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Abstract. In this paper we give some existence results obtained by V.
Benci, P. d’Avenia, D. Fortunato, A. Masiello and L. Pisani about a model
of Lorentz-invariant nonlinear field equation in three space dimensions
which gives rise to topological solitary waves.
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1 Introduction

A solitary wave is a solution of a wave equation whose energy is finite and travels
as a localized packet; a soliton is a solitary wave which preserves its shape after
interaction, having so a particle-like behavior.

The soliton solutions occur in many questions of mathematical physics (non-
linear optics, classical and quantum field theory, plasma physics), chemistry and
biology (see [7,8,9,10]).

For some equations, the existence of soliton solutions is guaranteed by topo-
logical constraints.

In one space dimension, the simplest example of topological solitons is given
by the sine-Gordon equation

ψtt − ψxx + sinψ = 0. (1)
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If we look for finite-energy solutions, we put the asymptotic conditions{
ψ (−∞, t) = 2hπ
ψ (+∞, t) = 2kπ h, k ∈ Z

and just the difference h− k represents the topological constraint.
It is well known that the only static solutions of the sine-Gordon equation

uK (x) = 4 arctan (ex+a) + 2hπ
uAK (x) = 4 arctan

(
e−x+a

′
)
+ 2h′π

give rise to one-soliton solutions.
Indeed, since the sine-Gordon equation is Lorentz-invariant, we consider the

“travelling” solutions

ψK (x, t) = uK

(
x− vt√
1− v2

)
ψAK (x, t) = uAK

(
x− vt√
1− v2

)
with v ∈ R, |v| < 1.

Moreover, there exist other solutions of (1) which represent the superposition
of these basic solutions.

This kind of results lead Derrick to look for stable, time-independent, localized
solutions of the nonlinear wave equation

ψtt −∆ψ + V ′ (ψ) = 0 (2)

in three space dimensions.
In [6] he proves that the corresponding static equation

−∆u+ V ′ (u) = 0

has not finite-energy stable solutions.
In the same paper he proposes several ways to avoid this difficulty.
One of them is the following.
The equation (2) is the Euler-Lagrange equation related to the action

S1 =
∫∫

L1dxdt

where,

L1 = −1
2
σ − V (ψ) ,

being
σ = |∇ψ|2 − |ψt|2 .
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Derrick suggests to take a Lagrangian density

L1 = −α (σ)− V (ψ)

which gives rise to Lorentz-invariant equation, but he concludes that such kind of
Lagrangian density lead to a very complicated differential equation. Indeed, in the
60ties, the methods of Nonlinear Analysis were not sufficiently developed to face
quasilinear equations.

In this review, we recall some existence results concerning a nonlinear wave
equation which is similar to the one proposed by Derrick.

2 The model

Let us consider the internal parameter space

M = R4\
{
ξ
}

where
ξ = (1, 0, 0, 0) .

The topological solitary waves introduced in [3] are fields

ψ : R3 × R →M.

The authors of [3] take the Lagrangian density

L1 = −
1
2

(
σ +

ε

3
σ3
)
− V (ψ)

where ε > 0 and
V :M→ R.

We notice that this Lagrangian density is the one related to (2) plus the cor-
rection term

−ε
6
σ3.

The Euler-Lagrange equation related to the action

S1 =
∫∫

L1dxdt

is
∂

∂t

((
1 + εσ2

)
ψt
)
−∇

((
1 + εσ2

)
∇ψ
)
+ V ′ (ψ) = 0. (3)

Since M has non-trivial topology (π3 (M) = Z), if we suppose that the fields
ψ are smooth and

lim
|x|→∞

ψ (x, t) = 0, (4)

we can classify them in the following way.
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Definition 1. For every t ∈ R, the topological charge of ψ (·, t) is

ch (ψ (·, t)) = deg ((P ◦ ψ) (·, t) ,K (ψ (·, t)) , N)

where

P : ξ -→
∣∣ξ∣∣ ξ − ξ∣∣ξ − ξ∣∣ + ξ

is the projection into the unitary sphere centered in ξ,

N = 2ξ

is the north pole of this sphere and

K (ψ (·, t)) =
{
x ∈ R3 | |ψ (·, t) (x)| > 1

}
.

