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Abstract. A class of q-nonlinear parabolic systems with nondiagonal prin-
cipal matrix and strong nonlinearities in the gradient is considered.We dis-
cuss the global in time solvability results of the classical initial boundary
value problems in the case of two spatial variables.The systems with non-
linearities q ∈ (1, 2), q = 2, q > 2, are analyzed.
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Let Ω be a bounded domain in Rn, n � 2, with sufficiently smooth boundary.
For a fixed T > 0 and Q = Ω × (0, T ), we consider a solution u : Q → RN ,
u = (u1, . . . , uN), N > 1, of the parabolic system

ukt −
d

dxα
akα(z, u, ux) + bk(z, u, ux) = 0, z = (x, t) ∈ Q, k = 1, . . . , N. (1)

We define the set D = Q×RN ×RnN and assume that

a) the functions a = {akα}
k�N
α�n and b = {bk}k�N are sufficiently smooth on D;

b) for a fixed q > 1 a(·, ·, p) ∼ |p|q−1, b(·, ·, p) ∼ |p|q, |p| � 1, all derivatives of
a and b that we need have the natural growth with respect to the gradient;
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c) nondiagonal principal matrix
{

∂ak
α

∂pl
β

}α,β�n

k,l�N
satisfies the following assumptions

on D:

∂akα(z, u, p)
∂plβ

ξkαξ
l
β � ν(1 + |p|)q−2|ξ|2,

∣∣∣∣∂a(. . . )∂p

∣∣∣∣ � µ(1 + |p|)q−2, ∀ξ ∈ RnN ;

(2)
d) strong-nonlinear term b satisfies the condition

|b(z, u, p)| � b0(1 + |p|)q, (z, u, p) ∈ D. (3)

Here ν, µ, b0 = const > 0.

We investigate solvability of the Cauchy-Dirichlet problem

u|∂′Q = ϕ, (4)

where ∂′Q is the parabolic boundary of Q, and ϕ is a given smooth function.
First of all, we recall some known results.
We fix the class

V = Lq

(
(0, T ),W 1

q (Ω)
)
∩ L∞(Q)

and note that the global solvability of (1), (4) in V was stated for the scalar
situation (N = 1) in the following sense. Assume that for a fixedM > 0 an apriori
estimate

‖u‖∞,Q ≤M (5)

can be derived. Then there exists a solution u ∈ V ∩ Cα(Q̄) with some α ∈ (0, 1).
Further regularity of the solution follows provided that all the data are smooth
enough [1].

In some sense this result is also valid for a class of quasilinear diagonal systems
(N > 1, q = 2). More precisely, if estimate (5) and the “smallness” condition
b0M < ν hold then a solution u of (1), (4) exists in V ∩ Cα(Q̄).

It should be remarked that due to the maximum principle we are able to
formulate sufficient conditions, which provides estimate (5) in the cases mentioned
above.

Now, let us consider the parabolic (elliptic) system with nondiagonal principal
matrix. In this situation, the following questions arise: i) how to guarantee estimate
(5)? ii) is the class V suitable for proving global solvability of (1), (4)?

Under conditions a)–d), the global solvability problem for (1), (4) has not been
solved yet.

Certainly, we can not expect classical global solvability of this problem. As
is known, there are counterexamples of the regularity for quasilinear nondiagonal
systems even if b ≡ 0 (q = 2, n > 2) [2]. From the other hand, for systems (1)
whose main part is the heat operator, but term b(z, u, p) is non-zero and satisfies
(3), singularities can appear in Q in some time. The heat flow of harmonic maps
gives us an example of such a situation (see, for example, [3], [4]).
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From the above, it follows that there are two reasons that cause nonsmoothness
of solutions of the problem under consideration.

In recent years, the author investigated the global solvability for (1), (4) under
assumptions a)–d) in the following particular case.

To put the problem, we define the functional

E[u] =
∫
Ω

f(x, u, ux) dx, u = (u1, . . . , uN), N > 1, (6)

and denote by L = {Lk}k≤N the Euler operator of E:

Lku = − d

dxα
fpk

α
+ fuk .

