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Abstract. We offer sufficient conditions for the oscillation of all solu-
tions of the partial difference equations

y(m− 1, n) + β(m,n)y(m,n− 1) − δ(m,n)y(m,n) +

+ P (m,n, y(m+ k, n+ `)) = Q(m,n, y(m+ k, n+ `))

and

y(m− 1, n) + β(m,n)y(m,n− 1) − δ(m,n)y(m,n) +

+

τ∑
i=1

Pi(m,n, y(m+ ki, n+ `i)) =

τ∑
i=1

Qi(m,n, y(m+ ki, n+ `i)).

Several examples which dwell upon the importance of our results are also
included.

AMS Subject Classification. 39A10

Keywords. Oscillatory solutions, partial difference equations

1 Introduction

The theory of difference equations, the methods used in their solutions, and their
wide applications have been and still are drawing numerous attention. In fact,
in the last few years several monographs and hundreds of research papers have
been written, e.g., see [1,2,3,4,5,6,13,14,15,16,17,19,20,22,23,24,25,26,27,28,29]
and the references therein. In contrast, relatively few studies have been focused
on the qualitative theory of partial difference equations, for instance, refer to
[7,8,9,10,11,12,18,30,31,32,33,34]. Partial difference equations are not less im-
portant than difference equations - their significance is well illustrated in appli-
cations involving population dynamics with spatial migrations, chemical reac-
tions, control systems, combinatorics and also finite difference schemes [14,18,21].

This is the final form of the paper.
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Hence, to further the qualitative theory of partial difference equations, in this
paper we shall consider the partial difference equations

y(m− 1, n) + β(m,n)y(m,n− 1)− δ(m,n)y(m,n) + P (m,n, y(m+ k, n+ `))

= Q(m,n, y(m+ k, n+ `)), m ≥ m0, n ≥ n0 (1.won)

and

y(m−1, n)+β(m,n)y(m,n−1)−δ(m,n)y(m,n)+
τ∑
i=1

Pi(m,n, y(m+ki, n+`i))

=
τ∑
i=1

Qi(m,n, y(m+ ki, n+ `i)), m ≥ m0, n ≥ n0, (2.won)

where k, `, ki, `i, 1 ≤ i ≤ τ are nonnegative integers, and β(m,n), δ(m,n) are
functions of m and n such that for all large m and n,

β(m,n) ≥ β > 0 and δ(m,n) ≤ δ (> 0).

It is noted that δ(m,n) is not required to be positive eventually.
Recently, Zhang and Liu [33] have discussed particular cases of (1.won) and (2.won),

namely,

y(m− 1, n) + y(m,n− 1)− y(m,n) + a(m,n)y(m+ k, n+ `) = 0 (3.won)

and

y(m− 1, n) + y(m,n− 1)− y(m,n) +
τ∑
i=1

ai(m,n)gi(y(m+ ki, n+ `i)) = 0,

(4.won)

where a(m,n), ai(m,n), 1 ≤ i ≤ τ are positive, and gi, 1 ≤ i ≤ τ are nonde-
creasing functions with ugi(u) > 0 for all u 6= 0. Our results not only generalize
and extend their work, but also complement several other oscillation criteria
given in [7,8,9,10,11,12,30,31,32,34].

By a solution of (1.won) ((2.won)), we mean a nontrivial double sequence {y(m,n)}
satisfying (1.won) ((2.won)) for m ≥ m0, n ≥ n0. A sequence {y(m,n)} is eventually
positive (negative) if y(m,n) > (<) 0 for all large m and n. A solution of (1.won)
((2.won)) is said to be oscillatory if it is neither eventually positive nor negative, and
nonoscillatory otherwise.

Throughout, with respect to equation (1.won) we shall assume that there exists
a function f : R → R and double sequences {p(m,n)}, {p′(m,n)}, {q(m,n)},
{q′(m,n)} such that

(A1) for u 6= 0, uf(u) > 0,
f(u)
u
≥ γ ∈ (0,∞);
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(A2) for u 6= 0,

p(m,n) ≤ P (m,n, u(m+ k, n+ `))
f(u(m+ k, n+ `))

≤ p′(m,n),

q(m,n) ≤ Q(m,n, u(m+ k, n+ `))
f(u(m+ k, n+ `))

≤ q′(m,n); and

(A3) lim sup
m,n→∞

[p(m,n)− q′(m,n)] > 0.

