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Abstract. We study the Dirichlet boundary value problem for the p-La-
placian of the form

−∆pu− λ1|u|p−2u = f in Ω, u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω,N ≥
1, p > 1, f ∈ C(Ω̄) and λ1 > 0 is the first eigenvalue of ∆p. We study the
geometry of the energy functional

Ep(u) =
1

p

∫
Ω

|∇u|p − λ1

p

∫
Ω

|u|p −
∫

Ω

fu

and show the difference between the case 1 < p < 2 and the case p > 2.
We also give the characterization of the right hand sides f for which the
Dirichlet problem above is solvable and has multiple solutions.
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1 Statement of the results

Our aim is to study the solvability of the Dirichlet boundary value problem{
−∆pu− λ1|u|p−2u = f in Ω,

u = 0 on ∂Ω.
(1.1)
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Here p > 1 is a real number, Ω is a bounded domain in RN with sufficiently
smooth boundary ∂Ω 1, ∆pu = div(|∇u|p−2∇u) is the p-Laplacian and f ∈ C(Ω̄).
By λ1 we denote the first eigenvalue of the related homogeneous eigenvalue problem{

−∆pu− λ|u|p−2u = 0 in Ω,

u = 0 on ∂Ω.
(1.2)

In this paper, the function u is said to be a (weak) solution of (1.1) if u ∈W 1,2
0 (Ω)

and the integral identity∫
Ω

|∇u|p−2∇u · ∇v − λ1

∫
Ω

|u|p−2uv =
∫
Ω

fv (1.3)

holds for all v ∈W 1,p
0 (Ω).

As for the properties of λ1 (see e.g. [1], [15]), let us mention that λ1 is positive,
simple and isolated and the corresponding eigenfunction ϕ1 (associated with λ1)
satisfies ϕ1 > 0 in Ω, ∂ϕ1

∂n < 0 on ∂Ω, where n denotes the exterior unit normal
to ∂Ω. One also has ϕ1 ∈ C1,ν(Ω̄) with some ν ∈ (0, 1) (see e.g. [15, Lemma 2.1,
p. 115]. Moreover, λ1 can be characterized as the best (the greatest) constant
C > 0 in the Poincaré inequality∫

Ω

|∇u|p ≥ C
∫
Ω

|u|p (1.4)

for all u ∈W 1,p
0 (Ω), where identity∫

Ω

|∇u|p − λ1

∫
Ω

|u|p = 0

holds exactly for the multiples of the first eigenfunction ϕ1.
In our further considerations we will use the standard spaces W 1,p

0 (Ω),
Lp(Ω), C(Ω̄) and C1(Ω̄) (or C1

0 (Ω̄), respectively), with corresponding norms

‖u‖ =
(∫

Ω

|∇u|p
) 1

p

, ‖u‖Lp =
(∫

Ω

|u|p
)1/p

,

‖u‖C = max
x∈Ω

|u(x)|, ‖u‖C1 = ‖u‖C + max
x∈Ω

|∇u(x)|,

respectively, (here | · | denotes the Euclidean norm in R or RN ). The subscript 0
indicates that the traces (or values) of functions are equal zero on ∂Ω. Moreover,
for the element h we use the following (L2–orthogonal) decomposition

h(x) = h̃(x) + h̄ϕ1(x),

and also L2-nonorthogonal decomposition

h(x) = h̃(x) + ĥ,
1 We assume that if N ≥ 2 then ∂Ω is a compact connected manifold of class C2.
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where h̄, ĥ ∈ R and ∫
Ω

h(x)ϕ1(x)dx = 0.

The particular subspace formed by h̃(x) will be denoted by C̃(Ω̄).
By BC(f̃ , ρ) we denote the open ball in the space C(Ω̄) with the center f̃ and

radius ρ.
We introduce the energy functional associated with (1.1):

Ef (u) : =
1
p

∫
Ω

|∇u|p − λ1

p

∫
Ω

|u|p −
∫
Ω

fu, u ∈W 1,p
0 (Ω).

This functional is continuously Fréchet differentiable on W 1,p
0 (Ω) and its critical

points correspond one–to–one to solutions of (1.1).

Our main results concern the geometry of Ef and the structure of the set of
its critical points on one hand and the solvability properties of (1.1) on the other
hand. They are formulated in theorems below.

Theorem 1.1 ([5]). Let 1 < p < 2 and 0 != f̃ ∈ C̃(Ω̄). Then there exists ρ =
ρ(f̃) > 0 such that for any f ∈ BC(f̃ , ρ) the functional Ef is unbounded from
below and has at least one critical point. Moreover, for f ∈ BC(f̃ , ρ) \ C̃(Ω̄) the
functional Ef has at least two distinct critical points.

