
EQUADIFF 10

Wolfgang Hackbusch; Lars Grasedyck; Steffen Börm
An introduction to hierarchical matrices

In: Miroslav Krbec and Jaromír Kuben (eds.): Proceedings of Equadiff 10,
Czechoslovak International Conference on Differential Equations and Their
Applications, Prague, August 27-31, 2001, [Part 1] Invited Lectures. Masaryk
University, Brno, 2002. CD-ROM issued as a complement to the journal edition
Mathematica Bohemica 2002/2. pp. 101--111.

Persistent URL: http://dml.cz/dmlcz/700313

Terms of use:
© Institute of Mathematics AS CR, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides
access to digitized documents strictly for personal use. Each copy of any part of this
document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/700313
http://project.dml.cz

Equadiff 10, August 27–31, 2001
Prague, Czech Republic

Equadiff 10 CD ROM
Invited Lectures, pp. 101–111

An introduction to hierarchical matrices

Wolfgang Hackbusch1, Lars Grasedyck2 and Steffen Börm3

1 Max-Planck-Institute for Mathematics in the Sciences
Leipzig, Germany

Email: wh@mis.mpg.de
2 Lehrstuhl Praktische Mathematik

University Kiel, Germany
Email: lgr@numerik.uni-kiel.de

3 Max-Planck-Institute for Mathematics in the Sciences
Leipzig, Germany

Email: sbo@mis.mpg.de

Abstract. We give a short introduction to a method for the data-sparse
approximation of matrices resulting from the discretisation of non-local
operators occurring in boundary integral methods or as the inverses of
partial differential operators.
The result of the approximation will be so-called hierarchical matrices (or
short H-matrices). These matrices form a subset of the set of all matrices
and have a data-sparse representation. The essential operations for these
matrices (matrix-vector and matrix-matrix multiplication, addition and in-
version) can be performed in, up to logarithmic factors, optimal complexity.

MSC 2000. 65F05, 65F30, 65F50, 65N50

Keywords. Hierarchical matrices, data-sparse approximations, formatted
matrix operations, fast solvers

1 Introduction

1.1 Overview

H-matrices are based on two observations:

– Integral operators can be efficiently treated by using separable expansions of
the corresponding kernel functions (cf. [5] or [10]).

This is author’s version of the invited lecture.

mailto:wh@mis.mpg.de
mailto:lgr@numerik.uni-kiel.de
mailto:sbo@mis.mpg.de

102 W. Hackbusch

– The inverse of an elliptic partial differential operator can be cast in the form
of an integral operator by using Green’s functions.

In the first half of this introduction, we will present the H-matrix representation
of integral operators using a variant of the panel clustering approach (cf. [5]). The
second half is devoted to the application of these techniques to the computation
of the inverses of matrices arising in finite element discretisations.

1.2 Model problem: Integral equation

Let us consider an integral operator of the form

L : V → V ′, u #→
(
x #→

∫
Ω

g(x, y)u(y) dy
)
, (1.1)

on a submanifold or subdomain Ω of Rd with a kernel function

g : R
d × R

d → R

which is assumed to be asymptotically smooth, i.e., to satisfy

|∂αx ∂βy g(x, y)| ≤ Cas1(Cas2‖x− y‖)−|α|−|β||g(x, y)|, Cas1, Cas2 ∈ R, α, β ∈ N
d
0.

(1.2)
In typical applications, g is non-local, so, contrary to the treatment of differential
operators, the finite element discretisation of the operator L does not lead to a
sparse matrix. Due to the lack of sparsity operations on the discrete matrix are
prohibitively expensive.

In this paper, we will focus on the method of H-matrices, a combination of the
panel clustering method [5] and the mosaic skeleton matrix approach [10]. This
method can deal with, in comparison to the two alternatives mentioned above,
relatively general domains and operators.

1.3 Elliptic partial differential equations

Since the inverses of elliptic partial differential operators can be represented by
the corresponding Green function in the form of an integral operator, our approx-
imation scheme extends to the inverses of finite element discretisations of such
operators. The kernel function (Green’s function) is only necessary for theoretical
considerations; in practice one starts with the sparse discretisation of an elliptic
partial differential operator and calculates an approximate inverse as in Subsec-
tion 4.4.

