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Abstract. The arbitrary (fractional) order integral operator is a sin-
gular integral operator, and the arbitrary (fractional) order differential
operator is a singular integro-differential operator. And they generalize
(interpolate) the integral and differential operators of integer orders. The
topic of fractional calculus ( derivative and integral of arbitrary orders)
is enjoying growing interest not only among Mathematicians, but also
among physicists and engineers (see [1]–[18]).
Let α be a positive real number. LetX be a Banach space and A be a
linear operator defined on X with domain D(A).
In this lecture we are concerned with the different approaches of the def-
initions of the fractional differential operator Dα and then (see [5,6,7])
study the existence, uniqueness, and continuation (with respect to α)
of the solution of the initial value problem of the abstract differential
equation

Dαu(t) = Au(t) + f(t), D =
d

dt
, t > 0, (1.els)

where A is either bounded or closed with domain dense in X.
Fractional-order differential-difference equations, fractional-order diffu-
sion-wave equation and fractional-order functional differential equations
will be given as applications.

AMS Subject Classification. 34C10, 39A10

Keywords. Fractional calculus, abstract differential equations, differ-
ential-difference equations, nonlinear functional equations.

1 Introduction

Let X be a Banach space. Let L1(I,X) be the class of (Lebesgue) integrable
functions on the interval I = [a, b], 0 < a < b <∞,

This is the final form of the paper.
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Definition 1. Let f(x) ∈ L1(I,X), β ∈ R+. The fractional (arbitrary order)
integral of the function f(x) of order β is (see [1]–[11]) defined by

Iβa f(x) =
∫ x

a

(x − s)β−1

Γ (β)
f(s)ds. (2.els)

When a = 0 and X = R we can write Iβ0 f(x) = f(x)∗φβ(x), where φβ(x) = xβ−1

Γ (β)

for x > 0, φβ(x) = 0 for x ≤ 0 and φβ → δ(x) (the delta function) as β → 0 (see
[11]).

Now the following lemma can be easily proved

Lemma 2. Let β and γ ∈ R+. Then we have

(i) Iβa : L1(I,X) → L1(I,X), and if f(x) ∈ L1(I,X), then Iγa I
β
a f(x) =

Iγ+β
a f(x).

(ii) limβ→n I
β
a f(x) = Ina f(x), uniformly on L1(I,X), n = 1, 2, 3, . . . , where

I1
af(x) =

∫ x
a
f(s)ds.

For the fractional order derivative we have (see [1]–[10] and [15]) mainly the
following two definitions.

Definition 3. The (Riemann-Liouville) fractional derivative of order α ∈ (0, 1)
of f(x) is given by

dαf(x)
dxα

=
d

dx
I1−α
a f(x), (3.els)

Definition 4. The fractional derivative Dα of order α ∈ (0, 1] of the function
f(x) is given by

Dα
a f(x) = I1−α

a Df(x), D =
d

dx
. (4.els)

This definition is more convenient in many applications in physics, engineering
and applied sciences (see [15]). Moreover, it generalizes (interpolates) the defi-
nition of integer order derivative. The following lemma can be directly proved.

Lemma 5. Let α ∈ (0, 1). If f(x) is absolutely continuous on [a, b], then

(i) Dα
a f(x) = dαf(x)

dxα + (x−a)−α

Γ (1−α) f(a)

(ii) limα→1D
α
a f(x) = Df(x) 6= limα→1

dαf(x)
dxα .

(iii) If f(x) = k, k is a constant, then Dα
a k = 0, but dαk

dxα 6= 0.

Definition 6. The finite Weyl fractional integral of order β ∈ R+ of f(t) is

W−βb f(t) =
1

Γ (β)

∫ b

t

(s− t)β−1f(s) ds , t ∈ (0, b), (5.els)

and the finite Weyl fractional derivative of order α ∈ (n− 1, n) of f(t) is

Wα
b f(t) = W

−(n−α)
b (−1)nDnf(t), Dnf(t) ∈ L1(I,X). (6.els)
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The author [6] stated this definition and proved that if f(t) ∈ C(I,X), then

lim
β→p

W−βb f(t) = W−pb f(t), p = 1, 2, . . . , W−1
b f(t) =

∫ b

t

f(s)ds, (7.els)

and if g(t) ∈ Cn(I,X) with g(j)(b) = 0, j = 0, 1, . . . , (n− 1), then

lim
α→q

Wα
b g(t) = (−1)qDqg(t), q = 0, 1, . . . , (n− 1), W 0

b g(t) = g(t). (8.els)

2 Ordinary Differential Equations

Let A be a bounded operator defined on X , consider the initial value problem{
Dα
au(t) = Au(t) + f(t), t ∈ (a, b], α ∈ (0, 1],
u(a) = uo.

