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Abstract. We consider three types of semilinear second order PDEs on
a cylindrical domain Ω × (0,∞), where Ω is a bounded domain in RN ,
N ≥ 2. Among these, two are evolution problems of parabolic and hyper-
bolic types, in which the unbounded direction of Ω× (0,∞) is reserved for
time t, the third type is an elliptic equation with a singled out unbounded
variable t. We discuss the asymptotic behavior, as t → ∞, of solutions
which are defined and bounded on Ω × (0,∞).
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1 The equations and their gradient-like structure

Let Ω be a bounded domain in RN with C2-boundary, and let g : Ω̄ × R → R be
a sufficiently regular function (assume g is of class C1 at least). We consider the
following three types of semilinear problems in the cylindrical domain Ω× (0,∞):

(PP)


ut = ∆u+ g(x, u), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,
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with u0 ∈ H1
0 (Ω) ∩ L∞(Ω);

(HP)


utt + αut = ∆u+ g(x, u), x ∈ Ω, t > 0,
u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,
ut(x, 0) = v0(x), x ∈ Ω,

with (u0, v0) ∈ (H1
0 (Ω) ∩ L∞(Ω))× L2(Ω) and α > 0; and

(EP)


−utt + αut = ∆u+ g(x, u), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,
ut(x, 0) = v0(x), x ∈ Ω,

with (u0, v0) ∈ (H1
0 (Ω) ∩ L∞(Ω))× L2(Ω) and α != 0.

In all cases we are interested in solutions defined on Ω × (0,∞) for which

sup
t>0

{‖u(·, t)‖H1(Ω), ‖u(·, t)‖L∞(Ω)} <∞. (1.1)

We want to understand possible behavior of such solutions as t→∞.
Problems (PP), (HP) are evolution problems of parabolic and hyperbolic type,

respectively. The given initial-value problems are well-posed (in the case of (HP),
under additional growth conditions on g), and the solutions define a local dy-
namical system on a suitable state space (see [1], [10], [28]). For these evolution
problems the objective we have set ourselves is a rather standard one - understand
the asymptotic behavior of bounded solutions.

The elliptic problem (EP) is usually viewed as a static, rather than evolution
one, in particular the initial-value problem (EP) is in general ill posed (note,
however, that dynamical system ideas have proved very useful in the study of
(EP), see [4], [16], [18], [19], for example). In any case, the behavior of bounded
solutions as t → ∞ is of interest. In particular, one would like to know whether
each such solution has to asymptotically settle down to some fixed profile ϕ(x),
x ∈ Ω, or whether there can be oscillations for large values of t.

All the three problems share a common property that significantly restricts the
way bounded solutions may behave. Namely, each of the problems has a gradient-
like structure, which is to say that it admits a Lyapunov functional. For the
parabolic problem, the functional is given by the usual “energy”:

VP (u) :=
1
2

∫
Ω

|∇u(x)|2 dx−
∫
Ω

G(x, u(x)) dx,

where

G(x, u) =
∫ u

0

g(x, ξ) dξ.
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For problems (HP) and (EP) the functionals are given, respectively, by

VH(u) := VP (u) +
1
2

∫
Ω

u2
t (x) dx,

and

VE(u) :=
(
VP (u)− 1

2

∫
Ω

u2
t (x) dx

)
signα.

A standard computation shows that if u is a solution of any of the above problems
that satisfies (1.1) and that is not constant in t, then for the corresponding func-
tional V , the function t #→ V (u(·, t)) is strictly decreasing on (0,∞). Using this
property, one can show (see for example [4], [10], [19]) that as t→∞, any solution
u(·, t) satisfying (1.1) approaches a set of solutions of the elliptic problem on the
cross-section Ω:

(EC)

{
∆v + g(x, v) = 0, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω.

To say this more precisely, assume u(x, t) is a solution of one of the problems (PP),
(HP), (EP) satisfying (1.1). Then {u(·, t) : t > 0} is relatively compact in H1

0 (Ω)
and its ω-limit set,

ω(u) = {z ∈ H1
0 (Ω) : u(·, tn) → z in H1

0 (Ω) for some tn →∞},

is a connected subset of H1
0 (Ω) consisting of solutions of (EC). One can also show

that ut(·, t) → 0 (in L2(Ω) at least). Hence if oscillations occur at all, they must
slow down.