2 Construction of the cluster tree and block partition

While wavelet techniques can be employed to deal directly with problems in a con-
tinuum, H-matrix techniques require a discrete subspace together with the finite
element or boundary element basis (ϕi)i∈I . The corresponding Ritz-Galerkin ma-
trix L is given by

Lij = 〈ϕi,Lϕj〉L2 . (2.1)

An introduction to hierarchical matrices 103

2.1 Cluster tree

Let TI be a tree and denote by TI the set of its nodes. TI is called a cluster tree
corresponding to an index set I, if the following conditions hold:

1. TI ⊆ P(I), i.e., each node of TI is a subset of the index set I.
2. I is the root of TI .
3. If τ ∈ TI is a leaf, then 1 |τ | ≤ Cleaf , i.e., the leaves consist of a relatively small

number of indices.
4. If τ ∈ TI is not a leaf, then it has two sons and is their disjoint union.

For each τ ∈ TI , we denote the set of its sons by S(τ) ⊆ TI .
The restriction of TI to binary trees serves only the purpose of simplifying the

presentation of some steps of the algorithms. The extension to more general trees
is straightforward.

The support of a cluster τ ∈ TI is given by the union of the supports of the
basis functions corresponding to its elements, i.e.,

Ωτ :=
⋃
i∈τ
Ωi, where Ωi := suppϕi for all i ∈ I.

Example 2.1 (Construction of cluster trees). A simple method of building a clus-
ter tree is based on geometry-based splittings of the index set. We associate each
degree of freedom i ∈ I with a suitable point xi ∈ Rd, e.g., the centre of the
support of the corresponding basis function or the corresponding Lagrange point,
if Lagrangian finite elements are used.

Let {e1, . . . , ed} be an orthonormal basis of R
d, e.g., the basis {ex, ey, ez} of

the canonical unit vectors in 3D. The following algorithm will split a given cluster
τ ⊆ I into two sons:

procedure Split(τ);
begin
{ Choose a direction for geometrical splitting of the cluster τ }
for j := 1 to d do
begin
αj := min{〈ej , xi〉 : i ∈ τ};
βj := max{〈ej , xi〉 : i ∈ τ}

end;
jmax := argmax{βj − αj : j ∈ {1, . . . , d}};
{ Split the cluster τ in the chosen direction }
γ := (αjmax + βjmax)/2;
τ1 := ∅; τ2 := ∅;
for i ∈ τ do
if 〈ejmax , xi〉 ≤ γ then
τ1 := τ1 ∪ {i}

1 |τ | denotes the number of elements in the set τ .

104 W. Hackbusch

else
τ2 := τ2 ∪ {i};

end

2.2 Admissibility condition

Next, we need an admissibility condition that allows us to select pairs (τ, σ) ∈
TI×TI such that the kernel g(·, ·) is smooth enough on the domain associated with
Ωτ ×Ωσ.

If we assume asymptotically smooth kernels, this requirement will lead to an
admissibility condition of the form

min{diam(Ωτ), diam(Ωσ)} ≤ η dist(Ωτ , Ωσ), (2.2)

where η ∈ R>0 is some parameter controlling the trade-off between the number of
admissible blocks, i.e., the algorithmic complexity, and the speed of convergence,
i.e., the quality of the approximation.

In typical applications for unstructured grids, the computation of the diameter
of a cluster and especially of the distance of two clusters will be too complicated
or too time-consuming, so the “minimal” condition (2.2) will be replaced by a
stronger variant, for example by using super-sets of Ωτ and Ωσ that are of a
simpler structure.

Example 2.2 (Admissibility by Bounding Boxes). A relatively general and practi-
cal admissibility condition for clusters in Rd can be defined by using bounding
boxes : We define the canonical coordinate maps

πk : R
d → R, x #→ xk,

for all k ∈ {1, . . . , d}. The bounding box for a cluster τ ∈ TI is then given by

Qτ :=
d∏

k=1

[aτ,k, bτ,k], where aτ,k := min(πkΩτ) and bτ,k := max(πkΩτ).

