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Abstract. In the paper, we estimate the amplitude (maximal x-value)
of the limit cycle of the van der Pol equation

ẋ = y − µ(x3/3− x), ẏ = −x

from above by ρ(µ) < 2.3439 for every µ 6= 0. The result is an improve-
ment of the author’s previous estimation ρ(µ) < 2.5425.
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1 Introduction

We are interested in the limit cycle (isolated periodic orbit) of the Liénard equa-
tion:

ẋ = y − F (x), ẏ = −g(x). (L.oda)

The following is our result.

Theorem A. Suppose that Liénard equation satisfies the following conditions:
(1) F, g are of class C1 and odd; (2) g(x) has the same sign as x; (3) F has a
positive zero β such that F (x) < 0 on (0, β) and > 0 on (β,∞); (4) there are two
piecewise differentiable, continuous mappings φ, ψ : [0, β]→ [β,∞) such that

(i) −φ′(x)g(φ(x))F (φ(x)) ≥ −g(x)F (x), (ii) −φ′(x)f(φ(x)) ≥ −f(x),
(iii) ψ′(x)g(ψ(x))F (ψ(x)) ≥ −g(x)F (x), (iv) ψ′(x)f(ψ(x)) ≥ f(x),
(v) ψ′(x)g(ψ(x)) ≤ g(x), (vi) φ(0) ≤ ψ(β),

where f = F ′. Then it has a periodic orbit in the strip |x| < ψ(β).

The above theorem is effective to estimate the amplitude (maximal x-value) of
the limit cycle of the van der Pol equation:

ẋ = y − µ(x3/3− x), ẏ = −x. (vdP.oda)

We know that the van der Pol equation has a unique limit cycle for every µ 6= 0;
see [O] for example. The following is an application of Theorem A.

This is the preliminary version of the paper.
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Theorem B. The amplitude ρ(µ) of the limit cycle of the van der Pol equation
is estimated by ρ(µ) < 2.3439 for every µ 6= 0.

The upper bound 2.3439 is better than previous results, namely, 2.8025 of Al-
sholm [A] and 2.5425 of the author [O]. Due to a computer experiment, we expect
that the amplitude ρ(µ) < 2.0235 for every µ 6= 0. So Theorem B is not a sharp
result in comparison with it. We give the result of the experiment in Section 4.

2 Proof of Theorem A

We consider an orbit γ which starts from a point on the left half of the curve
y = F (x) and reaches to the right half of it. Then we can regard the y-coordinate
of γ as a function of x, that is, y = y(x). In the proof of Theorem A, we use the
following notation:

v1(x) = y(x)− F (x), v2(x) = y(−x) + F (x). (1.oda)

Then the functions v1, v2 must satisfy the following differential equations:

dv1

dx
= −g(x)

v1
− f(x),

dv2

dx
= −g(x)

v2
+ f(x). (2.oda)

By the definition of γ, we know that v1(x), v2(x) ≥ 0 on [0, ψ(β)].

Proof (of Theorem A). We assume that the orbit γ starts from the curve y =
F (x) at x = −ψ(β), that is, v2(ψ(β)) = 0. We want to prove that the orbit γ gets
across the curve at the left-hand side of x = ψ(β). To prove it by a contradiction,
we assume that v1(x) is defined on [0, ψ(β)].

By using (i), we know that φ′(x) < 0 on (0, β). So by using (ii), we calculate
as follows:

d

dx

(
v1(x) − v1(φ(x))

)
= − g(x)

v1(x)
+
φ′(x)g(φ(x))
v1(φ(x))

− f(x) + φ′(x)f(φ(x)) ≤ 0. (3.oda)

By integrating it on [x, β], we obtain that

v1(x)− v1(φ(x)) ≥ v1(β) − v1(φ(β)) = y(β)− y(φ(β)) + F (φ(β)) > 0 (4.oda)

because y(x) is strictly decreasing on [−φ(β), φ(β)].
On the other hand, by using (iv), (v), we calculate as follows:

d

dx

(
v2(x) − v2(ψ(x))

)
= − g(x)

v2(x)
+
ψ′(x)g(ψ(x))
v2(ψ(x))