Theorem 1.2 ([5]). Let p > 2 and 0 != f̃ ∈ C̃(Ω̄). Then the functional Ef̃

is bounded from below and has at least one critical point (which is the global
minimizer). Moreover, there exists ρ = ρ(f̃) > 0 such that for f ∈ BC(f̃ , ρ)\ C̃(Ω̄)
the functional Ef has at least two distinct critical points.

Theorem 1.3 ([5]). Let p > 1, p != 2, f̃ ∈ C̃(Ω̄). Then the problem (1.1) has at
least one solution if f = f̃ . For 0 != f̃ ∈ C̃(Ω̄) there exists ρ = ρ(f̃) > 0 such that
(1.1) has at least one solution for any f ∈ BC(f̃ , ρ). Moreover, there exist real
numbers F− < 0 < F+ (see Fig. 1) such that the problem (1.1) with f = f̃ + f̂ has
(i) no solution for f̂ /∈ [F−, F+];
(ii) at least two distinct solutions for f̂ ∈ (F−, 0) ∪ (0, F+);
(iii) at least one solution for f̂ ∈ {F−, 0, F+}.

2 Remarks

Remark 2.1. Note that standard bootstrap regularity argument implies that any
solution from Theorems 1.1–1.3 belongs to L∞(Ω) (cf. Drábek, Kufner, Nico-
losi [9]). It follows then from the regularity results of Tolksdorf [19] (see also Di
Benedetto [4] and Liebermann [14]) that it belongs to C1,ν(Ω̄) with some ν ∈ (0, 1).
In particular, our solution is an element of C1

0 (Ω̄).



54 P. Drábek

C̃(Ω̄)

C(Ω̄)

F+F− f̂ = 1

f̃

Fig. 1 “Slice” of C(Ω̄) containing all constants and one fixed f̃ ∈ C̃(Ω̄).

Remark 2.2. In particular, it follows from our results that the set of f ∈ C(Ω̄) for
which (1.1) has at least one solution has a nonempty interior in C(Ω̄).

Remark 2.3. Note that Theorem 1.3 provides necessary and sufficient condition
for solvability of the problem (1.1). This condition is in fact of Landesman-Lazer
type (see [13], cf. also [10]). Indeed, given f̃ ∈ C̃(Ω̄), f̃ != 0, the problem (1.1) with
the right hand side f(x) = f̃(x) + f̂ has a solution if and only if

F−(f̃) ≤ 1
‖ϕ1‖L1

∫
Ω

f(x)ϕ1(x)dx ≤ F+(f̃).

However, it should be pointed out that this condition differs from the original
condition of Landesman and Lazer due to the fact that F− and F+ depend on the
component f̃ of the right hand side f and not on the perturbation term (which is
actually not present in our problem (1.1)). By homogeneity we have that for any
t > 0,

F±(tf̃) = tF±(f̃).

Our proofs can be found in paper [5] and rely on the combination of the varia-
tional approach and the method of lower and upper solutions. We also use essen-
tially the results obtained by Drábek and Holubová [7], Takáč [17] and Fleckinger–
Pellé and Takáč [12]. In fact, Theorem 1.1 was proved already in [7], however, here
different approach is used. During the preparation of this manuscript the author
received preprint of Takáč [18], where result similar to our Theorem 1.3 is proved.
However, the approach used in [18] is very different from ours.
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Our objective in this paper is to avoid complicated technical assumptions. For
this reason we restrict to rather special domains Ω and right hand sides f . On the
other hand, we believe that in our approach the main ideas appear more clearly
and that possible generalization of Ω or f will bring new insight neither into the
geometry of Ef nor to the solvability of (1.1).

It should be mentioned that our approach covers also the case N = 1, and
completes thus previous results in this direction proved by Del Pino, Drábek and
Manásevich [3], Drábek, Girg and Manásevich [6], Manásevich and Takáč [16],
Binding, Drábek and Huang [2], Drábek and Takáč [11]. In fact, the first relevant
result which led to better understanding of the problem appeared in [3].

Note also that our Theorems 1.1, 1.2 and 1.3 express not only the difference
between the linear case p = 2 and the nonlinear case p != 2 but also the striking
difference between the case 1 < p < 2 and the case p > 2. The main goal of this
paper is actually to emphasize this fact.

Acknowledgement. This research was partially supported by the Grant Agency
of the Czech Republic, grant 201/00/0376. The results were presented in August
2001 at EQUADIFF 10, Prague, Czech Republic.
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