If (4) is uniform with respect to t, the charge does not depend on t.

The existence results of topological solitary waves can be generalized to an
arbitrary number of space dimensions with a more general choice of Lagrangian
density as in [1]. The three space dimensional case is necessary to interpret the
fileds ψ as charged relativistic particles.

3 The static solutions

The static solutions u = u (x) of (3) solve

−∇
((

1 + ε |∇u|4
)
∇u
)
+ V ′ (u) = 0

or, briefly,
−∆u− ε∆6u+ V ′ (u) = 0. (5)

Assume that

(V1) V ∈ C2 (M,R) ;
(V2) V (ξ) ≥ V (0) = 0 and the Hessian matrix V ′′ (0) is non-degenerate;
(V3) there exist c, r > 0 such that

|ξ| < r ⇒ V
(
ξ + ξ

)
≥ c |ξ|−6

.

We can obtain solutions of (5) looking for critical points of the functional

E (u) =
∫

R3

[
1
2
|∇u|2 + ε

6
|∇u|6 + V (u)

]
dx.

In order to get ∫
R3

[
1
2
|∇u|2 + ε

6
|∇u|6

]
dx < +∞,
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we consider the Banach space

H = H1
(
R3,R4

)
∩W 1,6

(
R3,R4

)
.

By Sobolev embedding theorems we can say that the elements of H are con-
tinuous functions which go to zero at infinity.

For every u in the open subset

Λ =
{
u ∈ H | ∀x ∈ R3 : u (x) �= ξ

}
the topological charge is well defined and the condition (V3) implies that if u /∈ Λ,
then

E (u) = +∞.
Although the functional E is weakly lower semicontinuous, we cannot minimize

it in the connected components

ΛK = {u ∈ Λ ch (u) = K}

since the domain R3 is not compact and ΛK are not weakly closed.
The first existence result can be stated as follows (Theorem 2.2 of [3]).

Theorem 2. If V satisfies (V1), (V2), (V3), then there exists a weak solution of
(5) obtained as minimum of the functional E in

Λ∗ = {u ∈ Λ | ch (u) �= 0} .

This result is proved by using a Splitting Lemma in the spirit of concentration-
compactness principle.

Moreover we have the following result.

Theorem 3. If V satisfies (V1), (V2), (V3) and for every g ∈ O (3) , and ξ =(
ξ0, ξ1, ξ2, ξ3

)
∈ M

V
(
ξ0, g ·

(
ξ1, ξ2, ξ3

))
= V

(
ξ0, ξ1, ξ2, ξ3

)
,

then for every N ∈ Z there exists uN non-trivial solution of (5) such that ch (uN ) =
N.

For N �= 0, the existence of a non-trivial solution is proved in [1]. The au-
thors use a suitable invariance of the functional E in order to avoid the lack of
compactness.

For N = 0 the existence of a nontrivial solution is obtained in [5] using the
Hopf invariant.

A function which satisfies all these conditions is

V (ξ) = ω20

(
|ξ|2 + |ξ|4∣∣ξ − ξ∣∣6

)
.
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4 Interaction with the electromagnetic field

4.1 Charge density and current density

If we want to interpret the fields ψ as charged relativistic particles, it is natural
to attribute to the topological charge the meaning of electric charge.

In [2], the authors introduce the fields

J (ψ) : R4 → R3

ρ (ψ) : R4 → R

with the meaning of charge density and current density generated by ψ.
Let

η =
3∑

k=0

ηk (ξ) dξ0 ∧ . . . ∧ d̂ξk ∧ . . . ∧ dξ3

be the unique 3-form closed but not exact on M, where the hatted symbols are
omitted,

ηk (ξ) =
1
|Σ|

(−1)k
(
ξk − ξ̄k

)∣∣ξ − ξ̄∣∣4
and |Σ| is the measure of the unitary sphere in R4.

