ,

lim
1

σp−1
n

B(λn, σnvn) = f(λ, v).

– For all weakly convergent sequences {vn}, vn ⇀ v, and all sequences of
positive numbers σn, σn → 0+,

lim inf
1
σpn
j(σnvn) ≥ J(v),

further, for all v ∈ E, and all sequences of positive numbers σn, σn → 0+,
there exists a sequence {vn}, vn → v, such that

lim
1
σpn
j(σnvn) = J(v).

3.3 Equivalent operator equations

Consider, for g ∈ E∗, the variational inequality 〈A(u)− g, v − u〉+ j(v)− j(u) ≥ 0, ∀v ∈ E

u ∈ E.
(3.1.sch)

It follows from classical results (see e.g. [7], [11]), that this problem is uniquely
solvable, hence defines an operator

TA,j : E∗ → E (3.2.sch)

by
TA,j(g) = u,

where u is the unique solution of (3.1.sch). This operator is also continuous (cf. [9]).
Therefore, if we consider the variational inequality 〈A(u)−B(λ, u), v − u〉+ j(v)− j(u) ≥ 0, ∀v ∈ E,

u ∈ E,
(3.3.sch)
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then u solves (3.3.sch) if and only if u solves

TA,jB(λ, u) = u. (3.4.sch)

And similarly if we consider the variational inequality 〈α(u)− f(λ, u), v − u〉+ J(v)− J(u) ≥ 0, ∀v ∈ E,

u ∈ E,
(3.5.sch)

then u solves (3.5.sch) if and only if u solves

Tα,Jf(λ, u) = u. (3.6.sch)

It follows from the relationships between A and α, B and f and j and J,
that if u solves (3.5.sch) then so does σu for any σ(> 0) ∈ R.

3.4 Global bifurcation

Let us assume that (λ0, 0) ∈ R × E is a bifurcation point for (3.3.sch), then it
follows that (3.5.sch) and hence also (3.6.sch) will have a nontrivial solution for λ = λ0.
Therefore, if a ∈ R is such that (3.5.sch) has only the trivial solution for λ = a, it
will follow that for r > 0, sufficiently small, the Leray-Schauder degree

d(id− Tα,Jf(a, ·), Br(0), 0)

is defined (here Br(0) is the open ball of radius r in E centered at 0) and we
obtain

d(id− Tα,Jf(a, ·), Br(0), 0) = d(id− TA,jB(a, ·), Br(0), 0)

(see e.g. [9]). We hence may employ the homotopy invariance principle of the
Leray-Schauder degree, to conclude that if a, b ∈ R, a < b are such that (3.5.sch)
has only the trivial solution for λ = a, b and if

d(id− Tα,Jf(a, ·), Br(0), 0) 6= d(id− Tα,Jf(b, ·), Br(0), 0) (3.7.sch)

then [a, b]×{0} will contain a bifurcation point for (3.4.sch) and hence for (3.3.sch) (cf.
[8]). In fact, we may employ the global bifurcation result of Rabinowitz [15] to
conclude that global bifurcation takes place in the sense of that theorem.

Thus in bifurcation problems of the type (3.3.sch), in order to be able to apply the
above considerations we need to compute the operators α and f, the functional
J. Further one needs to find values a, b ∈ R, a < b such that (3.7.sch) holds for λ
values a and b (by no means an easy task, in general). This we shall do for some
of the examples considered in section 2 and refer the interested reader to many
additional examples in [9].
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4 Examples revisited

In this section we shall employ the abstract setting discussed in section 3 to
discuss the existence of some bifurcation points for examples related to those in-
troduced in section 2. We shall not dwell on the first example, since this problem
is equivalent to the existence of bifurcation branches (in K) of four different non-
linear Sturm-Liouville problems, those problems being completely understood.

Before turning to the discussion of some of the other examples, we present
some other abstract features common to some of them.

4.1 Semilinear problems

Let us assume
a : E × E → R

is a continuous, coercive and bilinear form and let

A : E → E∗

be defined by
〈A(u), v〉 = a(u, v).

Furthermore assume that

B(λ, u) = λBu+R(u), R(u) = o(‖u‖), as u→ 0,

with B compact linear and that

j = IK ,

where K is a closed convex subset of E with 0 ∈ K.
In this case one easily computes that p = 2, α = A, f(λu) = λBu and

J = IK0 , where K0 is the support cone of K, i.e

K0 = ∪t>0tK.

If it is the case that K0 is a subspace of E, then the variational inequality (3.5.sch)
becomes  〈α(u)− f(λ, u), v − u〉+ IK0(v)− IK0(u) ≥ 0, ∀v ∈ E,

u ∈ E,
(4.1.sch)

which is equivalent to 〈α(u)− f(λ, u), v − u〉 ≥ 0, ∀v ∈ K0

u ∈ K0,
(4.2.sch)
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and, since K0 is a subspace, the latter is equivalent to 〈α(u) − f(λ, u), v〉 = 0, ∀v ∈ K0

u ∈ K0.
(4.3.sch)

From this we see (recall the comment at the end of section 3.3) that the solution
operator Tα,J is a bounded linear operator and equation (3.6.sch) becomes

u = λTα,JBu. (4.4.sch)

Hence the possible bifurcation points for (3.3.sch) are to be sought among the count-
able set {(λi, 0)}, where λi is a characteristic value of the compact linear operator
Tα,JB. And each characteristic value of odd multiplicity will yield a bifurcation
point. We note here that what has just been said is true as long as J is the
indicator function of a subspace, irregardless whether j = IK for some closed
convex set K.