+ f(x)− ψ′(x)f(ψ(x))

≤ g(x)
v2(x)v2(ψ(x))

(
v2(x)− v2(ψ(x))

)
. (5.oda)
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By integrating it on [x, β], we obtain that

v2(x)− v2(ψ(x)) ≥
(
v2(β) − v2(ψ(β))

)
exp
(
−
∫ β

x

g(u)du
v2(u)v2(ψ(u))

)
> 0. (6.oda)

We can easily confirm the following equality:

d

dx

( 1
2
y(x)2 +

∫ x

0

g(u)du
)

= − g(x)F (x)
y(x)− F (x)

. (7.oda)

By integrating it on [0, ψ(β)], we obtain that

1
2

(
y(ψ(β))2 − y(−ψ(β))2

)
= −

∫ ψ(β)

0

g(x)F (x)
v1(x)

dx−
∫ ψ(β)

0

g(x)F (x)
v2(x)

dx. (8.oda)

By using (i), (4.oda), we calculate the first term of (8.oda) as follows:

≤ −
∫ β

0

g(x)F (x)
v1(x)

dx−
∫ φ(0)

φ(β)

g(x)F (x)
v1(x)

dx

= −
∫ β

0

g(x)F (x)
v1(x)

dx+
∫ β

0

φ′(x)g(φ(x))F (φ(x))
v1(φ(x))

dx < 0. (9.oda)

On the other hand, by using (iii), (6.oda), we calculate the second term of (8.oda) as
follows:

≤ −
∫ β

0

g(x)F (x)
v2(x)

dx−
∫ ψ(β)

ψ(0)

g(x)F (x)
v2(x)

dx

= −
∫ β

0

g(x)F (x)
v2(x)

dx−
∫ β

0

ψ′(x)g(ψ(x))F (ψ(x))
v2(ψ(x))

dx < 0. (10.oda)

By combining (8.oda), (9.oda), (10.oda), we obtain that

y(ψ(β))2 < y(−ψ(β))2 = F (ψ(β))2. (11.oda)

It is in contradiction with v1(ψ(β)) ≥ 0. So the function v1(x) does not defined
on [0, ψ(β)], that is, the orbit γ gets across the curve y = F (x) at the left-hand
side of x = ψ(β). Thus the orbit γ winds toward inside. On the other hand, every
orbit near the origin winds toward outside. Hence the equation has a periodic
orbit in the strip |x| < ψ(β). ut

3 Proof of Theorem B

In the proof of Theorem B, we use the following functions:

P (x) :=
f(x)
g(x)

= µ
(
x− 1

x

)
, Q(x) :=

f(x)
g(x)F (x)

=
3(x2 − 1)
x4 − 3x2

. (12.oda)

By checking the derivatives, we know that the function P is strictly increasing on
(0,∞) and that the function Q is strictly decreasing on (0,

√
3) and on (

√
3,∞).
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Proof (of Theorem B). We can assume without loss of generality that µ > 0
because the transformation (x, y, t, µ) → (x,−y,−t,−µ) preserves the form of
the equation. We first define φ(x) by the following algebraic equation:∫ φ

x

uF (u)du =
µ

15
(φ5 − 5φ3 − x5 + 5x3) = 0. (13.oda)

Of course, φ(
√

3) =
√

3. By differentiating it, we obtain that

− φ′(x)φ(x)F (φ(x)) + xF (x) = 0. (14.oda)

Since φ′(x) < 0 on [0,
√

3], the mapping φ is strictly decreasing (orientation
reversing) on it. Since the function −Q(φ(x)) + Q(x) is strictly decreasing on
(0,
√

3), it has a unique zero ξ1 in (0,
√

3). A computer experiment indicates that
ξ1 ≈ 0.6941, ξ2 := φ(ξ1) ≈ 2.2043. By substituting φ′(x) from (14.oda) and by the
definition of ξ1, we obtain that

φ′(x)f(φ(x)) − f(x) = −xF (x)
(
−Q(φ(x)) +Q(x)

)
≤ 0 (15.oda)

on [ξ1,
√

3]. Since (15.oda) does not hold on [0, ξ1), the definition (13.oda) is valid only
on [ξ1,

√
3].