Obviously, we have Ωτ ⊆ Qτ , so we can define the admissibility condition

min{diam(Qτ), diam(Qσ)} ≤ η dist(Qτ , Qσ) (2.3)

that obviously implies (2.2). We can compute the diameters and distance of the
boxes by

diam(Qτ) =

(
d∑

k=1

(bτ,k − aτ,k)2
)1/2

and

dist(Qτ , Qσ) =

(
d∑

k=1

(max(0, aτ,k − bσ,k))2 + (max(0, aσ,k − bτ,k))2
)1/2

.

An introduction to hierarchical matrices 105

2.3 Block tree

The cluster tree can be used to define a block tree by forming pairs of clusters
recursively:

The block tree corresponding to a cluster tree TI and an admissibility condition
is constructed by the following procedure:

procedure BuildBlockTree(τ × σ);
begin
if τ × σ is not admissible then
begin
S(τ × σ) := {τ ′ × σ′ : τ ′ ∈ S(τ), σ′ ∈ S(σ)};
for τ ′ × σ′ ∈ S(τ × σ) do

BuildBlockTree(τ ′ × σ′)
end

end

By calling this procedure with τ = σ = I, we create a block cluster tree with root
I × I. The leaves of the block cluster tree form a partition of I × I.

The complexity of algorithms for the creation of suitable cluster trees and
block partitions has been analysed in detail in [3]: For typical quasi-uniform grids,
a “good” cluster tree can be created in O(n log n) operations, the computation of
the block partition can be accomplished in O(n) operations.

3 Rk-matrices

The basic building blocks for H-matrices (defined in Section 4) are Rk-matrices
which are a straight-forward representation of low rank matrices. These matrices
form subblocks of the H-matrix corresponding to subsets τ × σ ⊂ I × I.

Definition 3.1 (Rk-matrix). A matrix of the form

R = ABT , A ∈ R
τ,k, B ∈ R

σ,k

is called an Rk-matrix.

Any matrix of rank at most k can be represented as an Rk-matrix and each
Rk-matrix has at most rank k. Rk-matrices have some nice properties, e.g., only
k(n+m) numbers are needed to store an Rk-matrix.

3.1 Discretisation

In the H-matrix representation of matrices, Rk-matrices will occur only as a rep-
resentation of admissible blocks.

If L is a differential operator, we have supp(Lϕj) ⊆ suppϕj , so the matrix
blocks corresponding to admissible pairs of clusters are zero.

106 W. Hackbusch

The situation is more complicated if L is an integral operator of the type (1.1):
Let τ × σ be an admissible pair of clusters. Without loss of generality, we may
assume that diam(Ωτ) ≤ diam(Ωσ).

In order to construct a rank k approximation of the block τ×σ, we use an m-th
order interpolation scheme2 with interpolation points (xτj)

k
j=1 and corresponding

Lagrange polynomials (pτj)
k
j=1 and approximate the original kernel function g(·, ·)

by its interpolant

g̃(x, y) :=
k∑

ι=1

pτι (x)g(x
τ
ι , y). (3.1)

Combining the asymptotical smoothness assumption (1.2) with standard interpo-
lation error estimates, we get

|g(x, y)− g̃(x, y)| ≤ C
(
CintCas2

diam(Ωτ)
dist(Ωτ , Ωσ)

)m

‖g‖∞,Ωτ×Ωσ ,

which combined with the admissibility condition (2.2) reads

|g(x, y)− g̃(x, y)| ≤ C (CintCas2η)
m ‖g‖∞,Ωτ×Ωσ ,

so if η < 1/(CintCas2), we get exponential convergence of the interpolation if we
increase the order m.