2 Stabilization or not?

Having said the above, the basic question in the asymptotic behavior of bounded
solution is now whether ω(u) must be a single function, or whether it can be a
nontrivial continuum of solutions of (EC). In the former case, we say the solution
u is stabilizing or convergent ; otherwise u is said to be nonstabilizing or noncon-
vergent. In the literature, one can find various sufficient conditions for stabilization
of all bounded solutions. Let us list a few such conditions that are common to the
three problems.

• One-dimensional domains. If N = 1, bounded solutions have been proved to
stabilize (converge to a single solution of (EC)). The proofs are given in [30], [17],
[11] for (PP), [11] for (HP) and [2], [19] for (EP) (see [2], [3], [5], [6], [8] for related
results in 1D).
• Analytic nonlinearities. If g is real analytic in u, then bounded solutions for

each of the three problems stabilize. The proof is given in [25] for (PP) and (EP),
and in [14] for (HP) (see [15], [12], [9], [27] for other results based on similar ideas).
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• Positive solutions on a ball. If Ω is a ball and u(·, t) is a positive bounded
solution of any of the three problems, then it stabilizes to a single radially sym-
metric solution of (CE). The proofs for all three problems are given in [13]; see
also [7] for a related convergence result in periodic-parabolic equations.

We thus have a rather complete understanding of the behavior of bounded
solutions if N = 1 or if N ≥ 1 and g is analytic. In case N > 1 and g is merely
smooth, the situation is more complicated. The solutions may no longer stabilize.
This follows from the following theorem.

Theorem 1. Let Ω be any bounded domain in RN (N = 2, 3) with C2 boundary.
There exists a C∞ function g : Ω̄ ×R −→ R such that each of the problems (PP),
(HP) and (EP) has (for suitable initial functions u0 or (u0, v0)) a solution u(·, t)
which is bounded in H2(Ω) and whose ω-limit set ω(u) is a continuum in H1

0 (Ω)
homeomorphic to S1.

We restrict our attention to dimensions N = 2, 3 for simplicity, so that we can
treat all the three problems simultaneously and work in the L2-setting.

The theorem has been proved in [24] for (PP) (see [23] for an earlier weaker
result) and in [22] for (HP) and (EP). Notice the curious fact that the nonstabiliz-
ing solutions occur for each of the problems with the same function g. This is an
interesting example of similarities in behavior of solutions of the three problems.
It may be instructive to discuss certain common features of these problems, and,
in doing so, explain why one function g yields nonconvergent examples in all the
three problems.

3 Common features of (PP), (HP) and (EP)

As already mentioned above, a consequential feature common to (PP), (HP) and
(EP) is the presence of a Lyapunov functional. This forces bounded solutions to
approach a set of “steady-states”, that is t-independent solutions. Such solutions
are given by (EC), the equation for steady-states shared by (PP), (HP) and (EP).

The next common property is associated with the linearization at steady-states.
Namely, the three problems have common central part of the spectrum of the
linearization. To be more specific, let us write the nonlinearity g in the form

g(x, u) = a(x)u + f(x, u).

One can think of this as the linearization around a solution φ of (EC), in which
case a(x) = gu(x, φ(x)) and f(x, u) = g(x, φ(x) + u) − a(x)u − ∆φ(x), so that
f(x, 0) ≡ fu(x, 0) ≡ 0. We rewrite each of the problems in the following abstract
form

U ′ = AU + f̂(U). (3.1)

This is done as follows, let E = L2(Ω) for (PP) and E = H1
0 (Ω) × L2(Ω) for

(HP) and (EP). We define a closed operator A on E with domain Dom(A) = X
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(X := H2(Ω)∩H1
0 (Ω) for (PP) and X := H2(Ω)∩H1

0 (Ω))×H1
0 (Ω) for (HP) and

(EP)) as follows

for (PP): Au = (∆+ a(x))u
(
u ∈ X

)
,

for (HP): AU =
(

0 I
∆+ a(x) −αI

)
U

(
U =

(
u
v

)
∈ X

)
,

for (EP): AU =
(

0 I
−∆− a(x) αI

)
U

(
U =

(
u
v

)
∈ X

)
,

where I is the identity operator. The nonlinearity f̂ is defined by

for (PP): f̂(u)(x) = f̃(u)(x) := f(x, u(x)) (u ∈ X)

for (HP): f̂(U) =
(

0
f̃(u)

) (
U =

(
u
v

)
∈ X

)
,

for (EP): f̂(U) =
(

0
−f̃(u)

) (
U =

(
u
v

)
∈ X

)
,

Observe that f̂ : X → X is a smooth function if f is smooth (this is due to our
assumption N ≤ 3, see [26]).