(9.els)

Definition 7. By a solution of (9.els) we mean a function u(t) ∈ C(I,X) that
satisfies (9.els).

Theorem 8. Let uo ∈ X and f(t) ∈ C1(I,X). If ||A|| ≤ Γ (1+α)
bα , then (9.els) has

the unique solution

uα(t) = Tαa (t)uo + Iαa T
α
a (t)f(t) ∈ C1((a, b], X), (10.els)

where

Tαa g(t) =
∞∑
k=o

Ikαa Akg(t), g(t) ∈ L1(I,X). (11.els)

And

(1) Tαa (a)uo = uo,
(2) Dα

aT
α
a (t)uo = ATαa (t)uo,

(3) limα→1 T
α
a (t)uo = e(t−a)Auo.

Moreover

lim
α→1

uα(t) = e(t−a)Auo +
∫ t

a

e(t−s)Af(s) ds . (12.els)

Proof. See [8].

As an application let 0 < β ≤ α ≤ 1 and consider the two (forward and
backward) initial value problems of the fractional-order differential-difference
equation

(P )

{
Dα
au(t) + CDβ

au(t− r) = Au(t) +Bu(t− r), t > a,

u(t) = g(t), t ∈ [a− r, a], r > 0,
(13.els)
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(Q)

{
Wα
b u(t) + CW β

b u(t+ r) = Au(t) +Bu(t+ r), t < b, α ≥ β,
u(t) = g(t), t ∈ [b, b+ r], r > 0,

(14.els)

where A , B and C are bounded operators defined on X .

Theorem 9. Let g(t) ∈ C1([a−r, a], X). If ||A|| ≤ Γ (1+α)
bα , then the problem (P)

has a unique solution u(t) ∈ C((a, b], X), Du(t) ∈ C(Inr , X) and Dα
a+nru(t) ∈

C(Inr , X), where Inr = (a, a+ nr].
Moreover if C = 0 then u(t) ∈ C1(I,X) and Dα

au(t) ∈ C(I,X).

Proof. See [8].

Theorem 10. Let u(t) be the solution of (P). If the assumptions of Theorem 9
are satisfied, then there exist two positive constants k1 and k2 such that

||u(t)|| ≤ k1e
(t−a)k2 , (15.els)

i.e., the solution of (P) is exponentially bounded.

Proof. See [8].

The same results can be proved for the problem (Q) (see [8]).

3 Fractional-Order Functional Differential Equation

Consider the two initial value problems

Dα
ax(t) = f(t, x(m(t))), x(a) = xo, α ∈ (0, 1], (16.els)

Wα
b y(t) = f(t, y(m(t))), y(b) = yo, α ∈ (0, 1], (17.els)

with the following assumptions

(i) f : (a, b) × R+ → R+ = [0,∞), satisfies Carathéodory conditions and
there exists a function c ∈ L1 and a constant k ≥ 0 such that f(t, x(t)) ≤
c(t) + k|x|, for all t ∈ (a, b) and x ∈ R+. Moreover, f(t, x(t)) is assumed to
be nonincreasing (nondecreasing) on the set (a, b) × R+ with respect to t
and nondecreasing with respect to x,

(ii) m : (a, b) → (a, b) is increasing, absolutely continuous and there exists a
constant M > 0 such that m′ ≥M for almost all t ∈ (a, b),

(iii) k/M < 1.

Theorem 11. Let the assumptions (i)–(iii) be satisfied. If xo and yo are positive
constants, then the problem (16.els) has at least one solution x(t) ∈ L1 which is a.e.
nondecreasing (and so Dx(t) ∈ L1) and the problem (17.els) has at least one solution
y(t) ∈ L1 which is a.e. nonincreasing (and so Dy(t) ∈ L1).

Proof. See [9].
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4 Fractional-Order Evolution Equations

Let A be a closed linear operator defined on X with domain D(A) dense in X
and consider the two initial value problems{

Dγu(t) = Au(t), t ∈ (0, b], γ ∈ (0, 1],
u(0) = uo,

(18.els){
Dβu(t) = Au(t), t ∈ (0, b], β ∈ (1, 2],
u(0) = uo, ut(0) = u1.