4.2 A semilinear elliptic problem

Let Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω, and let Γ ⊂ ∂Ω
be a relatively open subset of positive measure.

Let
E = {u ∈ H1(Ω) : u = 0, a.e. on Γ}.

Let
a : E × E → R

be given by

a(u, v) =
∫
Ω

∇u · ∇v,

then (because of Poincaré’s inequality) a is a continuous, coercive and bilinear
form. Let g : R→ R be a continuous function with g(u) = o(|u|) as u→ 0, and
define B(λ, u) by

〈B(λ, u), v〉 =
∫
Ω

λuv + g(u)v,

then

〈f(λ, u), v〉 =
∫
Ω

λuv.

Let us define the functional j by

j(u) =
∫
∂Ω

µ|u|γ ,

where µ, γ are positive constants with 1 ≤ γ < 2.
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Embedding theorems (see [1], [6]) tell us that the mapping

H1(Ω) ↪→ Lq(∂Ω)

u 7→ u|∂Ω

are compact for

1 ≤ q < p̄ =


2(N−1)
N−2 , N > 2

∞, N = 1, 2.

It hence will follow that j is convex and lower semicontinuous and (since p = 2
and 1 ≤ γ < 2) that

J(u) = IH1
0 (Ω).

It hence follows from the results above, i.e. the results in section 4.1, that (3.5.sch)
is equivalent to the problem∫

Ω

∇u · ∇v − λ
∫
Ω

uv = 0, ∀v ∈ H1
0 (Ω), u ∈ H1

0 (Ω), (4.5.sch)

which is equivalent to the eigenvalue problem

∆u+ λu = 0, u ∈ H1
0 (Ω). (4.6.sch)

We hence conclude that all eigenvalues of (4.6.sch) which are of odd multiplicity
yield bifurcation points.

4.3 An inequality involving the p-Laplacian

A situation, similar to the above, arises, if we consider the example presented in
section 2.5. There we let

E = {u ∈W 1,p(Ω) : u = 0, a.e. on Γ}

and let
A : E → E∗

be given by

〈A(u), v〉 =
∫
Ω

|∇u|p−2∇u · ∇v.

Let g : R→ R be a continuous function with g(u) = o(|u|p−1) as u→ 0, and
define B(λ, u) by

〈B(λ, u), v〉 =
∫
Ω

λ|u|p−2uv + g(u)v,

then
〈f(λ, u), v〉 =

∫
Ω

λ|u|p−2uv.
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Let us define the functional j by

j(u) =
∫
∂Ω

µ|u|,

where µ is a positive constant.
Again, using embedding theorems (see [1]) we see that the mapping

W 1,p(Ω) ↪→ L1(∂Ω)

u 7→ u|∂Ω

is compact.
It hence will follow that j is convex and lower semicontinuous and that

J(u) = IW 1,p
0 (Ω).

It hence follows from the results above, i.e. the results in section 4.1, that (3.5.sch)
is equivalent to the problem∫

Ω

|∇u|p−2∇u · ∇v − λ
∫
Ω

|u|p−2uv = 0, ∀v ∈W 1,p
0 Ω, (4.7.sch)

which is equivalent to the eigenvalue problem

div(|∇u|p−2∇u) + λ|u|p−2u = 0, u ∈W 1,p
0 (Ω). (4.8.sch)

This eigenvalue problem has received much attention during recent years and
several results about eigenvalues and the the computation of the Leray-Schauder
degree of the associated completely continuous perturbation of the identity in
a neighborhood of such eigenvalues have become available (see e.g. [2], [3], [4],
[5]).

4.4 Stationary Navier-Stokes flows

In this section we consider the example discussed in section 2.4 and refer to this
section for the statement of the problem and the notation.

Again the operator A is given by a continuous, coercive and bilinear form,
hence A = α. Also it easily follows that

〈f(λ, u), v〉 = λ

∫
Ω

Dug(x, 0)u · v.

To hence obtain the homogeneous variational inequality (3.5.sch) we must com-
pute the functional J. To this end, we observe that if j = IK , where K is any
of the choices given in section 2.4, then J = IE , since the support cone of K in
any of the cases is the whole space.
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We hence obtain that, in these cases, (3.5.sch) is given by
ν

∫
Ω

Du : Dv + λ

∫
Ω

Dug(x, 0)u · v = 0, ∀v ∈ E,

u ∈ E,
(4.9.sch)

which is the eigenvalue problem for the Stokes equation. Its eigenvalues of odd
multiplicity hence yield global bifurcation points for (2.23.sch).

Let us now consider the case that j is given by

j(u) =
∫
Ω

µ(x)|Du|γ ,

where µ ∈ L∞(Ω) and γ ≥ 1. We observe that the effective domain of j is given
by

D(j) = {u : j(u) <∞} =

E, 1 ≤ γ ≤ 2

{u ∈ E : µ|Du|γ ∈ L1(Ω)}, γ > 2

Using these facts one may now compute

J =


IW , 1 ≤ γ < 2

j, γ = 2

IE , γ > 2,

where
W = {u ∈ E : Du = 0, a.e. on Ω \Ω0},

and
Ω0 = {x ∈ Ω : µ(x) = 0}.
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