Further, with respect to equation (2.won) for each 1 ≤ i ≤ τ it is assumed that
there exists a function fi : R→ R and double sequences {pi(m,n)}, {p′i(m,n)},
{qi(m,n)}, {q′i(m,n)} such that

(B1) for u 6= 0, ufi(u) > 0,
fi(u)
u
≥ γi ∈ (0,∞);

(B2) for u 6= 0,

pi(m,n) ≤ Pi(m,n, u(m+ ki, n+ `i))
fi(u(m+ ki, n+ `i))

≤ p′i(m,n),

qi(m,n) ≤ Qi(m,n, u(m+ ki, n+ `i))
fi(u(m+ ki, n+ `i))

≤ q′i(m,n); and

(B3) pi(m,n) > q′i(m,n) eventually.

The plan of the paper is as follows. In Section 2 we shall present some pre-
liminary results which are needed later. The oscillation criteria for equations
(1.won) and (2.won) are respectively offered in Sections 3 and 4. To illustrate the results
obtained, five examples are discussed in Section 5.

2 Preliminaries

Lemma 1. Suppose that {y(m,n)} is an eventually positive solution of (1.won).
Then, for all large m,n and all i ≥ 0,

y(m− 1, n) ≤ δy(m,n), y(m,n− 1) ≤ δ

β
y(m,n), (5.won)(

1
δ

)i
y(m− i, n) ≤ y(m,n) ≤ δiy(m+ i, n) (6.won)

and (
β

δ

)i
y(m,n− i) ≤ y(m,n) ≤

(
δ

β

)i
y(m,n+ i). (7.won)
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Remark 2. It is obvious that (5.won)–(7.won) also hold if {y(m,n)} is an eventually posi-
tive solution of any one of the following: equation (2.won), or either of the inequalities

y(m− 1, n) + β(m,n)y(m,n− 1)− δ(m,n)y(m,n) + P (m,n, y(m+ k, n+ `))

≤ Q(m,n, y(m+ k, n+ `)), (8.won)

y(m−1, n)+β(m,n)y(m,n−1)−δ(m,n)y(m,n)+
τ∑
i=1

Pi(m,n, y(m+ki, n+`i))

≤
τ∑
i=1

Qi(m,n, y(m+ ki, n+ `i)), (9.won)

where m ≥ m0, n ≥ n0.

Throughout, we shall use the equation number (·)′ to denote (·) with the
inequality sign(s) reversed.

Remark 3. By a similar argument, it can be shown that (5.won)′–(7.won)′ hold if {y(m,n)}
is an eventually negative solution of any one of the following: (1.won), (2.won), (8.won)′ or
(9.won)′.

Remark 4. Let {y(m,n)} be an eventually positive solution of either (1.won), (2.won),
(8.won) or (9.won). If β ≥ δ and δ ≤ 1, then (5.won) implies that

y(m− 1, n) ≤ y(m,n) and y(m,n− 1) ≤ y(m,n), (10.won)

i.e., eventually positive solutions of (1.won), (2.won), (8.won) as well as of (9.won) are nondecreas-
ing.

Remark 5. Let {y(m,n)} be an eventually negative solution of either (1.won), (2.won),
(8.won)′ or (9.won)′. If β ≥ δ and δ ≤ 1, then from (5.won)′ we get (10.won)′, i.e., eventually
negative solutions of (1.won), (2.won), (8.won)′ as well as of (9.won)′ are nonincreasing.

Lemma 6. The following identity holds

m∑
i=m−k

n∑
j=n−`

[y(i − 1, j) + βy(i, j − 1)− δy(i, j)]

= (1 + β − δ)
m−1∑
i=m−k

n−1∑
j=n−`

y(i, j) + β

m−1∑
i=m−k

y(i, n− `− 1) + (1− δ)
m−1∑
i=m−k

y(i, n)

+ (β − δ)
n−1∑
j=n−`

y(m, j) + βy(m,n− `− 1)− δy(m,n) +
n∑

j=n−`
y(m− k − 1, j).
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3 Oscillation of equation (1.won)

For simplicity, we shall use the notation

µ(m,n) = p(m,n)− q′(m,n).