Then system (1) is the gradient flow for the functional E. Consider the problem

ukt −
d

dxα
fpk

α
(x, u, ux) + fuk(x, u, ux) = 0, (x, t) ∈ Q, k ≤ N,

u
∣∣
Γ

= 0, u
∣∣
t=0

= ϕ0(x),
(7)

where Γ = ∂Ω × (0, T ).
The variational structure of system (7) provides an apriori estimate of solu-

tion u:
‖ut‖2

2,Q + sup
(0,T )

‖ux(·, t)‖qq,Ω ≤ e0, (8)

e0 = const depends on the data only.
Moreover, this structure also ensures monotonicity of the global energy

E[u(·, t1)] ≤ E[u(·, t2)], ∀ t1 > t2,

and a local energy estimate

‖ut‖2
2,PR(z0) + sup

λR(t0)

‖ux(·, t)‖qq,ΩR(x0) ≤
c

Rq

∫
P2R(z0)

(1 + |ux|)qdP. (9)

In (9) and below, we denote

PR(z0) = QR(z0) ∩Q, QR(z0) = BR(x0)× λR(t0),

BR(x0) =
{
x ∈ R

n
∣∣ |x− x0| < R

}
, λR(t0) = (t0 −Rq, t0 +Rq),

ΩR(x0) = BR(x0) ∩Ω.

We say that QR(z0) is a q-parabolic cylinder and denote by

δq(z1, z2) = sup
{
|x1 − x2|, |t1 − t2|1/q

}
, ∀ z1, z2 ∈ R

n+1, (10)

q -parabolic distance in Rn+1.
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To introduce an example of system (7), we put

f(x, u, p) = 〈A(x, u)p, p〉 (l + |p|)q−2, q > 1, (11)

in the definition (6) of E. We assume that A(·, ·) is a nondiagonal positive definite
and smooth matrix on Ω̄ × RN , and, in addition, Aαβ

kl = Aβα
lk . Generated by

function (11) system (7) satisfies conditions a)–d), in the particular, fu(·, ·, p) ∼
|p|q, |p| � 1.

Let us now proceed to discussing some solvability results recently proved by
the author.

We stated some solvability results for problem (7) in the case of two spatial
variables.

First, we considered problem (7) with n = q = 2. We analyzed it with quasilin-
ear and nonlinear operators under Dirichlet or Neumann type conditions ([5]–[8]).
For all these situations the following result was proved.

Theorem 1. For a fixed number T > 0, there exists a global solution of (7),
which is almost everywhere smooth in Q. The singular set consists of at most
finitely many points. The solution u has finite norms (6), and it is a weak solution
in the sence of distributions.

This result was proved with the help of the continuability theorem of smooth
solutions from a semiclosed time interval. We essentially exploited the imbedding
theorems for two dimensional domains and the fact that “local normalized energy”

1
Rn−q

∫
BR(x0)

|ux(x, t)|q dx is a monotone function of R if n = q = 2.

For the case n = 2 and q > 2, we prove the following result.

Theorem 2. Let q > 2, n = 2, and T be a positive fixed number. There exists a
smooth solution of problem (7) in Q if all the data are sufficiently smooth.

Now, we give a sketch of the proof of this result. We start from the derivation
of some apriori estimates for solutions u of (7) smooth on time interval [0, T ).