(19.els)

Remark 12. Some special cases of these two equations have been studied by some
authors (see [12] and [16] e.g.).

Definition 13. By a solution of the initial value problem (18.els) we mean a func-
tion uγ(t) ∈ L1(I,D(A)) for γ ∈ (0, 1] which satisfies the problem (18.els). The
solution uβ(t) of the problem (19.els) is defined in a similar way.

Consider now the following assumption

(1) Let A generates an analytic semi-group {T (t), t > 0} on X . In particular
Λ = {λ ∈ C : |argλ| < π/2 + δ1}, 0 < δ1 < π/2 is contained in the resolvent
set of A and ||(λI − A)−1|| ≤ M/|λ|, Reλ > 0 on Λ1, for some constant
M > 0, where C is the set of complex numbers.

Theorem 14. Let u1, uo ∈ D(A2). If A satisfies assumption (1), then there
exists a unique solution uγ(t) ∈ L1(I,D(A)) of (18.els) given by

uγ(t) = uo −
∫ t

0

rγ(s)esuods, Duγ(t) ∈ D(A), (20.els)

and a unique solution uβ(t) ∈ L1(I,D(A)) of (19.els) given by

uβ(t) = uo + tu1 −
∫ t

0

rβ(s)es(uo + (t− s)u1)ds, D2uβ(t) ∈ D(A). (21.els)

Here rγ(t) and rβ(t) are the resolvent operators of the the two integral equations

uγ(t) = uo +
∫ t

0

φγ(t− s)Auγ(s)ds, (22.els)

uβ(t) = uo + tu1 +
∫ t

0

φβ(t− s)Auβ(s)ds, (23.els)

respectively.

Proof. See [6].
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Now one of the main results in this paper is the following continuation the-
orem. To the best of my knowledge, this has not been studied before.

Theorem 15. Let the assumptions of Theorem 14 be satisfied with u1 = 0, then

lim
γ→1−

uγ(t) = lim
β→1+

uβ(t) = T (t)uo, (24.els)

lim
γ→1−

Dγuγ(t) = lim
β→1+

Dβuβ(t) = AT (t)uo = Du(t), (25.els)

where {T (t), t ≥ 0} is the semigroup generated by the operator A and so u(t) =
T (t)uo is the solution of the problem

du(t)
dt

= Au(t), t > 0

u(0) = uo.

(26.els)

Proof. See [6].

5 Fractional-Order Diffusion-Wave Equation

Let X = Rn and u(t, x) : Rn × I → Rn, I = (0, T ].

Definition 16. The fractional D-W (diffusion-wave) equation is the equation
(see [7])

∂αu(x, t)
∂tα

= Au(x, t), t > 0, (27.els)

and the fractional diffusion-wave problem is the Cauchy problem

(D-W)


∂αu(x, t)
∂tα

= Au(x, t), t > 0, x ∈ Rn, 0 < α ≤ 2,

u(x, 0) = uo(x), ut(x, 0) = 0, x ∈ Rn.
(28.els)

From the properties of the fractional calculus we can prove (see [7])

Theorem 17 (Continuation of the problem). If the solution of the (D-W)
problem exists, then as α → 1 the (D-W) problem reduces to the diffusion
problem 

∂u(x, t)
∂t

= Au(x, t), t > 0, x ∈ Rn,

u(x, 0) = uo(x), x ∈ Rn,
(29.els)

and as α→ 2 the (D-W) problem reduces to the wave problem
∂2u(x, t)
∂t2

= Au(x, t), t > 0, x ∈ Rn,

u(x, 0) = uo(x), ut(x, 0) = 0, x ∈ Rn.
(30.els)
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Proof. See [7].

Theorem 18. Let uo ∈ D(A2). If A satisfies the condition (1) with X = Rn,
then the (D-W) problem has a unique solution uα(x, t) ∈ L1(I,D(A)) and this
solution is continuous with respect to α ∈ (0, 2]. Moreover

lim
α→1

uα(x, t) = u1(x, t) and lim
α→2−

uα(x, t) = u2(x, t), (31.els)

where u1(x, t) and u2(x, t) are the solutions of (29.els) and (30.els), respectively.

Proof. See [7].
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