By replacing g(·, ·) by g̃(·, ·) in (2.1), we find

Lij =
k∑

ι=1

∫
Ω

pτι (x)ϕi(x) dx
∫
Ω

g(xτι , y)ϕj(y) dy. (3.2)

We define matrices A ∈ Rτ×k and B ∈ Rσ×k by setting

Aiι :=
∫
Ω

pτι (x)ϕi(x) dx and Bjι :=
∫
Ω

g(xτι , y)ϕj(y) dy

and rewrite (3.2) as 3

L|τ×σ ≈ ABT ,

so we have approximated L|τ×σ by an Rk-matrix.

3.2 Matrix-vector multiplication

The matrix-vector multiplication x #→ y := Rx of an Rk-matrix R = ABT with a
vector x ∈ Rσ can be done in two steps:

2 A scheme of this type can be easily constructed by extending one-dimensional inter-
polation techniques to the multi-dimensional case using tensor products. This leads to
the relation k = md between the rank of a block and the order of the interpolation.

3 For a vector v and a subset τ ⊂ I , v|τ is the restriction to the vector (vj)j∈τ , while for
a matrix L and subsets τ, σ ⊂ I the notation L|τ×σ is used for the block (Lij)i∈τ,j∈σ.

An introduction to hierarchical matrices 107

1. Calculate z := BTx ∈ Rk.
2. Calculate y := Az ∈ R

τ .

The transposed RT = BAT can be treated analogously and the complexity of the
matrix-vector multiplication is O(k(|σ|+ |τ |).

3.3 Truncation

The best approximation of an arbitrary matrix M ∈ Rτ,σ by an Rk-matrix M̃ =
ÃB̃T (in the spectral and Frobenius norm) can be computed using the (truncated)
singular value decomposition as follows:

1. Calculate a singular value decomposition M = UΣV T of M .
2. Set Ũ := [U1 . . . Uk] (first k columns), Σ̃ := diag(Σ11, . . . , Σkk) (first (largest)
k singular values), Ṽ := [V1 . . . Vk] (first k columns).

3. Set Ã := Ũ Σ̃ ∈ Rτ,k and B̃ := Ṽ ∈ Rσ,k.

We call M̃ the truncation of M to the set of Rk-matrices. The complexity of the
truncation is O((|τ |+ |σ|)3). If the matrixM is an R2k-matrixM = ABT then the
truncation can be computed in O(k2(|τ |+ |σ|) + k3) by the following procedure:

1. Calculate a truncated QR-dec. A = QARA of A, QA ∈ Rτ,2k, RA ∈ R2k,2k.
2. Calculate a truncated QR-dec. B = QBRB of B, QB ∈ Rσ,2k, RB ∈ R2k,2k.
3. Calculate a singular value decomposition RAR

T
B = UΣV T of RAR

T
B.

4. Set Ũ := [U1 . . . Uk] (first k columns), Σ̃ := diag(Σ11, . . . , Σkk) (first (largest)
k singular values), Ṽ := [V1 . . . Vk] (first k columns).

5. Set Ã := QAŨ Σ̃ ∈ Rτ,k and B̃ := QBṼ ∈ Rσ,k.

The extension to the case M ∈ Rk′, k′ ∈ N, is obvious.

3.4 Addition

Let R1 = ABT , R2 = CDT be Rk-matrices. The sum

R1 +R2 = [A C][B D]T

is an R2k-matrix. We define the formatted addition ⊕ of two Rk-matrices as the
best approximation (in the spectral and Frobenius norm) of the sum in the set of
Rk-matrices, which can be computed as in Section 3.3. The formatted subtraction
9 is defined analogously.

3.5 Multiplication

The multiplication of an Rk-matrix R = ABT by an arbitrary matrix M from the
left or right yields again an Rk-matrix:

RM = ABTM = A (MTB)T ,
MR = MABT = (MA) BT .

To calculate the product one has to perform the matrix-vector multiplication
MTBi for the k columns i = 1, . . . , k of B with the transposed of M or MAi

for the k columns i = 1, . . . , k of A with the matrix M .

108 W. Hackbusch

4 H-matrices

Based on the cluster (binary) tree TI and the block cluster (quad-) tree TI×I we
define the H-matrix structure.