Let us now examine the spectrum of the operatorA (see Fig. 1). In the parabolic
case, σ(A) consists of real eigenvalues µ1 > µ2 > µ3 > . . . accumulating at −∞;
each of them has the same algebraic and geometric multiplicity and the multiplicity
is finite. In the hyperbolic case, σ(A) consists of the eigenvalues

1
2
(−α±

√
α2 + 4µk) (the roots of λ2 + αλ = µk), k = 1, 2, . . . .

In particular, the only possible eigenvalue on the imaginary axis is λ = 0; it
occurs if and only if µk = 0 for some k and then the algebraic multiplicity of this
eigenvalue coincides with the geometric multiplicity and is equal to the multiplicity
of the eigenvalue µk of ∆+ a(x). This can be seen by examination of the spectral
projection associated with the eigenvalue λ = 0 (see [22]).

In the elliptic case, σ(A) consists of the eigenvalues

1
2
(α±

√
α2 − 4µk) (the roots of λ2 − αλ = −µk), k = 1, 2, . . . .

Again, the only eigenvalue on the imaginary axis occurs if µk = 0, and it is the
eigenvalue λ = 0 with the same multiplicity as µk.

Although the structure of the spectra is quite different in the three cases, they
have the same intersection with the imaginary axis: if nonempty, it is just the
eigenvalue λ = 0 which has the same multiplicity for all the three problems. This
is what we meant by the common central part of the spectrum.

An important consequence of the above property is that center manifolds of
steady states have the dimension independent of the type of the problem. The center
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(PP): Im

Re0 0

(HP):

Re

Im

0

Im

Re

(EP):

Fig. 1. σ(A): the arrows indicate directions in which σ(A) is unbounded.

manifold plays a important role in the proofs of Theorem 1, so let us discuss it in
more details. We do so in terms of the abstract equation (3.1).

Assume 0 is an eigenvalue of A and let P ∈ L(E) denote the spectral projection
onto the corresponding eigenspace E1 (note that the eigenspace coincides with
kerA). Let further E2 denote the range of I − P (I is the identity on E) and
let X2 = X ∩ E2. One can then prove (see [29], for example), that for any given
positive integer k, if f̂ ∈ Ck

b (that is all its Frechet derivatives up to order k are
continuous and bounded) and if the Lipschitz constant of f̂ is sufficiently small,
then there is a Ck

b map σf : E1 → X with image contained in X2 such that the
manifold

Wf = {U1 + σf (U1) : U1 ∈ E1}

has the following invariance property (see Figure 2). If U0 = U0
1 + σf (U0

1 ) ∈ Wf ,
and U1(t) is the solution of

U̇1 = P f̂
(
U1(t) + σf (U1(t)

)
,

U1(0) = U0
1 ,

(3.2)

then U(t) := U1(t) + σf (U1(t)) ∈ Wf is a solution of (3.1) (with U(0) = U0).
Thus the center manifold Wf consists of solutions of (3.1) which are defined for

U (t) E

U

U

U(t)
Wf

0  1

 

1

0

1 

X 2

Fig. 2. The center manifold of (3.1)

all t ≥ 0 (since the nonlinearity in (3.2) is globally Lipschitz). Note on passing that
the elliptic initial value problem (EP) is well posed if the initial data are chosen
in the center manifold. Equation (3.2), usually referred to as the center manifold
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reduction, is an ODE on the finite dimensional space E1. Using real coordinates
on E1, we can rewrite it as an ODE on Rn with n = dimE1:

ξ̇ = hf (ξ). (3.3)

This ODE depends on the nonlinearity and on the type of problem we consider.
However, for all the three problems (PP), (HP) and (EP), the ODE is posed on
the same Euclidian space Rn.