Further, let
E = {r > 0 | δ − rµ(m,n) > 0 eventually}.

Theorem 7. Suppose that there exist integers M ≥ m0 and N ≥ n0 such that

sup
r∈E,m≥M,n≥N

r

γβ`
min

{
δ`θ1/`, δkθ1/k

}
< 1 (11.won)

where

θ =
k∏
i=1

∏̀
j=1

[δ − rµ(m + i, n+ j)]. (12.won)

Then,

(a) the inequality (8.won) has no eventually positive solution;
(b) the inequality (8.won)′ has no eventually negative solution;
(c) all solutions of equation (1.won) are oscillatory.

Corollary 8. Suppose that k, ` ≥ 1 and

lim inf
m,n→∞

1
k`

k∑
i=1

∑̀
j=1

µ(m+ i, n+ j) >
δk+`+1

γβ`
max

{
kk

(1 + k)1+k
,

``

(1 + `)1+`

}

=
δk+`+1

γβ`
αα

(1 + α)1+α
, (13.won)

where α = min{k, `}. Then, the conclusion of Theorem 7 holds.

Theorem 9. Suppose that there exist integers M ≥ m0 and N ≥ n0 such that
if ` ≥ k,

sup
r∈E,m≥M,n≥N

r

γβ`

(
δ

2

)k k∏
i=1

[δ − rµ(m + i, n+ i)]×

∏̀
j=k+1

[δ − rµ(m+ k, n+ j)] < 1; (14.won)
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and if ` < k,

sup
r∈E,m≥M,n≥N

r

γβ`

(
δ

2

)` ∏̀
i=1

[δ − rµ(m + i, n+ i)]×

k∏
j=`+1

[δ − rµ(m + j, n+ `)] < 1. (15.won)

Then, the conclusion of Theorem 7 holds.

Corollary 10. Suppose that

lim inf
m,n→∞

µ(m,n) = µ >
νν

γβ`

(
δ

2

)α(
δ

1 + ν

)1+ν

, (16.won)

where α = min{k, `} and ν = max{k, `}. Then, the conclusion of Theorem 7
holds.

Theorem 11. Suppose that there exist integers M ≥ m0 and N ≥ n0 such that

sup
r∈E,m≥M,n≥N

r

γβ`

k∏
i=1

[δ − rµ(m+ i, n)]
∏̀
j=1

[δ − rµ(m + k, n+ j)] < 1. (17.won)

Then, the conclusion of Theorem 7 holds.

Corollary 12. Suppose that

µ(m,n) ≥ c > δk+`+1

γβ`
(k + `)k+`

(k + `+ 1)k+`+1
. (18.won)

Then, the conclusion of Theorem 7 holds.

4 Oscillation of equation (2.won)

Theorem 13. Suppose that for each 1 ≤ i ≤ τ,

lim inf
m,n→∞

pi(m,n) = pi, lim inf
m,n→∞

q′i(m,n) = q′i, pi > q′i; (19.won)

and

τ∑
i=1

(pi − q′i)γi
β`i

δki+`i+1
(αi + 1)αi+1

(
2
αi

)αi
> 1, (20.won)

where αi = min{ki, `i}, 1 ≤ i ≤ τ. Then,

(a) the inequality (9.won) has no eventually positive solution;
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(b) the inequality (9.won)′ has no eventually negative solution;
(c) all solutions of equation (2.won) are oscillatory.

Theorem 14. Suppose that for each 1 ≤ i ≤ τ,

lim sup
m,n→∞

τ∑
s=1

m∑
i=m−k′

n∑
j=n−`′

[ps(i, j)− q′s(i, j)]γs
1

δi+ks−m

(
β

δ

)j+`s−n
> w, (21.won)

where k′ = min1≤i≤τ ki, `
′ = min1≤i≤τ `i, and

w = δ, β ≥ δ, δ ≤ 1,

= δk
′+1, β ≥ δ, δ ≥ 1,

= δ

(
δ

β

)`′
, β ≤ δ, δ ≤ 1,

= δ

[(
δ

β

)`′
− 1 + δk

′

]
, β ≤ δ, δ ≥ 1, δ − β ≤ 1,

= δ

{
β + (δ − β − 1)δk

′+1

(δ − 1)(δ − β)

[(
δ

β

)`′
− 1

]
+ δk

′

}
, β ≤ δ, δ ≥ 1, δ − β ≥ 1.