Definition 4.1 (H-matrix). Let L ∈ R
I×I be a matrix and TI×I a block cluster

tree of I × I consisting of admissible and non-admissible leafs. Let k ∈ N. L is
called H-matrix of blockwise rank k, if for all admissible leafs τ × σ ∈ TI×I

rank(L|τ×σ) ≤ k,

i.e., each admissible subblock of the matrix is an Rk-matrix while the non-admis-
sible subblocks corresponding to leafs do not have to bear any specific structure: if
τ × σ is a non-admissible leaf of TI×I , then either |τ | ≤ Cleaf or |σ| ≤ Cleaf , which
means that the rank is bounded by Cleaf and the subblock is small.

4.1 Matrix-vector multiplication

Let L ∈ RI×I be an H-matrix. To compute the matrix-vector product y := y+Lx
with x, y ∈ RI , we use the following procedure:

procedure MVM(L, τ × σ, x, y);
begin
if S(τ × σ) != ∅ then
for each τ ′ × σ′ ∈ S(τ × σ) do

MVM(L, τ ′ × σ′, x, y)
else
y|τ := y|τ + L|τ×σ x|σ ; {unstructured or Rk-matrix}

end

The starting index sets are τ = σ = I.
The complexity for the matrix-vector multiplication is O(kn log(n)) under

moderate assumptions (see [3]) concerning the locality of the supports of the basis
functions ϕi.

4.2 Addition

Let L,L(1), L(2) ∈ RI×I be H-matrices. The sum L := L(1) + L(2) is an H-matrix
with blockwise rank 2k. The formatted sum L̃ := L(1) ⊕ L(2) is defined by the
formatted addition of the Rk-subblocks:

procedure Add(L̃, τ × σ, L(1), L(2));
begin
if S(τ × σ) != ∅ then
for each τ ′ × σ′ ∈ S(τ × σ) do

Add(L̃, τ ′ × σ′, L(1), L(2));
else

L̃|τ×σ := L(1)|τ×σ ⊕ L(2)|τ×σ; {unstructured or Rk-matrix}
end

An introduction to hierarchical matrices 109

4.3 Multiplication

Let L,L(1), L(2) ∈ RI×I be H-matrices. The matrix L := L + L(1) · L(2) is an H-
matrix with blockwise rank O(k log(n)). The formatted product L̃ := L⊕L(1):L(2)

is defined by using the formatted addition in the Rk-subblocks. We distinguish
three cases:

1. All matrices are subdivided. The multiplication and addition is done in the
subblocks.

2. The target matrix is subdivided and (at least) one of the factors is not subdi-
vided. One has to add the product (small or Rk-matrix involved) to the target
matrix.

3. The target matrix is not subdivided. This case will be treated in a separate
procedure MulAddRk.

procedure MulAdd(L̃, τ , ζ, σ, L(1), L(2));
begin
if S(τ × ζ) != ∅ and S(ζ × τ) != ∅ and S(τ × σ) != ∅ then
{ All matrices are subdivided }
for each τ ′ ∈ S(τ), ζ′ ∈ S(ζ), σ′ ∈ S(σ) do

MulAdd(L̃, τ ′, ζ′, σ′, L(1), L(2));
else begin
if S(τ × σ) != ∅ then
begin
{The target matrix is subdivided}
Calculate the product L′ := L(1)|τ×ζ L

(2)|ζ×σ

(unstructured or Rk-matrix)
and add L′ to L̃|τ×σ

{formatted addition in subblocks of τ × σ}
end
else begin
{The target matrix is not subdivided}
MulAddRk(L̃, τ , ζ, σ, L(1), L(2))

end
end

end

To cover case 3 we have to multiply two subdivided matrices, truncate the product
to the set of Rk-matrices and add the result to the target matrix. To do this
we first calculate the products in the subblocks and truncate them to the set of
Rk-matrices. Afterwards all four Rk-submatrices are added to the target matrix
(extending them by zeros such that all matrices are of the same size) using the
formatted addition.