We now examine the last (in our list) common feature of problems (PP), (HP)
and (EP). It concerns the gradient-like structure of the center manifold reduction.
As mentioned above, each of the problems admits a Lyapunov functional V , which
can be viewed as functional on X (identifying U = (u, v) with (u, ut) for (HP),
(EP)). ¿From the invariance property of the center manifold, it follows that the
composition U1 #→ V (U1 + σf (U1)) is a Lyapunov a functional for the reduction
(3.3). Thus in real coordinates on E1, equation (3.3) has a Lyapunov functional
Hf . For the parabolic problem (PP), one can even prove (see [23]) that hf in
(3.3) is the gradient of Hf with respect to a Riemannian metric on Rn. This is not
necessarily true for (HP) and (EP), but still all equilibria of (3.3) are critical points
of Hf (see [22]). Again, Hf depends on the type of problem. However, inspecting
formulas for Hf , one discovers a term which is independent of the type and which
is, in some sense, the most important one. Specifically, if (φ1, . . . , φn) denotes an
L2(Ω)-orthonormal basis of ker(∆ + a(x)) (under Dirichlet boundary condition),
then one has (see [23], [24], [22])

Hf (ξ) =
∫
Ω

F (x, ξ · φ(x)) dx + . . . (3.4)

where F (x, u) =
∫ u

0
f(x, s) ds, φ = (φ1, . . . , φn) and “·” stands for the usual scalar

product in Rn. The missing terms in this formula are of higher order than the first
term, which roughly speaking means that if we take f = εf0 with ε→ 0, then those
terms are of order O(ε2) (note that the integral term is linear in f). The missing
terms depend on the type of the problem and also they involve the function σf
from the center manifold. The first term on the other hand is common to all the
three problems and it does not involve σf , hence is much easier to control when
one wants to construct examples.

Let us now indicate how the proofs of Theorem 1 in [24], [22] utilize (3.4). First
the function a(x) is taken such that n = dim(ker(∆+ a(x)) = 2 and such that the
eigenfunctions φ1, φ2 satisfying additional conditions that we do not specify here.

One then wants to show that f can be chosen such that∫
Ω

F (x, ξ · φ(x)) dx = H0(ξ), (3.5)

where H0(ξ) is a smooth function on R2 given by

H0(ρ cos γ, ρ sinγ) =

{
be1/(1−ρM(γ)) sin(1/(ρM(γ)− 1)− γ), if ρM(γ) > 1,
0 if ρM(γ) ≤ 1,
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where b ∈ R\{0} and γ #→M(γ) is a smooth positive 2π-periodic function. This is
a modification of a function used in [20] in an example of a planar gradient vector
field with a nonconvergent bounded trajectory. By careful estimates of the missing
terms in (3.4), one can show that if (3.5) holds, then Hf has certain geometric
properties which are not affected by the missing terms and which guarantee that
(3.3) has a nonconvergent bounded trajectory. This information is then “lifted” to
the center manifold Wf and one obtains a bounded nonconvergent solution of the
original PDE. Thus to prove Theorem 1, it is sufficient to show that (3.5) can be
solved for F (and then set f = F ′). Note that (3.5) is a linear integral equation with
respect to the unknown F , but it is not of any standard form. It actually requires
quite a bit of technical work to solve it (the method of solution relies on properties
of the eigenfunctions φ1, φ2 for a suitably chosen a(x)). The existence of a smooth
solution F is established in [24], where parabolic equations are considered. Taking
advantage of the fact that the leading term of the Lyapunov functional on the
center manifold is common to all the three problems, the construction of [24] is
used in [22] in the proof of the theorem for (HP) and (EP).

We remark that for the evolution equations (PP), (HP) one can use invariant
foliations to prove that there actually exist infinite-dimensional manifolds of initial
conditions that give nonconvergent bounded trajectories.

As the above discussion briefly outlines, our method for constructing examples
of nonconvergent bounded solutions relies on “controlling” the center manifold
reduction by adjusting the nonlinearity in the PDE. Similar ideas are of course
not limited to gradient-like equations. In more general problems a similar method
can be used to reveal even more interesting dynamics. See [21] for a survey of
applications of this method.
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