On the interval [0, ξ1), we define φ(x) by the following algebraic equation:∫ φ

ξ2

f(u)du+
∫ ξ1

x

f(u)du

=
µ

3
(φ3 − 3φ− x3 + 3x− ξ3

2 + 3ξ2 + ξ3
1 − 3ξ1) = 0. (16.oda)

By differentiating it, we obtain that

φ′(x)f(φ(x)) − f(x) = 0 (17.oda)

on [0, ξ1). By substituting φ′(x) from (17.oda) and by the definition of ξ1, we obtain
that

−φ′(x)φ(x)F (φ(x)) + xF (x) = − xF (x)
Q(φ(x))

(
−Q(φ(x)) +Q(x)

)
≥ 0 (18.oda)

on [0, ξ1). Hence the mapping φ satisfies (i), (ii) of Theorem A.
We first define ψ(x) by the following algebraic equation:∫ ψ

θ2

uF (u)du+
∫ x

θ1

uF (u)du =
µ

15
(ψ5 − 5ψ3 + x5 − 5x3 + 4

√
6) = 0, (19.oda)

where θ1, θ2 :=
√

2∓
√

3 = (
√

3∓ 1)/
√

2. Of course, ψ(θ1) = θ2. By differenti-
ating it, we obtain that

ψ′(x)ψ(x)F (ψ(x)) + xF (x) = 0. (20.oda)
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Since ψ′(x) > 0 on [0,
√

3], the mapping ψ is strictly increasing (orientation
preserving) on it. Since the function Q(ψ(x)) + Q(x) is strictly decreasing on
(0,
√

3), it has a unique zero η1 in (0,
√

3). A computer experiment indicates
that η1 ≈ 1.3784, η2 := ψ(η1) ≈ 2.2006. By substituting ψ′(x) from (20.oda) and by
the definition of η1, we obtain that

ψ′(x)f(ψ(x)) − f(x) = −xF (x)
(
Q(ψ(x)) +Q(x)

)
≥ 0 (21.oda)

on [0, η1]. Since (21.oda) does not hold on (η1,
√

3], the definition (19.oda) is valid only
on [0, η1].

On the interval (η1,
√

3], we define ψ(x) by the following algebraic equation:∫ ψ

η2

f(u)du−
∫ x

η1

f(u)du

=
µ

3
(ψ3 − 3ψ − x3 + 3x− η3

2 + 3η2 + η3
1 − 3η1) = 0. (22.oda)

By differentiating it, we obtain that

ψ′(x)f(ψ(x)) − f(x) = 0 (23.oda)

on (η1,
√

3]. By substituting ψ′(x) from (23.oda) and by the definition of η1, we
obtain that

ψ′(x)ψ(x)F (ψ(x)) + xF (x) =
xF (x)
Q(ψ(x))

(
Q(ψ(x)) +Q(x)

)
≥ 0 (24.oda)

on (η1,
√

3]. Hence the mapping ψ satisfies (iii), (iv) of Theorem A.
To prove (v), we prepare the mapping χ(x) :=

√
x2 + 2

√
3 . By the proof of

Example 2 of [O], we obtain that

F (χ(x)) ≥ −F (x) (25.oda)

on [0,
√

3]. By combining (20.oda) and (25.oda), we obtain that

χ′(x)χ(x)F (χ(x)) ≥ −xF (x) = ψ′(x)ψ(x)F (ψ(x)). (26.oda)

By integrating it on [x, θ1], we obtain that∫ ψ(x)

χ(x)

uF (u)du ≥ 0 (27.oda)

on [0, θ1]. Since uF (u) > 0 on (
√

3,∞), we obtain that ψ(x) ≥ χ(x) on [0, θ1].
So we obtain that

F (ψ(x)) ≥ F (χ(x)) ≥ −F (x) on [0, θ1]. (28.oda)

To prove the same inequality as (28.oda) on (θ1, η1], we consider the minimum of
the function F (ψ) + F (x) under the restriction (19.oda). We denote by ψ0, x0 the
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variables which attain the minimum. To find the minimum, we consider the
following function:

Λ(ψ, x) = F (ψ) + F (x)− λ
(∫ ψ

θ2

uF (u)du+
∫ x

θ1

uF (u)du
)
. (29.oda)

By the Lagrange’s method of indeterminate coefficients, we obtain that

Λψ.(ψ0, x0) = f(ψ0)− λψ0F (ψ0) = 0, (30.oda)
Λx(ψ0, x0) = f(x0)− λx0F (x0) = 0. (31.oda)

By the first equality, we obtain that λ > 0. So we obtain that

F (ψ(x)) + F (x) ≥ F (ψ0) + F (x0) = (1/λ)
(
P (ψ0) + P (x0)

)
≥ (1/λ)

(
P (θ2) + P (θ1)

)
= 0 (32.oda)

on (θ1, η1]. By substituting ψ′(x) from (20.oda) and by using (28.oda) and (32.oda), we obtain
that

x− ψ′(x)ψ(x) =
x

F (ψ(x))

(
F (ψ(x)) + F (x)

)
≥ 0 (33.oda)

on [0, η1]. On the other hand, by substituting ψ′(x) from (23.oda), we obtain that

x− ψ′(x)ψ(x) =
x

P (ψ(x))

(
P (ψ(x)) − P (x)

)
≥ 0 (34.oda)

on (η1,
√

3]. Hence the mappings φ, ψ satisfy all the conditions of Theorem A
except (vi).

A computer experiment indicates that φ(0) ≈ 2.3439, ψ(
√

3) ≈ 2.3233. So
we must replace ψ by the following mapping:

ψ̂(x) :=
√
ψ(x)2 − ψ(β)2 + φ(0)2 . (35.oda)

Of course, ψ̂(β) = φ(0). Moreover, we can calculate as follows:

ψ̂′(x)ψ̂(x) = ψ′(x)ψ(x) ≤ x, (36.oda)

ψ̂′(x)ψ̂(x)F (ψ̂(x)) = ψ′(x)ψ(x)F (ψ̂(x))
≥ ψ′(x)ψ(x)F (ψ(x)) ≥ −xF (x), (37.oda)

ψ̂′(x)f(ψ̂(x)) = ψ′(x)ψ(x)P (ψ̂(x)) ≥ ψ′(x)ψ(x)P (ψ(x))
= ψ′(x)f(ψ(x)) ≥ f(x). (38.oda)

Hence the mappings φ, ψ̂ satisfy all the conditions of Theorem A. ut
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4 A Conjecture

Since the limit cycle of the van der Pol equation is unique, its amplitude ρ(µ)
is a continuous function of the parameter µ 6= 0. In [L], the following facts are
proved:

ρ(µ)→ 2 as µ→ 0, ρ(µ)→ 2 as µ→∞. (39.oda)

More precisely, it is proved in [H] that ρ(µ) = 2+(7/96)µ2+O(µ3) for sufficiently
small µ > 0 and in [C] that ρ(µ) = 2+(0.7793 · · · )µ−4/3+o(µ−4/3) for sufficiently
large µ > 0.

By a computer experiment, we have the following table.

µ ↓ 0 0.1 1.0 2.0 3.0 3.2
ρ ↓ 2 2.00010 2.00862 2.01989 2.02330 2.02341
µ 3.3 3.4 4.0 5.0 10 ↑ ∞
ρ 2.02342 2.02341 2.02296 2.02151 2.01429 ↓ 2

We calculate the amplitude ρ of the above table by using the Runge-Kutta
method with a step size 2−20. In comparison with the above table, we realize
that Theorem B is not a sharp result. So we want to pose the following conjecture.

Conjecture. The amplitude ρ(µ) of the limit cycle of the van der Pol equation
is estimated by 2 < ρ(µ) < 2.0235 for every µ 6= 0.

However, to estimate the amplitude is a very difficult problem. An attempt to
estimate the amplitude is done by Giacomini and Neukirch [GN].

Acknowledgement. The author wishes to thank Professors K. Shiraiwa and
K. Yamato for reading the manuscript.
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