procedure MulAddRk(L̃, τ , ζ, σ, L(1), L(2));
begin
if S(τ × ζ) = ∅ or S(ζ × σ) = ∅ then

110 W. Hackbusch

begin

Calculate the product L′ := L(1)|τ×ζ L
(2)|ζ×σ {unstructured or Rk-matrix}

and add L′ to L̃|τ×σ {formatted addition}
end
else begin
for each τ ′ ∈ S(τ), σ′ ∈ S(σ) do
begin

Initialise L′ := 0;
for each ζ′ ∈ S(ζ) do

MulAddRk(L′, τ ′, ζ′, σ′, L(1), L(2));
L̃ := L⊕ L′ {L′ is smaller and extended by zeros}

end
end

end

4.4 Inversion

The inverse of a 2 × 2 block-matrix can be computed by use of the Schur com-
plement (see [4]). The exact sums and products are replaced by the formatted

operations ⊕,: and recursively one can define the formatted inverse L̃−1 of L.

procedure Invert(L̃−1, τ , σ, L);
begin
if S(τ × σ) = ∅ then begin

Calculate the inverse L̃−1 := L−1 exactly { unstructured small matrix }
end
else begin
{L =

[
L11 L12
L21 L22

]}
S := L22 9 (L21 : (L̃−1

11 : L12));
L̃−1

22 := S̃−1;

L̃−1
11 := L̃−1

11 ⊕ (L̃−1
11 : (L12 : (L̃−1

22 : (L21L̃
−1
11))));

L̃−1
12 := −L̃−1

11 : (L12 : L̃−1
22);

L̃−1
21 := −L̃−1

22 : (L21 : L̃−1
11)

end
end

5 Further remarks

Estimates concerning the cost of the matrix operations and concerning the approx-
imation error can be found in [6], [7] and [3]. There are several special variants of
the H-matrix technique described in [8]. The treatment of non-quasiuniform finite
element meshes is studied in [9]. Even matrix functions like the matrix exponential
can be computed effectively: [1], [2].

An introduction to hierarchical matrices 111

References

1. I. P. Gavrilyuk, W. Hackbusch, and B.N. Khoromskij, H-matrix approximation for
the operator exponential with applications, Numer. Math., 2001.

2. I. P. Gavrilyuk, W.Hackbusch, and B. N. Khoromskij, H-matrix approximation for
elliptic solution operators in cylindric domains, East-West J. Numer. Math., 9:25–58,
2001.

3. L. Grasedyck, Theorie und Anwendungen Hierarchischer Matrizen, Doctoral thesis,
University Kiel, 2001.

4. W. Hackbusch, A sparse matrix arithmetic based on H-Matrices. Part I: Introduction
to H-Matrices, Computing, 62 (1999), pp. 89–108.

5. W. Hackbusch and Z.P. Nowak, On the fast matrix multiplication in the boundary
element method by panel clustering, Numer. Math., (1989), pp. 463–491.

6. W. Hackbusch and B. N. Khoromskij, A sparse H-matrix arithmetic. Part II: Appli-
cation to multi-dimensional problems, Computing, 64:21–47, 2000

7. W. Hackbusch and B. N. Khoromskij, A sparse H-matrix arithmetic: general com-
plexity estimates, Journal of Computational and Applied Mathematics, 125:479–501,
2000.

8. W. Hackbusch, B. N. Khoromskij, and S.A. Sauter, On H2-matrices, In Hans-Joachim
Bungartz, Ronald H. W. Hoppe, and Christoph Zenger, editors, Lectures on applied
mathematics, pp. 9–29. Springer-Verlag, Berlin, 2000.

9. W. Hackbusch and B. N. Khoromskij, H-matrix approximation on graded meshes, In
John R. Whiteman, editor, The Mathematics of Finite Elements and Applications X,
pp. 307–316. Elsevier, 2000.

10. E. Tyrtyshnikov, Mosaic-skeleton approximation, Calcolo, (1996), pp. 47–57.

		webmaster@dml.cz
	2012-10-04T17:38:12+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