First of all, from (8) one can deduce an apriori estimate

‖u‖Cγ(Q̄,δq) ≤ const (12)

where γ is some number in (0, 1).
Estimate (12) allows us to derive apriori estimates of stronger norms of u in Q.
From this point, we study problem (7) in a local setting. Let v(y, t) = u(x(y), t)

be a solution of the problem

vt −
d

dyα
Ak

α(y, v, vy) + B
k(y, v, vy) = 0, (y, t) ∈ Q+

2 , k, . . . , N,

v
∣∣
t=0

= ϕ0(x(y)), v
∣∣
Γ+

2
= 0,

(13)
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where Q+
R = B+

R (0) × (0, T ), B+
R(0) = BR(0) ∩ {y2 > 0}, Γ+

R = γR(0) × (0, T ),
and γR(0) = BR(0) ∩ {y2 = 0}. On the set D = Q+

2 × RN × R2N , functions Ak
α

and Bk satisfy conditions (2) and (3) with some other constants.
With the help of (12), one can derive the inequality

sup
λR(t0)

∫
ΩR(y0)

|vy(y, t)|2 dy +
∫

PR(z0)

[(1 + |vy |)q−2|vyy|2+

(1 + |vy |)q+2] dP ≤ cR2α, ∀R ≤ R0, z0 = (y0, t0) ∈ Q+
3/2,

(14)

with some α ∈ (0, 1) and R0 > 0.
Next, we state that for some s ∈ (0, 1)

sup
(0,T )

‖vt(·, t)‖2+2s,B+
1 (0) ≤ c1. (15)

Here and below, ci, i = 1 . . . , 4, are positive constants depending on the data
only. To derive (15), we use (14) estimating strong-nonlinear terms generated by
functions B

k. After that, we are able to look at our problem as at the elliptic one
for a fixed t ∈ (0, T ).

The reverse Hölder inequalities hold for

V (·, t) = (1 + |vy(·, t)|)
q−2
2 |vyy(·, t)|

in B+
1
2
(0).

Due to the Gehring Lemma, we have the estimate of ‖V (·, t)‖p,B+
1
2
(0) with some

p > 2. As a consequence, we come to the estimates

sup
(0,T )

‖vyy(·, t)‖p,B+
1
2
(0) ≤ c2, sup

(0,T )

‖vy(·, t)‖
Cβ(B+

1
2
(0)

≤ c3, β = 1− 2/p > 0. (16)

Estimates (12), (16) guarantee us that

‖ux‖Cβ0(Q;δq) ≤ c4
with some β0 > 0 .

Apriori estimates of the stronger norms of u up to t = T follows from the linear
theory.It means that u can be extended as a smooth function up to t = T .

Due to the known solvability results, there exists a smooth solution u of (7)
on some time interval [0, T0). Let T0 defines the maximal interval of the existence
of smooth solution u. Suppose that T0 < T . As it was explained above, u can be
extended as a smooth function up to t = T0.Thus, one comes to the contradiction
with the definition of T0. From all said above, it follows that T0 ≥ T . Theorem 2
is proved.

A more complicated case is n = 2, q ∈ (1, 2). To prove the solvability of (7),
we introduce approximate problems

ut + Lu− ε∆u = 0 in Q,

u
∣∣
Γ

= 0, u
∣∣
t=0

= ϕε, ε ∈ (0, 1].
(17)
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Here ϕε is an approximation of ϕ, ϕε satisfies the compatibility conditions for
system (17), ϕε goes to ϕ in the strong sense if ε→ 0.

For a fixed ε > 0, we prove global classical solvability of (17) in the space
H2+α,1+α/2(Q̄) with Hölder exponent α ∈ (0, 1) (the definition of this space see in
[1, Ch. I, § 1]). Certainly, the norm of the solutions uε of (17) in this space goes to
infinity if ε→ 0. We are able to estimate different norms of uε due to the fact that
for a fixed ε > 0 the Laplace operator forms the main part of the elliptic operator
of system (17), and functions fu(x, u, ux) are not the strong-nonlinear terms with
respect to the Laplace operator. Also, it is worth noting,that all estimates of uε

we derive in the standard cylinders (q = 2 in the definition of QR).
The sequence uε goes in some sense to the limit function u if ε → 0, and u is

a solution of (7). More exactly, the following fact was proved.