Then, the conclusion of Theorem 13 holds.

5 Examples

Example 15. Consider the partial difference equation

y(m− 1, n) +
n+ 1
n

y(m,n− 1)− n+ 1
n− 1

y(m,n) +
n+ 4
n

y(m+ 6, n+ 4) = 0,

m ≥ 1, n ≥ 21. (22.won)

Here, k = 6, ` = 4,

β(m,n) =
n+ 1
n
≥ 1 ≡ β

and
δ(m,n) =

n+ 1
n− 1

= 1 +
2

n− 1
≤ 1 +

2
20

= 1.1 ≡ δ.

Choosing f(u) = u, we have γ = 1. Further, since

P (m,n, y(m+ 6, n+ 4))
f(y(m+ 6, n+ 4))

=
n+ 4
n

,
Q(m,n, y(m+ 6, n+ 4))
f(y(m+ 6, n+ 4))

= 0,

we may take

p(m,n) = p′(m,n) =
n+ 4
n

, q(m,n) = q′(m,n) = 0.
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Thus, (A1)–(A3) are fulfilled.

Case (a) : Corollary 8

The left side of (13.won) is

lim inf
m,n→∞

1
24

6∑
i=1

4∑
j=1

n+ j + 4
n+ j

= 1,

which is more than the right side (= 0.234).

Case (b) : Corollary 10

We find that

lim inf
m,n→∞

µ(m,n) = 1 >
νν

γβ`

(
δ

2

)α(
δ

1 + ν

)1+ν

= 0.0101

and so (16.won) is satisfied.

Case (c) : Corollary 12

We have

µ(m,n) ≥ 1 ≡ c > δk+`+1

γβ`
(k + `)k+`

(k + `+ 1)k+`+1
= 0.1.

Hence, (18.won) is fulfilled.

Case (d) : Theorem 13

Here, τ = 1, p1 = 1 and q′1 = 0. The left side of (20.won) is 68.5, which is more
than 1.

Case (e) : Theorem 14

This is the case when β ≤ δ, δ ≥ 1, δ − β ≤ 1. We see that (21.won) holds as

lim sup
m,n→∞

m∑
i=m−6

n∑
j=n−4

j + 4
j

1
(1.1)i+6−m

1
(1.1)j+4−n

=
( 6∑
i=0

1
1.1i

)( 4∑
i=0

1
1.1i

)
= 22.3 > w = 2.46.

Hence, it follows from Corollaries 8–12, Theorems 13 and 14 that equation (22.won)

is oscillatory. In fact, (22.won) has an oscillatory solution given by {y(m,n)} ={
(−1)m 1

n

}
.
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Example 16. Consider the partial difference equation

y(m− 1, n) +
n

n+ 1
y(m,n− 1)− y(m,n) +

n

n+ 1
y(m+ 4, n+ 3) = 0,

m ≥ 1, n ≥ 1. (23.won)

In this example,

β(m,n) =
n

n+ 1
≥ 1

2
≡ β and δ(m,n) = 1 ≡ δ.

Taking f(u) = u, we have γ = 1. Subsequently, we may choose

p(m,n) = p′(m,n) =
n

n+ 1
, q(m,n) = q′(m,n) = 0.

Clearly, (A1)–(A3) are satisfied. Further,

lim
m,n→∞

µ(m,n) = 1 and µ(m,n) ≥ 1
2
≡ c.

It can be checked that all the conditions of Corollaries 8–12, Theorems 13 and 14
(the cases β ≤ δ, δ ≤ 1 or β ≤ δ, δ ≥ 1, δ − β ≤ 1) are fulfilled. Therefore, we
conclude that (23.won) is oscillatory. In fact, (23.won) has an oscillatory solution given
by {y(m,n)} = {(−1)mn} .

Example 17. Consider the partial difference equation

y(m−1, n)+
n+ 2
n+ 1

y(m,n−1)− 1
2
y(m,n)+

(n− 4)(n+ 2)
2n(n+ 1)

y(m+2, n+1) = 0,

m ≥ 1, n ≥ 5. (24.won)

Here,

β(m,n) =
n+ 2
n+ 1

≥ 1 ≡ β and δ(m,n) =
1
2
≡ δ.