Let ψ∗η denote the pullback of η by ψ.
The Hodge operator applied to ψ∗η gives a 1-form on R4

∗ (ψ∗η) . (6)

The fields (J, ρ) introduced in [2] are the components of (6).
Indeed we can verify that

ch (ψ (·, t)) =
∫

R3
ρ (ψ) dx

(see Appendix of [4]).
On the other hand, since η is closed, the pullback ψ∗η is closed and then

d (ψ∗η) = 0.

This can be written as the continuity equation

∇J+ ∂ρ

∂t
= 0.

Remark 4. When we consider static fields u = u (x), since in the expression of

Ji (ψ) appears the factor ∂ψj

∂t , we have

J = 0,

namely, as it is natural, in this case there is not electric current.
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4.2 The system solitary wave-e.m. field

Let (A, φ) denote the gauge potential associated to the electromagnetic field.
Using (A, φ), we can define the electric field E and the magnetic induction field

B as follows

E = − (At +∇φ) (7)

B = ∇×A. (8)

By (7) and (8) we get immediately the first two Maxwell equations

∇×E+ Bt = 0
∇ ·B = 0.

In the vacuum, with a suitable choice of the physical constants, the second pair
of the Maxwell equations

∇E = 4πρ
∇×B−Et = 4πJ

can be obtained as the Euler-Lagrange equations related to the action

Semf =
∫∫

(L2 + L3) dxdt

where

L2 =
1
8π

(
|E|2 − |B|2

)
is the Lagrangian density of the electromagnetic field and

L3 = (JA)− ρφ.

Hence, if we consider the system solitary wave-electromagnetic field, the total
action is

S = S (ψ,A, φ) = S1 (ψ) + Semf (ψ,A, φ) .

The Euler-Lagrange equations in the static case are

−∆u− ε∆6u+ V ′ (u) = G (9)

∇× (∇×A) = 0 (10)

−∆φ = 4πρ (u) (11)

where G derives from the interaction term and depends on u, φ (and their deriva-
tives).

We have the following results:

Theorem 5. If V satisfies (V1), (V2), (V3), then there exist

u ∈ H and φ ∈ D1,2
(
R3,R

)
such that
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– ch (u) �= 0;
– (u, 0, φ) is solution of (9, 10, 11).

(Theorem 1.1 of [2])

Theorem 6. If V satisfies (V1), (V2), (V3), and for every g ∈ O (3) , and ξ =(
ξ0, ξ1, ξ2, ξ3

)
∈ M

V
(
ξ0, g ·

(
ξ1, ξ2, ξ3

))
= V

(
ξ0, ξ1, ξ2, ξ3

)
,

then for every N ∈ Z there exist

uN ∈ H and φN ∈ D1,2
(
R3,R

)
such that

– ch (uN) = N ;
– (uN , 0, φN ) is a non-trivial solution of (9, 10, 11).

(Theorem 7 of [4])

The static solutions of (9, 10, 11) are obtained as critical points of the functional

f (u, φ) =
∫

R3

(
1
2
|∇u|2 + ε

6
|∇u|6 + V (u)

)
dx− 1

2

∫
R3
|∇φ|2 dx+

∫
R3
φρ (u) dx

which is strongly indefinite.
Then the solutions are obtained using the reduced functional

J (u) = f (u, Φ [u])

where Φ [u] is implicitly defined by

∂f

∂φ
= 0.

Remark 7. If ū is the non-trivial static solution of (5) having ch(ū) = 0 found in
Theorem 2 of [5], an immediate calculation shows that (ū, 0, 0) is a solution of (9,
10, 11) (Theorem 4 of [5]).
This is a further confirmation of the model’s coherence: indeed an uncharged par-
ticle does not create any electromagnetic field.
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