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Abstract. A special property for establishing boundedness and periodic-
ity of the oscillatory properties of the solutions of equation x′′ = F (x, x′)
is defined and investigated.
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In this note I will consider a certain property, called property (B), introduced
in the paper [1] for the equation

x′′ = F (x, x′), (1)

where F : R → R2 is a continuous function which guarantees the existence and
unicity of the solutions defined by the Cauchy conditions. This property, which
we will later explicitely describe, gives good conditions for establishing the oscil-
latory properties of the solutions, mainly the boundedness and periodicity of the
solutions.

We will substitute the equation (1) by the system

x′ = y,

y′ = F (x, y).
(2)

We put g(x) = −F (x, 0) and we will assume that

xg(x) > 0 for x �= 0. (3)

This guarantees that only the origin will be a singular point of the system (2) and
that the trajectories of our system go clockwise. Moreover, we will assume that the
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function F (x, y)/y is bounded for |x| < α, |y| > β, α > 0, β > 0. This assumption
guarantees the nonexistence of the vertical asymptotes.

If P = (x0, y0) ∈ R2, then γ+(P ) will denote positive and γ−(P ) the negative
parts of the trajectory of the system (2) going through the point P .

Definition We will say that the system (2) has the property (B) if there exists a
point P = (x0, y0), where y0 �= 0 such that γ+(P ) crosses the x-axis but γ−(P )
does not.

In the paper [1] the authors prove the following theorem.

Theorem 1. The system (2) has the property (B) in the positive halfplane if and
only if there exists a differentiable function Φ(x) and x̄ > 0 such that Φ(x) > 0 for
x < x̄, Φ(x̄) = 0 and

F (x, Φ(x)) ≤ Φ′(x)Φ(x) for each x < x̄. (4)

We will consider the Liénard differential equation

x′′ = −f(x)x′ − g(x). (5)

The system (2) will have the form

x′ = y,

y′ = −f(x)′y − g(x).
(6)

Theorem 2. Let f(x) and g(x) be continuous functions on the interval (−∞,∞)
and let be

xf(x) > 0, xg(x) > 0 for x �= 0. (7)

Moreover, let be guaranteed the existence and uniqueness of the Cauchy problem
of the system (6). Let be F (x) =

∫ x
0 f(s)ds and let be

F (−∞) < +∞, F (+∞) > eF (−∞),

g(x)
f(x)

≤ eF (−∞)[eF (−∞) − 1] for x ≤ 0.

Then the system (6) has the property (B).

Proof: Respecting Theorem 1 it is sufficient to prove that there exists a differen-
tiable function Φ(x) and x̄ > 0 such that

Φ(x) > 0 for x < x̄, Φ(x̄) = 0
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and

F (x, Φ(x)) = −f(x)Φ(x) − g(x) ≤ Φ′(x)Φ(x) for x < x̄. (8)

Let be x̄ > 0 such that

e−F (−∞)F (x̄) > 0. (9)

Put Φ1(x) = F (x̄) − F (x) for 0 ≤ x ≤ x̄. Then Φ′1(x) = −f(x) and from (9) we
get

−f(x)[F (x̄)−F (x)]− g(x)− [F (x̄)−F (x)](−f(x)) = −g(x) ≤ 0 for 0 ≤ x ≤ x̄.

For x ≤ 0 put Φ2(x) = e−F (x)F (x̄). Then

Φ′2(x) = e−F (x)F (x̄)(−f(x)).

It is easy to see that Φ1(0) = Φ2(0) = F (x̄) > 0 and Φ′1(0) = 0 = Φ′2(0). Put
Φ(x) = Φ1(x) for 0 ≤ x ≤ x̄ and Φ(x) = Φ2(x) for x < 0. Setting Φ(x) = Φ2(x) we
get

− f(x)e−F (x)F (x̄)− g(x)− e−F (x)F (x̄)e−F (x)F (x̄)(−f(x)) =
= −f(x)e−F (x)F (x̄)[1− e−F (x)F (x̄)]− g(x) ≤

≤ −f(x)e−F (x)F (x̄)[1 − e−F (x)F (x̄)]− eF (−∞)[eF (−∞) − 1]f(x) =

= f(x){−e−F (x)F (x̄)[1− e−F (x)F (x̄)]− eF (−∞)[eF (−∞) − 1]}. (10)

Using (9) we get

e−F (x)F (x̄)[e−F (x)F (x̄)− 1] ≥ F (x)[F (x) − 1] ≥ eF (−∞)[eF (−∞) − 1].

Thus the expression in the composed brackets in (10) is nonnegative. From this
it follows that Φ(x) = Φ2(x) = e−F (x)F (x̄) fulfills (8) for x ≤ 0. This finishes the
proof.
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