Theorem 3. Let q ∈ (1, 2) and T be a fixed positive number. There exists a
solution u of problem (7), which is almost everywhere smooth in Q; ut ∈ L2(Q),
and u ∈ L∞((0, T ); W̊ 1

q (Ω)). The closed singular set Σ of u has dimq−HΣ ≤ 2
(dimHΣ ≤ 4− q). Moreover, dimH Σ

τ ≤ 2− q, ∀ τ > 0, where Στ = Σ ∩{t = τ}.

In the statement of Theorem 3, the estimate dimq−HΣ ≤ 2 means that for all
η > 0, H2−q+η(Σ; δq) = 0, where δq-parabolic metric is defined in (10).

Now, we explain the main steps of the proof of Theorem 3.

Lemma 4. There exists a number ω0 depending on the data only, such that if

ω
εj

R0
(z0) ≡ →

PR0(z0)
oscuεj ≤ ω0 (18)

for a point z0 ∈ Q̄ with some R0 > 0 and a sequence εj → 0, then

‖uεj‖Cγ1(PR∗(z0);δq) + ‖uεj
x ‖Cγ2(PR∗(z0);δq) ≤ c0, (19)

with some γ1, γ2 ∈ (0, 1) and R∗ = R∗(R0, ω0) < R0, uεj is a solution of (17).

It should be remarked that, in general, (in the case of nondiagonal matrix and
condition (3)) the smallness of the oscillation of a solution does not guarantee an
estimate of the Hölder norm of the solution.

It is evident that condition (18) provides smoothness of the solution u at the
point z0.

Next step is to introduce an integral description of a regular point of u.

Lemma 5. Suppose that for a point z0 ∈ Q̄ there exist numbers K > 0, β > 1,
R0 > 0 and a sequence εj → 0 such that

sup
ẑ∈PR0 (z0)

sup
R≤R0

(
log2

2R0
R

) βq2

2(q−1)

R2

∫
PR(ẑ)

H2
εj
dz ≤ K, (20)

where H2
ε = (1 + |uεx|)q + ε|uεx|2. Then estimate (18) holds in PR1(z

0) with some
R1 < R0.
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To derive (18) from (20), we exploit a local energy estimate for solutions uε

of (17). We also use a certain condition for functions from Sobolev space W 1
q (Ω) ,

n = 2, that makes it possible to estimate their oscillation. To prove (18), we analyze

both cases εj < R2−q

χ(R) and εj ≥ R2−q

χ(R) , where χ(R) = K
2−q

q

(log2
2R0

R )γ
, γ = q(2−q)β

2(q−1) , and

R ≤ R0. Next, we denote by R the set of all points z0 in Q, where (20) holds with
some parameters K, β, R0, and {εj}j∈N , εj → 0, and put Σ = Q̄ \ R.

We have the following description of Σ:
A point z0 belongs to Σ if for all Mk →∞ and Rk → 0, there exist sequences

of points ξk ∈ PRk
(z0) and numbers ρk ≤ Rk such that

lim inf
ε→0

(
log2

2Rk

ρk

)γ
ρ2k

∫
Pρk

(ξk)

H2
εdz > Mk, (21)

where γ = βq2

2(q−1) .
The relation (21) does not allow us to estimate the Hausdorff measure of Σ and,

therefore, instead of (21), we prove that one can exploit the following description
of z0 ∈ Σ:

for arbitrary sequencesMk →∞ andRk → 0, there exist a sequence of numbers
rk ≤ 2Rk and an absolute number c∗ > 1 such that

lim inf
ε→0

(
log2

4Rk

rk

)γ
r2k

∫
Prk

(z0)

H2
εdz >

Mk

c∗
. (22)

From (22), we deduce an estimate of the Hausdorff dimension of the set Σ as
it was pointed in Theorem 3.

It should be noted that the presence of the logarithm multiplier in (22) does
not allow us to assert that

H2(Σ; δq) < +∞ (H4−q(Σ; δ) < +∞, δ = δ2) and H2−q(Στ ) < +∞, ∀ τ > 0.
(23)

If (23) would be proved, then we could pass to the limit in the integral identity
corresponding to problem (17) and state that the limit function u is a weak solution
of (22) in the sense of distributions.
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