Choosing f(u) = u, we have γ = 1. Let

p(m,n) = p′(m,n) =
(n− 4)(n+ 2)

2n(n+ 1)
, q(m,n) = q′(m,n) = 0.

Then, it follows that

lim
m,n→∞

µ(m,n) =
1
2

and µ(m,n) ≥ (5− 4)(5 + 2)
2(5)(5 + 1)

=
7
60
≡ c.

We check that all the conditions of Corollaries 8–12, Theorems 13 and 14 (the
case β ≥ δ, δ ≤ 1) are satisfied. Hence, all solutions of (24.won) are oscillatory. One
such solution is given by {y(m,n)} =

{
(−1)m 1

n+1

}
.
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Example 18. Consider the partial difference equation

y(m−1, n)+
2m+ 1
m

y(m,n−1)− 3
2
y(m,n)+

(3m− 2)(m+ 3)
2m(m− 1)

y(m+3, n+4)

+
(2m+ 1)(m− 2)(m+ 1)

2m2(m− 1)
y(m+ 1, n+ 2) = 0, m ≥ 3, n ≥ 1. (25.won)

In this example, τ = 2, k1 = 3, `1 = 4, k2 = 1, `2 = 2,

β(m,n) =
2m+ 1
m

≥ 2 ≡ β and δ(m,n) =
3
2
≡ δ.

Taking f1(u) = f2(u) = u, we have γ1 = γ2 = 1. Let

p1(m,n) = p′1(m,n) =
(3m− 2)(m+ 3)

2m(m− 1)
,

p2(m,n) = p′2(m,n) =
(2m+ 1)(m− 2)(m+ 1)

2m2(m− 1)
,

qi(m,n) = q′i(m,n) = 0, i = 1, 2.

Then,

p1 =
3
2
, p2 = 1, q′1 = q′2 = 0.

It can be easily computed that the right side of (20.won) is more than 1.

Further, condition (21.won) also holds as

lim sup
m,n→∞

2∑
s=1

m∑
i=m−1

n∑
j=n−2

[ps(i, j)− q′s(i, j)]
1

δi+ks−m

(
β

δ

)j+`s−n

= lim sup
m,n→∞

m∑
i=m−1

n∑
j=n−2

(3i− 2)(i+ 3)
2i(i− 1)

1
δi+3−m

(
β

δ

)j+4−n

+ lim sup
m,n→∞

m∑
i=m−1

n∑
j=n−2

(2i+ 1)(i − 2)(i+ 1)
2i2(i− 1)

1
δi+1−m

(
β

δ

)j+2−n

= 15.0 > w =
9
4

(the case β ≥ δ, δ ≥ 1).

Hence, by Theorems 13 and 14 equation (25.won) is oscillatory. In fact, one such
solution is given by {y(m,n)} =

{
(−1)n 1

m

}
.

Example 19. Consider the partial difference equation

y(m− 1, n) +
n− 1
n

y(m,n− 1)− n+ 1
n

y(m,n) +
n+ 1

2n
y(m+ 2, n+ 1)

+
1
2
y(m+ 4, n+ 4) = 0, m ≥ 1, n ≥ 3. (26.won)
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We have

β(m,n) =
n− 1
n
≥ 2

3
≡ β and δ(m,n) =

n+ 1
n
≤ 4

3
≡ δ.

By letting f1(u) = f2(u) = u and

p1(m,n) = p′1(m,n) =
n+ 1

2n
, p2(m,n) = p′2(m,n) =

1
2
,

qi(m,n) = q′i(m,n) = 0, i = 1, 2,

we check that the hypotheses of Theorem 13 are satisfied. Therefore, all solutions
of equation (26.won) are oscillatory. In fact, (26.won) has an oscillatory solution given by
{y(m,n)} = {(−1)m(n+ 1)} .

It is, however, noted that this example does not fulfill the condition of The-
orem 14 (the case β ≤ δ, δ ≥ 1, δ − β ≤ 1). This illustrates well the difference
in nature of the criteria developed.
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